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1. The last two decades have seen an increasing number of applications of graphs (which
here mean digraphs) to analysis of paradoxes, [2, 3, 6, 8, 9, 11, 14, 15, 18, 22, 23, 26].1 Using
slightly different notions and varied definitions, they share fundamental technical intuitions
and present often essentially the same results. In all cases, graph edges represent some
form of dependence or reference between sentences. Graph cycles capture then self-reference
facilitating study of its dangerous patterns. In one strand of works, using in various ways
reference graphs, RG, edges model very abstract notion of dependency, only loosely related to
semantics. In the other, kernel theory, KT, edges simply negate their targets. This specificity
makes KT formulations more precise without, however, diminishing expressivity. Its results,
collected since its beginnings in the 1940-ties (overviewed partly in [1, 7]), may be easier to
quote than to reinvent. The present note merely signals relevance of this overlooked graph-
theoretic background.2

2. The most notorious example of KT result reappearing in RG is theorem of Richardson
from 1953, according to which an unsolvable graph which is locally finite (each vertex has
finitely many out-neighbours) contains an odd cycle or a ray (an infinite outgoing path of
distinct vertices) [19]. (A graph G is solvable iff it has a kernel, i.e., a set of vertices K ⊆ G
with no edges between them, and with an edge from every vertex in G \K to some vertex in
K [21].) Variants of this theorem, formulated in languages of respective papers, may require
additional moves in the proofs, but have the same graph-theoretic essence, e.g.: claim (i)
on p. 23 in [15], Lemma 9, Corollary 13 and 18 in [18], Corollary 1, 4, Theorem 6 in [2],
Theorems 1 through 5 in [14]. All express unsurprising fact that a (locally) finite paradox
must involve self-reference. In KT this must be self-negation, an odd cycle, while in RG a
mere cycle is dangerous, as reference graphs do not control where negation occurs. Sharing
variants of results like this one is hardly a mere coincidence.

3. One uses typically FOL language L of arithmetics, extended with unary predicate T to
LT . For the intended applications, at least Robinson arithmetics is needed, so we assume it to

1The list contains only works fitting the present context, ignoring many uses of graphs for simliar purposes,
even in a related manner, which technically differ enough not to fit in, e.g., [12, 13, 17, 20]. Also connections
to argumentation theory following [10], e.g., [5], are not particularly relevant here.

2Technicalities are only sketched, as possible choices in RG would quickly require a full paper, while they
can be found in the references or worked out following the general lines presented below.
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be included in the considered theories, along with necessary machinery of gödelization, etc..
Gödel number of LT sentence S is denoted by ⌈S⌉, and LT denotes also the set of sentences
of language LT .

4. Restricting interpretations to standard model of arithmetics N, [14] defines Σ ⊆ LT to be
(a) paradoxical iff there is no X ⊆ ω such that ∀A ∈ Σ : ValX(T ⌈A⌉) = ValX(A),

where ValX is the classical valuation of LT , with X interpreting truth predicate T , i.e., such
that (N, X) |= TΣ, where TΣ = {T ⌈A⌉ ↔ A | A ∈ Σ}. Extending this to arbitrary models,
Σ is

(b) classically paradoxical iff Mod(TΣ) = ∅.

5. Since the beginnings of graph approach to paradoxes, edge relation has represented some
dependence but details have varied. Without any association to graphs, [16] introduced its
very general form, which begins to reappear in RG. According to it, a sentence ϕ ∈ LT
depends on a set of sentences Φ ⊆ LT iff

(a) ∀Ψ1,Ψ2 ⊆ LT : (Ψ1 ∩Ψ = Ψ2 ∩Ψ) ⇒ ValΨ1(ϕ) = ValΨ2(ϕ).
The notion is ambiguous and most sentences ϕ depend on (infinitely many) distinct sets from
a filter D(ϕ) ⊆ P(LT ). One says that ϕ depends on Φ essentially if Φ =

⋂
D(ϕ) – provided

this set belongs to D(ϕ). Valuation of sentences without T (in N) is independent from
interpetation of T , e.g. ∀xPx ∈ L depends essentially on ∅, while ∀x(Px → T x) depends
essentially on Pn, for all n ∈ ω. To admit other languages, or just arbitrary models, (a) needs
a more general form, e.g.:

(b) ∀Val1, Val2 : Val1|Ψ = Val2|Ψ ⇒ Val1(ϕ) = Val2(ϕ),
where, running through all structures, valuations Val1, Val2 in the same structure may differ
on interpretation of T . (Val|Ψ is restriction of Val to Ψ.) This extends the notion of
dependence to L, making ∀xPx depend on Pn, for all elements n of the domain. Generally,
a sentence depends on all its components or their instances, but also S and ¬S depend on
each other (also by (a), e.g., for S = T ⌈R⌉). One can recover (a) from (b), but for general
purposes we now use the latter.

6. A dependence relation/multifunction E : LT → P(LT ), satisfying 5, (a) or (b), chooses
for each sentence some set of sentences on which it depends. Recent works [2, 3, 14] form
then reference graphs G = (Σ,E), for any Σ ⊆ LT , and use them for analysing paradoxicality
of Σ.

Definitions 5 imply that value of a sentence v is determined by values of sentences y ∈ E(v)
on which v depends, i.e.,

(a) Val(v) = V {Val(y) | y ∈ E(v)},
where V is some boolean function (depending possibly on v, though preferably uniform for
all v). Sometimes, valuation is in other, e.g., many-valued logic, but even in classical one
multitude of possible dependencies creates a many-to-many relation. For a set of sentences Σ,
dependencies yield typically infinity of possible reference graphs RG(Σ), and Σ is r-paradoxical
if none of these graphs has a valuation Val respecting (a). Each graph, on the other hand, can
represent dependence of different sets of sentences, and is declared dangerous if some such set
is (r-)paradoxical.

Works following at least partly KT, e.g., [8, 18, 23, 25], narrow these choices so that
V is conjunction of negations of values of all out-neighbours, V al(v) =

∧
y∈E(v)¬V al(y).

Equivalently, valuation of a graph must satisfy
(b) ∀v ∈ Σ : Val(v) = 1 ⇔ ∀y ∈ E(v)(Val(y) = 0),
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and if it does, vertices assigned 1 form graph’s kernel. Solvability is thus an intrinsic property
of a graph, unlike dangerousness, defined relatively to valuations of various sets of sentences.

7. Besides providing a unique representation for each set of sentences, the specific choice
of 6.(b) captures in each graph not only some dependence between sentences but also their
semantic relation – something reference graphs do only abstractly. (Modest steps towards
a more specific dependence distinguish graph’s positive and negative edges [22, 3].) Graphs
with valuations 6.(b) can be obtained in various ways. One, in [25], uses graph normal form,
GNF, for FOL from which construction of a graph is straightforward (for any interpretation
domain. The same holds for propositional, also infinitary, classical logic [4].) Here is a simple
example of Σ in propositional logic, (almost) in GNF with its graph.

a. The next sentence is false. a ↔ ¬b
b. Goldbach conjecture is true. b ↔ ¬b
c. If b is true, then this sentence is not. c ↔ ¬b ∨ ¬c

a

��

◦

��
b // boo •oo

OO

coo

New atoms are needed, for instance, atomic b acquires its negative literal b, so that exactly
one of the two is true in any kernel.

The corresponding theory in FOL, with Gödelized sentence names and T predicate satis-
fying convention (T) for sentences b, c, is shown below with its graph. (Vertices a and ¬T ⌈b⌉
can be identified; Goldbach conjecture is marked merely as atom b; sentence c is the result of
diagonal lemma applied to ¬T ⌈b⌉ ∨ ¬T ⌈ẋ⌉.)

a is ¬T (⌈b⌉)
b ↔ ¬b T ⌈b⌉ ↔ b

c ↔ ¬T (⌈b⌉) ∨ ¬T (⌈c⌉) T ⌈c⌉ ↔ c

a
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b // boo c // •

~~

//

��
·
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·
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T ⌈b⌉
88

¬T ⌈b⌉oo T ⌈c⌉
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Following 6.(b), each representation gives paradox if Goldbach conjecture is true: b = 1 =
T ⌈b⌉ yields b = 0 = ¬T ⌈b⌉ leaving unresolved odd cycle with c and •. When b = 0
then b = 1 = ¬T ⌈b⌉ makes • = 0 and c = 1. Such graphs are special reference graphs,
KG(Σ) ⊂ RG(Σ), with dependence respecting 5.(b), e.g., c depends on •, or else on T ⌈b⌉
and T ⌈c⌉ (but not on T ⌈b⌉ alone), etc..

8. Since GNF is normal form, each FOL theory Σ has an equivalent ΣG in GNF. Kernels of
graphs of Σ in GNF, Ker(KG(Σ)), are in bijection with its classical models, [25]:

∀Σ ∃ΣG in GNF: Mod(Σ) ≃ Mod(ΣG) ≃ Ker(KG(Σ)).
Thus Σ is consistent iff it (its GNF) has a graph possessing a kernel. For LT from 3, this
captures exactly classical paradoxicality, simplifying semantic graph analyses. While RG has
to work with multiple graphs for each Σ, in KT one graph is enough (for each interpretation
domain). Dependence relations in RG(Σ) are given only abstractly, hence graphs must be
handled by equally abstract means. Graphs in KG(Σ), on the other hand, are very concrete
with edges representing negations. Circularities in KT act as expected and as illustrated by
example 7, with odd cycles capturing negative self-reference, leading possibly to paradoxes,
while even cycles giving innocent self-reference of truth-teller.

Now, r-paradoxicality implies classical paradoxicality, because if Σ (with relevant instances
of T-schema = TΣ) is r-paradoxical, i.e., no reference graph from RG(TΣ) has a consistent
classical valuation 6.(a), then in particular graphs KG(TΣ) ⊂ RG(TΣ) are unsolvable, yield-
ing classical paradoxicality. Unsolvability of KG(TΣ) graphs, on the other hand, meaning
inconsistency of TΣ, implies Kripke paradoxicality (for valuations excluding classically in-
consistent fixed points). By Corollary 3.11 from [3], Kripke paradoxicality (for one such
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valuation) is equivalent to r-paradoxicality (for 3-valued reference graphs). The exact rela-
tion between classical and r-paradoxicality depends on specific RG choices, but their (at least
approximate) equivalence is confirmed not only by examples like 2. Generally, graph con-
ditions preventing classical paradoxicality seem to prevent r-paradoxicality, and vice versa,
modulo possible contraction of edges. (As we saw in 2, RG excludes all cycles and not only
odd ones. Similar differences may be relevant for parities of acyclic paths.) We conclude
with an example of such a condition proposed intependently by KT and RG for classical and
r-paradoxicality.

9. Yablo’s paradox raised the natural question whether some form of it must appear in
every acyclic paradox, just like some form of the liar (odd cycle) appears in every cyclic
one. (The difference here is not between infinite and finite paradoxes, but between acyclic
and cyclic ones.) Exclusion of such a form, given by a specific graph minor condition, is
conjectured equivalent to graph not being dangerous in [3]. Equivalent condition, conjectured
independently to suffice for solvability of graphs in [24], is shown to suffice for graphs with
finitely many ends (ways along which rays continue towards infinity, e.g., Yablo graph has
one end). Such a graph is solvable if it has no odd cycle and no ray with infinitely many
vertices dominating it (vertices with infinitely many mutually disjoint, except for the start
vertex, paths to the ray). This appears to be the strongest result available today from KT.
Like Richardson’s theorem, it can be expected to apply to appropriate variants of RG.
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