
Magnolispit
Version 6.0.1

Tero Hasu

August 30, 2014

This is a work-in-progress implementation of Magnolisp, a small, experimental language and
implementation. It is experimental in its implementation technique, which is to replace the
phase level 0 (runtime) language of Racket with something non-Racket (here: Magnolisp),
and translate it into another language (here: C++) for execution. This variant implementation
of Magnolisp—named Magnolispit—uses identifier tables for recording annotations.

Magnolisp is an amalgamation of Racket and the likewise experimental programming lan-
guage Magnolia. Its algebraic language is inspired by Magnolia (or a subset thereof), but
adapted for a more natural fit with Racket. Racket provides the module and macro systems.
Magnolia is a good fit for C++ translation as it is designed for natural and efficient mapping
to most mainstream languages.

1

http://racket-lang.org/
http://magnolia-lang.org/


1 Magnolisp the Language

#lang magnolisp package: magnolisp

The Magnolisp language relies on Racket for its module and macro systems. All of Racket
may be used for macro programming. The racket/base language is provided by default
for phase level 1 (compile time).

The racket/base definitions (with the exception of the do form) are also available at phase
level 0 by default. They may also be used in runtime code, and evaluated as magnolisp.
However, only a small subset of Racket can be handled by the Magnolisp compiler, and the
compiler will report errors as appropriate for uncompilable language.

When a magnolisp module is evaluated as Racket, any module top-level runtime expres-
sions will also get evaluated; this feature is intended to facilitate testing during development.
The Magnolisp compiler, on the other hand, discards top-level expressions, and also any top-
level definitions that are not actually part of the program being compiled. One motivation
for making most of the racket/base bindings available for runtime code is their potential
usefulness in code invoked by top-level expressions.

1.1 Modules and Macros

The Racket provide and require forms may be used as normal, also at phase level 0.
However, as far as C++ compilation is concerned, these are only used to connect together
Magnolisp definitions internally to the compiled program/library. C++ imports and exports
are specified separately using the foreign and export annotations.

For defining macros and doing transformation time computation, the relevant Racket fa-
cilities (e.g., define-syntax, define-syntax-rule, begin-for-syntax, etc.) may be
used as normal.

1.2 Defining Forms

(require magnolisp/surface) package: magnolisp

In Magnolisp, it is possible to declare functions, types (with typedef), and variables;
of these, variable definitions are not allowed at the top level. The Magnolisp binding
forms are in the magnolisp/surface library. The magnolisp language provides mag-
nolisp/surface at phase level 0.

As Magnolisp has almost no standard library, it is ultimately necessary to define primitive
types and functions (flagged as foreign) in order to be able to compile programs that do
anything useful.

2



(function (id arg ...) maybe-annos maybe-body)

maybe-body =
| expr

Declares a function. The (optional) body of a function is a single expression, which must
produce a single value.

Unlike in Racket, no tail-call optimization may be assumed even when a recursive function
application appears in tail position.

Providing a body is optional in the case where the function is declared as foreign, in which
case the compiler will ignore any body expr . When a function without a body is invoked as
Racket, the result is #<void>. When a foreign function with a body is invoked as Racket,
the body may be implemented in full Racket, typically to “simulate” the behavior of the C++
implementation. To implement a function body in Racket instead of Magnolisp, enclose the
body expression within a begin-racket form.

A function with the export flag in its annotations indicates that the function is part of the
public API of a program that includes the containing module. When a function is used
merely as a dependency (i.e., its containing module was not specified as being a part of the
program), any export flag is ignored.

When a function includes a type annotation, the type expression must be of the form fn-
type-expr (see §1.4 “Type Expressions”).

For example:

(function (identity x)
x)

(function (five) (#:annos export (type (fn int)))
5)

(function (inc x) (#:annos foreign (type (fn int int)))
(add1 x))

(function (seven) (#:annos foreign (type (fn int)))
(begin-racket 1 2 3 4 5 6 7))

Here, identity must have a single, concerete type, possible to determine from the context
of use. It is not a generic function, and hence it may not be used in multiple different type
contexts within a single program.

(typedef id maybe-annos)

Declares a type. Presently only foreign types may be declared, and id gives the correspond-
ing Magnolisp name. The foreign annotation should always be provided.

3



For example:

(typedef int (#:annos foreign))
(typedef long (#:annos (foreign cxx_long)))

(var id maybe-annos expr)

Declares a local variable with the name id , and the (initial) value given by expr . A type
annotation may be included to specify the Magnolisp type of the variable.

For example:

> (let ()
(var x (#:annos (type int)) 5)
(add1 x))

6

(let-var id maybe-annos val-expr body)

A shorthand for declaring a single, annotated, locally scoped variable. The variable id with
the initial value given by val-expr is only in the scope of the body expression. Where no
annotations are given, this form is equivalent to (let ((id val-expr)) body). With
or without annotations, this form is semantically equivalent to the expression (do (var id
maybe-annos val-expr) (return body)), provided that id does not appear in val-
expr .

For example:

> (let-var x (#:annos (type int)) 5
(add1 x))

6

Where one uses other variants of let, it is still possible to specify annotations for the bind-
ings with anno!.

1.3 Annotations

maybe-annos =
| (#:annos anno-expr ...)

4



anno-expr = export-anno-expr
| foreign-anno-expr
| type-anno-expr
| ...

export-anno-expr = export
| (export C++-id)

foreign-anno-expr = foreign
| (foreign C++-id)

type-anno-expr = (type type-expr)

where:

C++-id

A valid C++ identifier. When not provided, a default C++ name is automatically
derived from the Magnolisp name. For foreign declarations, the C++ identifier
must naturally match that of an existing C++ definition.

The set of annotations that may be used in Magnolisp is open ended, to allow for addi-
tional tools support. Only the most central Magnolisp-compiler-recognized annotations are
included in the above grammar.

It is not always necessary to explicitly specify a type for a typed Magnolisp definition,
as the Magnolisp compiler does whole-program type inference (in Hindley-Milner style).
When evaluating as Racket, type annotations are not used at all.

For convenience, the magnolisp language installs a reader extension that supports an-
notation related shorthands: #an(anno-expr ...) is short for (#:annos anno-expr
...); and ^type-expr is short for (type type-expr). For example, #an(^int) reads as
(#:annos (type int)).

(lit-of type-expr literal-expr)

Annotates a literal, which by themselves are untyped in Magnolisp. While the literal "foo"
is treated as a string? value by Racket, the Magnolisp compiler will expect to determine
the literal expression’s Magnolisp type based on annotations. The lit-of form allows one
to “cast” a literal to a specific type for the compiler.

For example:

> (lit-of int 5)
5

5



While generally only declarations require annotations, lit-of demonstrates a specific case
where it is useful to associate annotations with expressions.

(anno! id anno-expr ...)

Explicitly annotates the identifier id with the specified annotations. May be used to specify
annotations for an identifier that is bound separately, probably by one of the Racket binding
forms such as define, let, etc. May appear in any context in which a begin form may
appear, and in which the annotated identifier is in scope.

For example:

> (let ()
(define x 5)
(anno! x (type int))
x)

5

1.4 Type Expressions

type-expr = type-id
| fn-type-expr

fn-type-expr = (fn type-expr ... type-expr)

Type expressions are parsed according to the above grammar, where type-id must be an
identifier that names a type. The only built-in type is predicate, and any others must
be declared using typedef. The (fn type-expr ... type-expr) form contains type
expressions for arguments and the return value, in that order. A Magnolisp function always
returns a single value.

1.5 Statements and Expressions

Unlike Racket, the Magnolisp language makes a distinction between statements and expres-
sions. Although Magnolisp supports some of the Racket language, a given Racket construct
must typically appear only in a specific context (either statement or expression context).

In Magnolisp, an if form is either a statement or expression, depending on context. That
is, depending on context the form is either (if test-expr then-expr else-expr)
or (if test-expr then-stat else-stat). The when and unless forms are always
statements, and contain statements in their body. The test-expr conditional expression
must always be of type predicate, and whether it holds depends on the “truthiness” of its
value, as interpreted in C++ or Racket (as applicable).

6



A (begin stat ...) form, in Magnolisp, signifies a sequence of statements, itself con-
stituting a statement. Similarly to Racket, to allow declarations to appear within a statement
sequence, (let () stat ...) should be used instead.

The (let ([id expr] ...) body ...+), (let* ([id expr] ...) body ...+),
and (letrec ([id expr] ...) body ...+) forms are statements in Magnolisp, and
the bodys must likewise be statements. The named variant of let is not supported. A
limited form of let is supported in expression context—see let-var.

The (set! id expr) form is an assignment statement in Magnolisp. The left-hand side
expression id must be a reference to a bound variable. (The id may naturally instead
be a transformer binding to an assignment transformer, in which case the form is macro
transformed as normal.)

In Magnolisp, (void) signifies a statement with no effect. Unlike in Racket, arguments
are not allowed. The (values) form likewise signifies a statement with no effect, when
it appears in a statement position. The two differ only when evaluating as Racket, as the
former may only appear in a 1-value context, and the latter in a 0-value context.

The var, function, and typedef declaration forms may appear in a statement position.
The same is true of define forms that conform to the restricted syntax supported by the
Magnolisp compiler.

(do stat ...)

An expression block containing a sequence of statements. As the term implies, an expression
block is an expression, despite containing statements. The block must produce a single
value by returning it. Control must not reach the end of a block expression—the return
statement must be invoked somewhere before control “falls out” of the block. The returned
value becomes the value of the containing do expression.

For example:

> (do (void)
(return 1)
(return 2))

1

(return expr)

A statement that causes any enclosing do block (which must exist) to yield the value of the
expression expr .

7



1.6 Predicate Expressions

(require magnolisp/prelude) package: magnolisp

A predicate expression is simply an expression of type predicate, which is the only built-in
type in Magnolisp.

The predicate type and its associated operations are defined by the magnolisp/prelude
module, which serves as the runtime library of Magnolisp. The magnolisp/prelude names
are bound for phase level 0 in the magnolisp language.

predicate : any/c

A built-in type. The “literals” of this type are true and false. All conditional expressions
in Magnolisp are of this type.

(TRUE) → #t
(FALSE) → #f

The only built-in (primitive) functions in Magnolisp are TRUE and FALSE, which are both
of type (fn predicate). While TRUE and FALSE are built-in, only Racket implementa-
tions are provided; suitable implementations must be provided for C++ as necessary, named
mgl_predicate, mgl_TRUE, and mgl_FALSE, respectively. The expression (TRUE) is ex-
pected to always evaluate to a true value, and (FALSE) is expected to always evaluate to a
false value; in Racket these evaluate to #t and #f, respectively.

true
false

There is also shorthand syntax true and false; said syntaxes expand to (TRUE) and
(FALSE), respectively.

1.7 Racket Forms

To use Racket code in a runtime context, you may wrap the code in a form that indicates
that the code is only intended for evaluation as Racket. Code so wrapped must be gram-
matically correct Racket, but not necessarily Magnolisp. The wrapping forms merely switch
syntaxes, and have no effect on the namespace used for evaluating the enclosed sub-forms;
the surrounding namespace is still in effect. Nesting of the wrapping forms is allowed.

(begin-racket Racket-form ...)

A Racket expression that is equivalent to writing (let () Racket-form ...). The Mag-
nolisp semantics is to: ignore such forms when at module top-level; treat such forms as

8



no-ops in statement context; and treat them as uncompilable expressions when appearing in
an expression position. Uncompilable expressions are acceptable for as long as they are not
part of a compiled program, or can be optimized away.

For example:

> (function (three) (#:annos foreign (type fn int))
(begin-racket

(define x 1)
(set! x (begin 2 3))
x))

> (three)
3

One use case is to local-require a Racket definition into a context where a Magnolisp
definition by the same name is being implemented. For example:

> (function (equal? x y)
(#:annos (type (fn int int predicate)) foreign)
(begin-racket

(local-require (only-in racket/base equal?))
(equal? x y)))

> (equal? "foo" "foo")
#t

(begin-for-racket Racket-form ...)

Like begin-racket, but equivalent to writing (begin Racket-form ...), and hence not
necessarily a Racket expression. Intended particularly for allowing the splicing of Racket
definitions into the enclosing context, which is not possible with begin-racket.

For example:

> (begin-for-racket
(define six 6)
(define (one-more x) (let dummy () (+ x 1))))

> (function (eight) (#:annos foreign (type fn int))
(one-more (one-more six)))

> (eight)
8

9



(define-for-racket rest ...)

Shorthand for writing (begin-for-racket (define rest ...)). Intended for intro-
ducing a single binding into the enclosing context, with a definition given in the Racket
language.

For example:

> (define-for-racket two (begin 1 2))

> (function (four) (#:annos foreign (type fn int))
(begin-racket (* (begin 1 2) two)))

> (four)
4

1.8 Fully Expanded Programs

As far as the Magnolisp compiler is concerned, a Magnolisp program is fully expanded if it
conforms to the following grammar.

Any non-terminal marked with the subscript “rkt” is as documented in the “Fully Expanded
Programs” section of the Racket Reference. Any non-terminal marked with the subscript
“ign” is for language that is ignored by the Magnolisp compiler, but which may be useful
when evaluating as Racket. Anything of the form idid-expr is actually a non-terminal like
id-expr , but for the specific identifier id . Form (’local-ec 6= #f sub-form ...) means
the form (sub-form ...) whose syntax object has the property ’local-ec set to a true
value.

module-begin-form = (#%module-begin mgl-modlv-form ...)

mgl-modlv-form = (#%provide raw-provide-spec rkt ...)
| (#%require raw-require-spec rkt ...)
| submodule-form rkt,ign
| (begin mgl-modlv-form ...)
| begin-for-syntax-form ign
| module-level-def
| define-syntaxes-form ign
| expr rkt,ign
| in-racket-form ign

begin-for-syntax-form = (begin-for-syntax module-level-form rkt ...)

10



define-syntaxes-form = (define-syntaxes (trans-id ...) expr rkt)

module-level-def = (define-values (id) mgl-expr)
| (define-values (id ...)

(#%plain-app valuesid-expr mgl-expr ...))

mgl-expr = id
| (#%plain-lambda (id ...) mgl-expr)
| (if mgl-expr mgl-expr mgl-expr)
| (let-values () mgl-expr)
| (letrec-values () mgl-expr)
| (letrec-syntaxes+values

([(trans-id ...) expr rkt,ign] ...)
()

mgl-expr)
| (let-values ([(id) mgl-expr]) mgl-expr)
| (letrec-values ([(id) mgl-expr]) mgl-expr)
| (letrec-syntaxes+values

([(trans-id ...) expr rkt,ign] ...)
([(id) mgl-expr])

mgl-expr)
| (quote datum)
| local-ec-expr
| (#%plain-app #%magnolispid-expr ’foreign-type)
| (#%plain-app id-expr mgl-expr ...)
| (#%top . id)
| (#%expression mgl-expr)
| in-racket-form

stat = (if mgl-expr stat stat)
| (begin stat ...)
| (let-values

([(id ...)
(#%plain-app valuesid-expr mgl-expr ...)]

...)
stat ...+)

| (letrec-values
([(id ...)

(#%plain-app valuesid-expr mgl-expr ...)]
...)

stat ...+)

11



| (letrec-syntaxes+values
([(trans-id ...) expr rkt,ign] ...)
([(id ...)

(#%plain-app valuesid-expr mgl-expr ...)]
...)

stat ...+)
| (let-values ([() stat] ...)

stat ...+)
| (letrec-values ([() stat] ...)

stat ...+)
| (letrec-syntaxes+values

([(trans-id ...) expr rkt,ign] ...)
([() stat] ...)

stat ...+)
| (let-values ([(id) mgl-expr] ...)

stat ...+)
| (letrec-values ([(id) mgl-expr] ...)

stat ...+)
| (letrec-syntaxes+values

([(trans-id ...) expr rkt,ign] ...)
([(id) mgl-expr] ...)

stat ...+)
| (set! id mgl-expr)
| (#%plain-app valuesid-expr)
| (#%plain-app voidid-expr)
| local-ec-jump
| (#%expression stat)
| in-racket-form

local-ec-expr = (’local-ec 6= #f #%plain-app call/ecid-expr
(#%plain-lambda (id) stat ...))

local-ec-jump = (’local-ec 6= #f #%plain-app id-expr mgl-expr)

id-expr = id
| (#%top . id)
| (#%expression id-expr)

where:

id

An identifier. Not the reserved #%magnolisp identifier.

12



trans-id

An identifier with a transformer binding.

datum

A piece of literal data. A (quote datum) form is a literal in Magnolisp, and
its type must be possible to infer from context.

in-racket-form

Any Racket form that has the syntax property ’in-racket set to a true value.
These are ignored by the Magnolisp compiler where possible, and it is an er-
ror if they persist in contexts where they ultimately cannot be ignored. The
begin-racket and begin-for-racket forms are implemented through this
mechanism.

local-ec-expr

A restricted form of call/ec invocation, which is flagged with the syntax prop-
erty ’local-ec. The semantic restriction is that non-local escapes (beyond the
enclosing function’s body) are not allowed.

local-ec-jump

A restricted form of escape continuation invocation, flagged with the syntax
property ’local-ec. The escape must be local.

(Warning: For some of the idid-expr non-terminals, the current parser actually assumes a
direct id .)

#%magnolisp : any/c

A value binding whose identifier is used to uniquely identify some Magnolisp core syntactic
forms. The value of the variable does not matter when compiling an Magnolisp, as it is never
used. For purposes of evaluating as Racket, it holds some function that may be applied to
any number of arguments, and which produces a single, undefined value.

13



2 Evaluation

Programs written in Magnolisp can be evaluated in the usual Racket way, provided that the
#lang signature specifies the language as magnolisp. Any module top-level phase level 0
expressions are evaluated, and the results are printed (as for Racket’s #%module-begin).

14



3 Compiler API

(require magnolisp/compiler-api) package: magnolisp

The Magnolisp implementation includes a compiler targeting C++. The
magnolisp/compiler-api library provides an API for invoking the compiler.

(compile-modules module-path-v
...

[#:relative-to rel-to-path-v ])
→ compilation-state?
module-path-v : module-path?
rel-to-path-v : (or/c path-string? (-> any) false/c) = #f

(compile-files path-s ...) → compilation-state?
path-s : path-string?

Invoke the compiler front end for analysing a Magnolisp program, whose “entry modules”
are specified either as module paths or files. Any specified modules that are not in the mag-
nolisp language are effectively ignored, as they do not contain any exported Magnolisp
definitions. Both functions return an opaque compilation state object, which may be passed
to generate-files for code generation.

The optional argument rel-to-path-v is as for resolve-module-path. It is only rele-
vant for relative module paths, and indicates to which path such paths should be considered
relative.

Any path-s is mapped to a ‘(file ,path-s) module path, coercing path-s to a string
if necessary.

(compilation-state? v) → boolean?
v : any/c

Returns #t if v is a compilation state object (as returned by compile-modules or compile-
files), #f otherwise.

(generate-files st
backends

[#:outdir outdir
#:basename basename
#:out out
#:banner banner?]) → void?

st : compilation-state?
backends : (listof (cons/c symbol? any/c))
outdir : path-string? = (current-directory)
basename : string? = "output"
out : (or/c #f output-port?) = (current-output-port)
banner? : boolean? = #t

15



Performs code generation for the program whose intermediate representation (IR) is stored
in the compilation state st . Code generation is only performed with the specified com-
piler back ends, and for the specified back end specific file types. For instance, to generate
both a C++ header and implementation, you may pass backends as ’((cxx (cc hh))).
The backends argument is an association list with one entry per backend. Passing out as
#f causes code generation into (separate) files; otherwise the specified output port is used.
When out is a true value, the banner? argument indicates whether banners (with filenames)
should be printed to precede individual output files. When out is #f, the outdir argument
specifies the output directory for generated files. The basename string is used as the “stem”
for output file names.

16



4 mglc

The compiler can also be invoked via the mglc command-line tool, specifying the program
to compile. The tool gets installed by invoking raco setup. (Alternatively you may just
run it as ./mglc on Unix platforms.)

To compile a program with mglc, list the source files of the program as arguments; the
program will consist of all the functions in the listed files that are annotated with the ex-
port flag, as well as any code on which they rely. A number of compiler options affecting
compilation behavior may be passed, see mglc --help for a list.

An example invocation would be:

mglc --stdout --banner --cxx my-program.rkt

which instructs the compiler to print out C++ code into standard output, with banners, for
the program "my-program.rkt".

17



5 Example Code

For sample Magnolisp programs, see the "test-*.rkt" files in the "tests" directory of
the Magnolisp implementation codebase.

18



6 License

Except where otherwise noted, the following license applies:

Copyright © 2012-2014 University of Bergen and the authors.

Authors: Tero Hasu

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

19


	1 Magnolisp the Language
	1.1 Modules and Macros
	1.2 Defining Forms
	1.3 Annotations
	1.4 Type Expressions
	1.5 Statements and Expressions
	1.6 Predicate Expressions
	1.7 Racket Forms
	1.8 Fully Expanded Programs

	2 Evaluation
	3 Compiler API
	4 mglc
	5 Example Code
	6 License

