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Abstract

A modified version of Duchet and Meyniel’s Poison Game is presented, which can be
played on arbitrary digraphs without sinks. Player A has a winning strategy if and only if the
graph has a semikernel, and the winning condition for this player is that the game is infinite.
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A kernel of a digraph is an independent subset K of vertices with an incoming edge from every
vertex v ̸∈ K. A semikernel is a nonempty independent subset L of vertices with an incoming
edge from every out-neighbour of every vertex v ∈ L. A graph is kernel perfect, KP, if each of its
nonempty induced subgraphs has a kernel.

This note introduces a two-player, sequential, perfect information game, which is a modification
of Poison Game from [1]. Player A has a winning strategy if and only if the digraph has a
semikernel. A winning strategy for Player B implies that Player A can be defeated in finite time,
even when playing on an uncountable digraph.

Sinks (vertices with no out-neighbours) are trivial semikernels, so only digraphs without sinks
are considered.

For a brief comparison, we recall the original game from [1].

Poison Game 1 Player A starts by choosing a vertex, and then B and A choose alternately
vertices from the out-neighbours of the opponent’s last choice. B poisons the visited vertices, but
can re-visit them. On entering a poisoned vertex, Player A dies and B wins the play. Player A
wins by surviving (in particular, when B has no move).

By Theorem 1 from [1], a digraph with no loops, no rays (simple infinite out-going paths) and no
infinite out-branching has a semikernel if and only if A has a winning strategy. We extend this
result to the following version of the game played on arbitrary sink-free digraphs.

Poison Game 2 Player A starts by choosing a vertex, and then B and A choose alternately
vertices: A from the out-neighbours of the last vertex chosen by B, while B from the out-neighbours
of all vertices chosen so far by A. Player A poisons all (in- and out-)neighbours of the chosen
vertices. Player A loses the play visiting a poisoned vertex and wins by surviving. (B can visit
poisoned vertices unharmed.) If the play is transfinite, then B starts after each limit ordinal.

The examples below show some limitations of Game 1 motivating the changes in Game 2.

1. Let Y be the digraph (ω,<). It has no semikernel, but A wins Game 1 on it. Retaining
the poisoning rule, we could allow B to choose from the out-neighbours of all choices of A.
Player A still wins such a game, choosing always a vertex past all chosen earlier by B.

2. Similarly, it does not suffice to change merely the poisoning rule to the one in Game 2, but
keep B choosing only from the out-neighbourhood of the last choice of A. The digraph below
is obtained from Y by subdividing each edge i < j twice (the numbered vertices are from
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the original Y ). It has no semikernel, but A wins such a game choosing any out-neighbour
of the last vertex chosen by B. (On this graph, A wins also Game 1.)
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3. Player A can not choose freely from the out-neighbours of all vertices chosen by B, since then
A could avoid providing witness to some choices of B. The digraph below has no semikernel
but, with such a liberal rule, A wins from a1 choosing forever 1, 2, 3, ..., also after B chose •.
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The following notation is used. For a digraph G, we let V denote its vertex set, E its edge relation,
and E− the converse of E. For x ∈ V, by E(x) we denote the set {y ∈ V : E(x, y)} of out-
neighbours of x, by E−(x) its in-neighbours {y ∈ V : E(y, x)}, and we set E±(x) = E(x)∪E−(x).
For X ⊆ V, we let E(X) =

⋃
x∈X E(x) and similarly for E−(X) and E±(X). A kernel is a subset

K of V such that K = V \ E−(K), while a semikernel is a nonempty subset L of V such that
E(L) ⊆ E−(L) ⊆ V\ L.

We consider also transfinite games, but only to show that they are not needed. For an ordinal
κ, a κ-game is a function κ → V, indicated by a sequence a0b1a1b2a2...biai..., with i ≤ κ (i < κ for
limit κ), of pairs of vertices obeying the rules of Poison Game 2. (Dropping b0 in the numbering
reflects A starting with a0 and then responding to bi with ai ∈ E(bi).) For i ≤ κ, we let Ai denote
the set of vertices visited by A up to step i; similarly for Bi. Player A wins a κ-game if Aκ is
independent (no edge joins any two vertices in it). Otherwise, Player B wins.

Player B reaches a winning position choosing a bj such that E(bj) ⊆ E±(Ai), for some i with
1 ≤ i < j. Player A must then choose an aj ∈ E±(ak), for some ak ∈ Ai, destroying independence
of the set Aj . (Although B has won, the play can continue.) Each vertex visited in a game on a
graph G is reachable from a0 by a G-path of the alternating moves of A and B. This path is a
finite subsequence of the game.

A play is the process of forming a game, with κ-plays yielding κ-games. A winning strategy
for a player on a graph G ensures a win for this player in every play on G, no matter the moves
of the opponent. Strategies need not be computable and, in general, amount to prescience – A
knowing a semikernel, or B how to poison A in a finite time. We establish these two claims.

In Game 2, as in 1, a winning strategy for A on a graph G is equivalent to G possessing a
semikernel. A minor difference is that in Game 2 such a semikernel contains all moves of A.

Theorem 1 Player A has a winning strategy on a sink-free digraph G if and only if G has a
semikernel.

Proof. If there is a semikernel, then A never gets poisoned by choosing always a vertex from
it. For the converse, assume that A has a winning strategy. We design a strategy ensuring that
B visits all out-neighbours of all vertices played by A. The reader accepting existence of such a
strategy for B can go directly to the last paragraph of this proof.

For a vertex x ∈ V, let E⃗(x) denote a well-ordering (assumig Axiom of Choice) of the out-
neighbourhood E(x). This ordering is used by B to visit systematically all out-neighbours of
each vertex visited by A. The successive moves a0a1... of A order respectively the corresponding
out-neighbourhoods: E⃗(a0) < E⃗(a1) < ... . Figure 1 gives a schematic picture.

A play starts with a0b1a1b2, where b1, b2 ∈ E(a0) are the first two vertices in E⃗(a0). (If E(a0)

has only one vertex, then b2 is the first in E⃗(a1).) For j ≥ 2, after aj ∈ E(bj) there are two cases
for the choice of bj+1. Case (1), marked with dotted arrows, occurs when bj is the very first vertex

of E⃗(ai), for some i ≤ j. In this case, B finds the first k with k ≤ j such that E⃗(ak) still containing
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Figure 1: A strategy of B for visiting all out-neighbours of all vertices played by A.

vertices unvisited by B, and chooses as bj+1 the first such unvisited vertex from E⃗(ak). (On the

drawing, k = 0.) Case (2), marked by solid arrows, occurs when bj is the n-th vertex of E⃗(ai),

for some i ≤ j and n > 1. Player B chooses then as bj+1 the first unvisited vertex of E⃗(ai+1). (If
all vertices in E(ai+1) have been visited, then B goes to the first E(ak), with i < k ≤ j, having
unvisited vertices. If all such E(ak) have been visited in their entirety, then B restarts with k = 0
as in case (1).)

In either case, if the search for an unvisited vertex fails, then B has visited all vertices in⋃j
1 E(ak) and can only make a move bj+1 repeating some earlier move. Player A can then repeat

earlier answer, and the game can continue thus only repeating earlier moves. The union
⋃j

1 E(ak)
of out-neighbourhoods of all vertices played by A is then a finite set, giving a special case of the
general situation.

In general, for a countable graph, this strategy of B exhausts in ω steps the out-neighbourhood
of each vertex played by A. For an uncountable digraph, the play continues in this way transfinitely.
At step λ+ 1, for each limit ordinal λ, Player B chooses as in case (1) the least vertex unvisited

by B in E⃗(ai), for the least i with i < λ and E(ai) still having such vertices. The play continues
until B exhausts out-neighbourhoods of all choices of A.

For the (least) ordinal κ at which B has visited all out-neighbours of all vertices visited by A,
we have E(Aκ) ⊆ Bκ ⊆ E−(Aκ). The second inclusion holds since A provided an out-neighbour
for each vertex in Bκ. Since A survived, no vertex in Aκ is poisoned, Aκ ∩ E±(Aκ) = ∅, which
means that Aκ is independent. Thus Aκ is a semikernel. 2

Consequently, the game is determined; on each sink-free digraph, exactly one of the players has
a winning strategy. Player A wins moving always in a semikernel, if one exists. Otherwise B,
searching exhaustively through the out-neighbours of all vertices visited by A, forces eventually A
to choose a vertex with an edge joining it to some vertex chosen earlier by A.

If B follows this brute-force strategy on a countable graph, then the game ends in no more
than ω steps. If the graph has no semikernel, then B wins after finitely many steps.

Fact 2 If B has a winning strategy on a sink-free countable digraph, then B can win every play
after finitely many steps.

On uncountable graphs, this brute-force strategy of B may require uncountable plays. To show
that such plays are not needed, we consider κ-plays with ordinals κ possibly smaller than the
cardinality of V. Such games are also determined. If B has a winning strategy, then A does not
have it. The less obvious opposite implication holds also because A wins by not losing.

Fact 3 For every digraph and ordinal κ, if B does not have a winning strategy for κ-plays, then
A has it.

Proof. If B has no winning strategy for κ-plays, then A can start with some a0 after which B
still does not have it. Any move b1 of B can be then answered by A with some a1, after which
B still does not have a winning strategy. This ensures survival of A for ω steps without giving
B any winning strategy also when making the first move after the limit. The same holds for all
greater successor and limit ordinals until κ. 2
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One more fact is used.

Fact 4 For each digraph and limit ordinal λ, if A has a strategy σ for winning κ-plays for all
κ < λ, then σ is also a winning strategy for A in λ-plays.

Proof. Every λ-play gλ is the limit of its prefixes, κ-plays gκ, for κ < λ. If B wins gλ, in which
A follows σ, then Aλ contains a pair {am, an} with an ∈ E±(am). Since Aλ =

⋃
κ<λ Aκ, such

a pair is contained in Aκ for some κ < λ. Hence B wins already gκ, but A following σ wins all
κ-plays. This contradiction establishes the fact. 2

The three facts give the second main claim.

Theorem 5 For each sink-free digraph, B has a winning strategy if and only if B has one for
winning in finitely many steps.

Proof. The if direction is obvious, so we show the other implication. For countable digraphs
the claim is Fact 2, so consider an arbitrary uncountable digraph G. If B has a winning strategy
for all plays on G, then B can use it to win every ω-play, which happens in finitely many steps.
However, a winning strategy on G might possibly require B to play uncountably many moves.
So suppose that B has a winning strategy for the uncountable plays on G, but does not have it
for the countable ones. By Fact 3, A has then a winning strategy for the countable plays which,
by Fact 4, gives also a winning strategy for A in ω1-plays, for the first uncountable ordinal ω1.
This contradicts B having a winning strategy for all uncountable plays. Hence, if B has a winning
strategy for the uncountable plays on G, then B has one also for the countable plays, in particular,
for ω-plays. Thus B can ensure that no play on G continues past ω, winning each in finitely many
steps. 2

Summarizing, a sink-free digraph G of arbitrary cardinality has no semikernel if and only if A,
starting from any vertex, gets poisoned by optimally playing B in finitely many steps. Dually, G
has a semikernel if and only if A has a strategy for surviving ω-plays.

Some examples

(A) The following two examples from [1] show that Poison Game 1 is insufficient on digraphs with
rays or infinite out-branching. A wins that game on the following digraph starting with any xi

and continuing always from xk to xk+1:
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The digraph, however, has no semikernel. Player A looses Game 2 on it arriving at some xi from
which B poisons A playing yi.

Likewise, A survives Poison Game 1 on the following digraph having no semikernel:
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Player A starts with any di and never chooses bi, playing yi ⇆ zi until B moves to bi. After that,
A reaches x1 and then B, forced to play y, enables A to choose a fresh dk. This strategy does not
work in Game 2, since A choosing di poisons yi, zi and y. After B plays yi or zi, A must choose
bi. Then, B reaches x1 after which A must play y poisoned by the initial choice of di.

The reader is invited to verify that A loses Poison Game 2 no matter the starting position.
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(B) The available results ensure typically not only kernel existence but kernel perfectness. (For
instance, Richardson’s Theorem from [2] states existence of kernels in digraphs with no odd cycles
and either no rays or no infinite out-branching. Since these conditions are inherited by induced
subgraphs, they actually ensure kernel perfectness.) No such result gives kernel existence in non-
KP digraphs, e.g., in the following one, on which A has a simple winning strategy.
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// ...

(C) A winning strategy for A on a given digraph can be used also when arbitrary new out-going
edges or paths are added from vertices that only B can choose when A follows this strategy. Player
A simply moves as before from such vertices with new out-going edges. For instance, A still wins
following the previous strategy on the digraph from (B) extended with edges (yj , zi), for all i < j,
which add infinitely many odd cycles to the graph.

Now, A wins trivially on a ray 0 → 1 → 2 → ..., starting from any vertex, e.g., from 0. The
same strategy works then on the following digraph, modifying (ω,<) by retaining only one edge
(x, x+ 1) for even x:

0 // 1 // ** )) ))2 // 3 // ** ))4 // 5 // ++6 // ...

A variant of this digraph is obtained by removing some even vertices. If we remove one, say 2,
and A starts from 0, then B playing 1 forces A to choose some odd vertex i, after which B’s
choice of even i+1 defeats A, since i+2 is now poisoned. A wins, however, starting with an even
vertex past the missing 2. If there is another missing even vertex after that, then A loses again. If
only finitely many even vertices are missing, then A wins by starting from any even vertex after
all missing ones. Put differently, if infinitely many even vertices are missing, then A loses every
game: with B reaching easily an odd vertex just before a missing even one, A must move to an
odd vertex, after which B’s move to the next odd vertex just before a missing even one leads to
poisoning A in the next move. Thus, this variant has no semikernel. Generally, a variant of this
digraph has a semikernel if and only if at most finitely many even vertices are missing.

(D) Let digraph G have real numbers as vertices and edges from each vertex to all greater by at
most 1, that is, E = {(x, y) : x < y ≤ x+1}. To A starting at 0, let B answer by 0.2. Now A must
choose some y ∈ E(0.2) outside the interval (0, 1], poisoned by the first move. Any such move
y ∈ (1, 1.2] poisons all vertices in [1, 2] (and more), so B wins now by playing anywhere between
the first move of A and of B. For instance, B playing 0.1 forces A to choose from E(0.1), that is,
from the poisoned (0.1, 1.1]. This strategy for B works obviously no matter where A starts, and
thus G has no semikernel.
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