1 A safe countable graph with countable ends is solvable

For $E \subseteq V_G$, let $\delta(E) = A_\alpha(E) \setminus E$ and $E^\delta = E \cup \delta(E)$. A finite set of safe ends is KP by [DM].

Theorem 1.1 A safe countable G with countable \tilde{G} is solvable.

Proof. Start with an enumeration of ends E_1, E_2, \ldots and the complete binary tree $T_0 = 2^{<\omega}$, where level i represents vertex $i \in V_G$. Given such a tree T_{n-1}, consider the end E_n, view each complete branch b of T_{n-1}, first, as an assignment $b|_{E_n}$ to the border of E_n, and retain b only if its restriction to E_n^δ gives a solution to E_n relatively to this assignment to its border $b|_{E_n}$, that is, if $b|_{E_n^\delta} \in solr(E_n, b|_{E_n})$. All such branches give T_n.

Since each finite set of ends has a solution (relatively to every assignment to its border), $T_n \neq \emptyset$. In particular, the tree T_n retains a nonempty subset of paths from the root to each level i, $i_n \subseteq i_{n-1} \subseteq \ldots \subseteq i_0$, where i_0 are all 2^i paths from the root to the vertices of level i in T_0. In the ω-limit, we obtain an infinite sequence of nonempty subsets $i_0 \supseteq i_1 \supseteq i_2 \supseteq \ldots$. Since $i_0 = 2^i$ is finite for each vertex (number) $i \in G : i_\omega = \cap_{n \in \omega} i_n \neq \emptyset$, and if $v_1 \ldots v_i \in i_\omega$, then obviously also $v_i \ldots v_{i-1} \in (i-1)_\omega$. What remains thus is an infinite tree which has an infinite path p by König’s lemma. By construction, $p \in \cap_{E \in \tilde{G}} solr(E)$ – provided that we considered all ends \tilde{G}, i.e., that there are only countably many of them. \square