
351

8Nested Type Declarations

Exam Objectives

1.1 Develop code that declares classes (including abstract and all forms of
nested classes), interfaces, and enums, and includes the appropriate use of
package and import statements (including static imports).
❍ For class declrations, see Section 3.1, p. 40.

❍ For abstract classes, see Section 4.8, p. 135.

❍ For interfaces, see Section 7.6, p. 309.

❍ For enums, see Section 3.5, p. 54.

❍ For package and import statements, see Section 4.2, p. 105.
1.6 Given a set of classes and superclasses, develop constructors for one or

more of the classes. Given a class declaration, determine if a default
constructor will be created and, if so, determine the behavior of that
constructor. Given a nested or non-nested class listing, write code to
instantiate the class.
❍ For constructors, see Section 3.4, p. 48.

❍ For default constructors, see Section 3.4, p. 49.

❍ For constructor chaining, see Section 7.5, p. 302, and Section 9.11, p. 416.

Supplementary Objectives

• State which nested classes create instances that are associated with instances
of the enclosing context.

• State the access rules that govern accessing entities in the enclosing context
of nested classes and write code that uses the augmented syntax involving
the this keyword for this purpose.

• State whether a definition of a nested class can contain static and non-static
members.

• Distinguish between the inheritance hierarchy and the enclosing context of
any nested class or interface.

PGJC3.book Page 351 Tuesday, November 25, 2008 9:10 PM

352 CHAPTER 8: NESTED TYPE DECLARATIONS

8.1 Overview of Nested Type Declarations

A class that is declared within another type declaration is called a nested class. Simi-
larly, an interface or an enum type that is declared within another type declaration is
called a nested interface or a nested enum type, respectively. A top-level class, enum type,
or interface is one that is not nested. By a nested type we mean either a nested class, a
nested enum, or a nested interface.

In addition to the top-level types, there are four categories of nested classes, one of
nested enum types, and one of nested interfaces, defined by the context these nested
types are declared in:

• static member classes, enums, and interfaces

• non-static member classes

• local classes

• anonymous classes

The last three categories are collectively known as inner classes. They differ from
non-inner classes in one important aspect: that an instance of an inner class may be
associated with an instance of the enclosing class. The instance of the enclosing
class is called the immediately enclosing instance. An instance of an inner class can
access the members of its immediately enclosing instance by their simple names.

A static member class, enum, or interface can be declared either at the top-level, or in
a nested static type. A static class can be instantiated like any ordinary top-level
class, using its full name. No enclosing instance is required to instantiate a static
member class. An enum or an interface cannot be instantiated with the new opera-
tor. Note that there are no non-static member, local, or anonymous interfaces. This
is also true for enum types.

Non-static member classes are defined as instance members of other classes, just as
fields and instance methods are defined in a class. An instance of a non-static mem-
ber class always has an enclosing instance associated with it.

Local classes can be defined in the context of a block as in a method body or a local
block, just as local variables can be defined in a method body or a local block.

Anonymous classes can be defined as expressions and instantiated on the fly. An
instance of a local (or an anonymous) class has an enclosing instance associated
with it, if the local (or anonymous) class is declared in a non-static context.

A nested type cannot have the same name as any of its enclosing types.

Locks on nested classes are discussed in Section 13.5, p. 629.

Generic nested classes and interfaces are discussed in Section 14.13, p. 731. It is not
possible to declare a generic enum type (Section 14.13, p. 733).

Skeletal code for nested types is shown in Example 8.1. Table 8.1 presents a summary
of various aspects relating to nested types. The Type column lists the different kinds

PGJC3.book Page 352 Tuesday, November 25, 2008 9:10 PM

8.1: OVERVIEW OF NESTED TYPE DECLARATIONS 353

of types that can be declared. The Declaration Context column lists the lexical con-
text in which a type can be declared. The Accessibility Modifiers column indicates
what accessibility can be specified for the type. The Enclosing Instance column spec-
ifies whether an enclosing instance is associated with an instance of the type. The
Direct Access to Enclosing Context column lists what is directly accessible in the
enclosing context from within the type. The Declarations in Type Body column refers
to what can be declared in the body of the type. Subsequent sections on each nested
type elaborate on the summary presented in Table 8.1. (N/A in the table means "not
applicable".)

Example 8.1 Overview of Type Declarations

class TLC { // (1) Top level class

 static class SMC {/*...*/} // (2) Static member class

 interface SMI {/*...*/} // (3) Static member interface

 class NSMC {/*...*/} // (4) Non-static member (inner) class

 void nsm() {
 class NSLC {/*...*/} // (5) Local (inner) class in non-static context
 }

 static void sm() {
 class SLC {/*...*/} // (6) Local (inner) class in static context
 }

 SMC nsf = new SMC() { // (7) Anonymous (inner) class in non-static context
 /*...*/
 };

 static SMI sf = new SMI() { // (8) Anonymous (inner) class in static context
 /*...*/
 };

 enum SME {/*...*/} // (9) Static member enum
}

Nested types can be regarded as a form of encapsulation, enforcing relationships
between types by greater proximity. They allow structuring of types and a special
binding relationship between a nested object and its enclosing instance. Used judi-
ciously, they can be beneficial, but unrestrained use of nested types can easily
result in unreadable code.

PGJC3.book Page 353 Tuesday, November 25, 2008 9:10 PM

354 CHAPTER 8: NESTED TYPE DECLARATIONS

Table 8.1 Overview of Type Declarations

Type
Declaration
Context

Accessibility
Modifiers

Enclosing
Instance

Direct Access
to Enclosing
Context

Declarations in
Type Body

Top-level
Class, Enum,
or Interface

Package public or
default

No N/A All that are
valid in a class,
enum, or
interface body,
respectively

Static Member
Class, Enum,
or Interface

As member
of a top-
level type
or a nested
static type

All No Static members in
enclosing context

All that are
valid in a class,
enum, or
interface body,
respectively

Non-static
Member
Class

As
non-static
member of
enclosing
type

All Yes All members in
enclosing context

Only non-static
declarations
+ final static
fields

Local Class In block
with
non-static
context

None Yes All members in
enclosing context
+ final local
variables

Only non-static
declarations
+ final static
fields

In block
with static
context

None No Static members in
enclosing context
+ final local
variables

Only non-static
declarations
+ final static
fields

Anonymous
Class

As
expression
in non-
static
context

None Yes All members in
enclosing context
+ final local
variables

Only non-static
declarations
+ final static
fields

As
expression
in static
context

None No Static members in
enclosing context
+ final local
variables

Only non-static
declarations
+ final static
fields

PGJC3.book Page 354 Tuesday, November 25, 2008 9:10 PM

8.2: STATIC MEMBER TYPES 355

8.2 Static Member Types

Declaring and Using Static Member Types

A static member class, enum type, or interface comprises the same declarations as
those allowed in an ordinary top-level class, enum type, or interface, respectively.
A static member class must be declared explicitly with the keyword static, as a
static member of an enclosing type. Nested interfaces are considered implicitly
static, the keyword static can, therefore, be omitted. Nested enum types are
treated analogously to nested interface in this regard: they are static members.

The accessibility modifiers allowed for members in an enclosing type declaration
can naturally be used for nested types. Static member classes, enum types and
interfaces can only be declared in top-level type declarations, or within other
nested static members.

As regards nesting of types, any further discussion on nested classes and interfaces
is also applicable to nested enum types.

In Example 8.2, the top-level class ListPool at (1) contains a static member class
MyLinkedList at (2), which in turn defines a static member interface ILink at (3) and
a static member class BiNode at (4). The static member class BiNode at (4) implements
the static member interface IBiLink at (5). Note that each static member class is
defined as static, just like static variables and methods in a top-level class.

Example 8.2 Static Member Types

//Filename: ListPool.java
package smc;

public class ListPool { // (1) Top-level class

 public static class MyLinkedList { // (2) Static member class

 private interface ILink { } // (3) Static member interface

 public static class BiNode
 implements IBiLink { } // (4) Static member class
 }

 interface IBiLink
 extends MyLinkedList.ILink { } // (5) Static member interface
}

//Filename: MyBiLinkedList.java
package smc;

public class MyBiLinkedList implements ListPool.IBiLink { // (6)

PGJC3.book Page 355 Tuesday, November 25, 2008 9:10 PM

356 CHAPTER 8: NESTED TYPE DECLARATIONS

 ListPool.MyLinkedList.BiNode objRef1
 = new ListPool.MyLinkedList.BiNode(); // (7)

//ListPool.MyLinkedList.ILink ref; // (8) Compile-time error!
}

The full name of a (static or non-static) member class or interface includes the
names of the classes and interfaces it is lexically nested in. For example, the
full name of the member class BiNode at (4) is ListPool.MyLinkedList.BiNode. The
full name of the member interface IBiLink at (5) is ListPool.IBiLink. Each member
class or interface is uniquely identified by this naming syntax, which is a gener-
alization of the naming scheme for packages. The full name can be used in
exactly the same way as any other top-level class or interface name, as shown at
(6) and (7). Such a member’s fully qualified name is its full name prefixed by the
name of its package. For example, the fully qualified name of the member class
at (4) is smc.ListPool.MyLinkedList.BiNode. Note that a nested member type cannot
have the same name as an enclosing type.

For all intents and purposes, a static member class or interface is very much like
any other top-level class or interface. Static variables and methods belong to a
class, and not to instances of the class. The same is true for static member classes
and interfaces.

Within the scope of its top-level class or interface, a member class or interface can
be referenced regardless of its accessibility modifier and lexical nesting, as
shown at (5) in Example 8.2. Its accessibility modifier (and that of the types mak-
ing up its full name) come into play when it is referenced by an external client.
The declaration at (8) in Example 8.2 will not compile because the member inter-
face ListPool.MyLinkedList.ILink has private accessibility.

A static member class can be instantiated without any reference to any instance of
the enclosing context, as is the case for instantiating top-level classes. An example
of creating an instance of a static member class is shown at (7) in Example 8.2 using
the new operator.

If the file ListPool.java containing the declarations in Example 8.2 is compiled, it
will result in the generation of the following class files in the package smc, where
each file corresponds to either a class or an interface declaration:

ListPool$MyLinkedList$BiNode.class
ListPool$MyLinkedList$ILink.class
ListPool$MyLinkedList.class
ListPool$IBiLink.class
ListPool.class

Note how the full class name corresponds to the class file name (minus the exten-
sion), with the dollar sign ($) replaced by the dot sign (.).

There is seldom any reason to import nested types from packages. It would under-
mine the encapsulation achieved by such types. However, a compilation unit can

PGJC3.book Page 356 Tuesday, November 25, 2008 9:10 PM

8.2: STATIC MEMBER TYPES 357

use the import facility to provide a shortcut for the names of member classes and
interfaces. Note that type import and static import of nested static types is equiv-
alent: in both cases, a type name is imported. Some variations on usage of the
(static) import declaration for static member classes are shown in Example 8.3.

Example 8.3 Importing Static Member Types

//Filename: Client1.java
import smc.ListPool.MyLinkedList; // (1) Type import

public class Client1 {
 MyLinkedList.BiNode objRef1 = new MyLinkedList.BiNode();// (2)
}

//Filename: Client2.java
import static smc.ListPool.MyLinkedList.BiNode; // (3) Static import

public class Client2 {
 BiNode objRef2 = new BiNode(); // (4)
}

class BiListPool implements smc.ListPool.IBiLink { } // (5) Not accessible!

In the file Client1.java, the import statement at (1) allows the static member class
BiNode to be referenced as MyLinkedList.BiNode in (2), whereas in the file
Client2.java, the static import at (3) will allow the same class to be referenced using
its simple name, as at (4). At (5), the fully qualified name of the static member inter-
face is used in an implements clause. However, the interface smc.ListPool.IBiLink is
declared with package accessibility in its enclosing class ListPool in the package
smc, and therefore not visible in other packages, including the default package.

Accessing Members in Enclosing Context

Static code does not have a this reference and can, therefore, only directly access
other members that are declared static within the same class. Since static member
classes are static, they do not have any notion of an enclosing instance. This means
that any code in a static member class can only directly access static members, but
not instance members, in its enclosing context.

Figure 8.1 is a class diagram that illustrates static member classes and interfaces.
These are shown as members of the enclosing context, with the {static} tag to
indicate that they are static, i.e., they can be instantiated without regard to any
object of the enclosing context. Since they are members of a class or an interface,
their accessibility can be specified exactly like that of any other member of a class
or interface. The classes from the diagram are implemented in Example 8.4.

PGJC3.book Page 357 Tuesday, November 25, 2008 9:10 PM

358 CHAPTER 8: NESTED TYPE DECLARATIONS

Example 8.4 Accessing Members in Enclosing Context (Static Member Classes)

//Filename: ListPool.java
public class ListPool { // Top-level class

 public void messageInListPool() { // Instance method
 System.out.println("This is a ListPool object.");
 }

 private static class MyLinkedList { // (1) Static class
 private static int maxNumOfLists = 100; // Static variable
 private int currentNumOfLists; // Instance variable

 public static void messageInLinkedList() { // Static method
 System.out.println("This is MyLinkedList class.");
 }

 interface ILink { int MAX_NUM_OF_NODES = 2000; } // (2) Static interface

 protected static class Node implements ILink { // (3) Static class

 private int max = MAX_NUM_OF_NODES; // (4) Instance variable

 public void messageInNode() { // Instance method
 // int currentLists = currentNumOfLists; // (5) Not OK.
 int maxLists = maxNumOfLists;
 int maxNodes = max;

 // messageInListPool(); // (6) Not OK.
 messageInLinkedList(); // (7) Call static method
 }

 public static void main (String[] args) {
 int maxLists = maxNumOfLists; // (8)

Figure 8.1 Static Member Classes and Interfaces

+messageInNode()
+main()

#Node
{static}

–max
«interface»
ILink

{static}
+MAX_NUM_OF_NODES

+messageInLinkedList()

–maxNumOfLists
–currentNumOfLists

–MyLinkedList
{static}

+messageInListPool()

+ListPool

PGJC3.book Page 358 Tuesday, November 25, 2008 9:10 PM

8.3: NON-STATIC MEMBER CLASSES 359

 // int maxNodes = max; // (9) Not OK.
 messageInLinkedList(); // (10) Call static method
 }
 } // Node
 } // MyLinkedList
} // ListPool

Compling the program:

>javac ListPool.java

Running the program:

>java ListPool$MyLinkedList$Node
This is MyLinkedList class.

Example 8.4 demonstrates accessing members directly in the enclosing context of
class Node defined at (3). The initialization of the field max at (4) is valid, since the
field MAX_NUM_OF_NODES, defined in the outer interface ILink at (2), is implicitly static.
The compiler will flag an error at (5) and (6) in the method messageInNode() because
direct access to non-static members in the enclosing class is not permitted by any
method in a static member class. It will also flag an error at (9) in the method main()
because a static method cannot access directly other non-static fields in its own
class. The statements at (8) and (10) access static members only in the enclosing
context. The references in these statements can also be specified using full names.

int maxLists = ListPool.MyLinkedList.maxNumOfLists; // (8')
ListPool.MyLinkedList.messageInLinkedList(); // (10')

Note that a static member class can define both static and instance members, like
any other top-level class. However, its code can only directly access static mem-
bers in its enclosing context.

A static member class, being a member of the enclosing class or interface, can have
any accessibility (public, protected, package/default, private), like any other mem-
ber of a class. The class MyLinkedList at (1) has private accessibility, whereas its
nested class Node at (3) has protected accessibility. The class Node defines the method
main() which can be executed by the command

>java ListPool$MyLinkedList$Node

Note that the class Node is specified using the full name of the class file minus the
extension.

8.3 Non-Static Member Classes

Non-static member classes are inner classes that are defined without the keyword
static as members of an enclosing class or interface. Non-static member classes are
on par with other non-static members defined in a class. The following aspects
about non-static member classes should be noted:

PGJC3.book Page 359 Tuesday, November 25, 2008 9:10 PM

360 CHAPTER 8: NESTED TYPE DECLARATIONS

• An instance of a non-static member class can only exist with an instance of its
enclosing class. This means that an instance of a non-static member class must
be created in the context of an instance of the enclosing class. This also means
that a non-static member class cannot have static members. In other words,
the non-static member class does not provide any services, only instances of the
class do. However, final static variables are allowed, as these are constants.

• Code in a non-static member class can directly refer to any member (including
nested) of any enclosing class or interface, including private members. No fully
qualified reference is required.

• Since a non-static member class is a member of an enclosing class, it can have
any accessibility: public, package/default, protected, or private.

A typical application of non-static member classes is implementing data struc-
tures. For example, a class for linked lists could define the nodes in the list with the
help of a non-static member class which could be declared private so that it was
not accessible outside of the top-level class. Nesting promotes encapsulation, and
the close proximity allows classes to exploit each other’s capabilities.

Instantiating Non-Static Member Classes

In Example 8.5, the class MyLinkedList at (1) defines a non-static member class Node
at (5). The example is in no way a complete implementation for linked lists. Its
main purpose is to illustrate nesting and use of non-static member classes.

Example 8.5 Defining and Instantiating Non-static Member Classes

class MyLinkedList { // (1)
 private String message = "Shine the light"; // (2)

 public Node makeInstance(String info, Node next) { // (3)
 return new Node(info, next); // (4)
 }

 public class Node { // (5) NSMC
 // static int maxNumOfNodes = 100; // (6) Not OK.
 final static int maxNumOfNodes = 100; // (7) OK.
 private String nodeInfo; // (8)
 private Node next;

 public Node(String nodeInfo, Node next) { // (9)
 this.nodeInfo = nodeInfo;
 this.next = next;
 }

 public String toString() {
 return message + " in " + nodeInfo + " (" + maxNumOfNodes + ")"; // (10)
 }
 }
}

PGJC3.book Page 360 Tuesday, November 25, 2008 9:10 PM

8.3: NON-STATIC MEMBER CLASSES 361

public class ListClient { // (11)
 public static void main(String[] args) { // (12)
 MyLinkedList list = new MyLinkedList(); // (13)
 MyLinkedList.Node node1 = list.makeInstance("node1", null); // (14)
 System.out.println(node1); // (15)
// MyLinkedList.Node nodeX
// = new MyLinkedList.Node("nodeX", node1); // (16) Not OK.
 MyLinkedList.Node node2 = list.new Node("node2", node1); // (17)
 System.out.println(node2); // (18)
 }
}

Output from the program:

Shine the light in node1 (100)
Shine the light in node2 (100)

First, note that in Example 8.5, the declaration of a static variable at (6) in class Node
is flagged as a compile-time error, but defining a final static variable at (7) is
allowed.

A special form of the new operator is used to instantiate a non-static member class:

<enclosing object reference>.new <non-static member class constructor call>

The <enclosing object reference> in the object creation expression evaluates to an
instance of the enclosing class in which the designated non-static member class is
defined. A new instance of the non-static member class is created and associated
with the indicated instance of the enclosing class. Note that the expression returns
a reference value that denotes a new instance of the non-static member class. It is
illegal to specify the full name of the non-static member class in the constructor
call, as the enclosing context is already given by the <enclosing object reference>.

The non-static method makeInstance() at (3) in the class MyLinkedList creates an
instance of the Node using the new operator, as shown at (4):

return new Node(info, next); // (4)

This creates an instance of a non-static member class in the context of the instance
of the enclosing class on which the makeInstance() method is invoked. The new
operator in the statement at (4) has an implicit this reference as the <enclosing object
reference>, since the non-static member class is directly defined in the context of the
object denoted by the this reference:

return this.new Node(info, next); // (4')

The makeInstance() method is called at (14). This method call associates an inner
object of the Node class with the object denoted by the reference list. This inner
object is denoted by the reference node1. This reference can then be used in the nor-
mal way to access members of the inner object. An example of such a use is shown
at (15) in the print statement where this reference is used to call the toString()
method implicitly on the inner object.

PGJC3.book Page 361 Tuesday, November 25, 2008 9:10 PM

362 CHAPTER 8: NESTED TYPE DECLARATIONS

An attempt to create an instance of the non-static member class without an outer
instance, using the new operator with the full name of the inner class, as shown at
(16), results in a compile-time error.

The special form of the new operator is also used in the object creation expression
at (17).

MyLinkedList.Node node2 = list.new Node("node2", node1); // (17)

The reference list denotes an object of the class MyLinkedList. After the execution of
the statement at (17), the MyLinkedList object has two instances of the non-static
member class Node associated with it. This is depicted in Figure 8.2, where the outer
object (denoted by list) of class MyLinkedList is shown with its two associated inner
objects (denoted by the references node1 and node2, respectively) right after the exe-
cution of the statement at (17). In other words, multiple objects of the non-static
member classes can be associated with an object of an enclosing class at runtime.

Accessing Members in Enclosing Context

An implicit reference to the enclosing object is always available in every method
and constructor of a non-static member class. A method can explicitly use this ref-
erence with a special form of the this construct, as explained in the next example.

From within a non-static member class, it is possible to refer to all members in the
enclosing class directly. An example is shown at (10) in Example 8.5, where the
field message from the enclosing class is accessed in the non-static member class. It
is also possible to explicitly refer to members in the enclosing class, but this
requires special usage of the this reference. One might be tempted to write the
statement at (10) as follows:

return this.message + " in " + this.nodeInfo +
 " (" + this.maxNumOfNodes + ")"; // (10a)

The reference this.nodeInfo is correct, because the field nodeInfo certainly belongs to
the current object (denoted by this) of the Node class, but this.message cannot possi-
bly work, as the current object (indicated by this) of the Node class has no field
named message. The correct syntax is the following:

return MyLinkedList.this.message + " in " + this.nodeInfo +
 " (" + this.maxNumOfNodes + ")"; // (10b)

Figure 8.2 Outer Object with Associated Inner Objects

 node1:Node

list:MyLinkedList

 node2:Node

PGJC3.book Page 362 Tuesday, November 25, 2008 9:10 PM

8.3: NON-STATIC MEMBER CLASSES 363

The expression

<enclosing class name>.this

evaluates to a reference that denotes the enclosing object (of the class <enclosing
class name>) of the current instance of a non-static member class.

Accessing Hidden Members

Fields and methods in the enclosing context can be hidden by fields and methods
with the same names in the non-static member class. The special form of the this
syntax can be used to access members in the enclosing context, somewhat analogous
to using the keyword super in subclasses to access hidden superclass members.

Example 8.6 Special Form of this and new Constructs in Non-static Member Classes

//Filename: Client2.java
class TLClass { // (1) TLC
 private String id = "TLClass "; // (2)
 public TLClass(String objId) { id = id + objId; } // (3)
 public void printId() { // (4)
 System.out.println(id);
 }

 class InnerB { // (5) NSMC
 private String id = "InnerB "; // (6)
 public InnerB(String objId) { id = id + objId; } // (7)
 public void printId() { // (8)
 System.out.print(TLClass.this.id + " : "); // (9) Refers to (2)
 System.out.println(id); // (10) Refers to (6)
 }

 class InnerC { // (11) NSMC
 private String id = "InnerC "; // (12)
 public InnerC(String objId) { id = id + objId; } // (13)
 public void printId() { // (14)
 System.out.print(TLClass.this.id + " : "); // (15) Refers to (2)
 System.out.print(InnerB.this.id + " : "); // (16) Refers to (6)
 System.out.println(id); // (17) Refers to (12)
 }
 public void printIndividualIds() { // (18)
 TLClass.this.printId(); // (19) Calls (4)
 InnerB.this.printId(); // (20) Calls (8)
 printId(); // (21) Calls (14)
 }
 } // InnerC
 } // InnerB
} // TLClass
//___
public class OuterInstances { // (22)
 public static void main(String[] args) { // (23)
 TLClass a = new TLClass("a"); // (24)
 TLClass.InnerB b = a.new InnerB("b"); // (25)

PGJC3.book Page 363 Tuesday, November 25, 2008 9:10 PM

364 CHAPTER 8: NESTED TYPE DECLARATIONS

 TLClass.InnerB.InnerC c1 = b.new InnerC("c1"); // (26)
 TLClass.InnerB.InnerC c2 = b.new InnerC("c2"); // (27)
 b.printId(); // (28)
 c1.printId(); // (29)
 c2.printId(); // (30)
 TLClass.InnerB bb = new TLClass("aa").new InnerB("bb"); // (31)
 TLClass.InnerB.InnerC cc = bb.new InnerC("cc"); // (32)
 bb.printId(); // (33)
 cc.printId(); // (34)
 TLClass.InnerB.InnerC ccc =
 new TLClass("aaa").new InnerB("bbb").new InnerC("ccc");// (35)
 ccc.printId(); // (36)
 System.out.println("------------");
 ccc.printIndividualIds(); // (37)
 }
}

Output from the program:

TLClass a : InnerB b
TLClass a : InnerB b : InnerC c1
TLClass a : InnerB b : InnerC c2
TLClass aa : InnerB bb
TLClass aa : InnerB bb : InnerC cc
TLClass aaa : InnerB bbb : InnerC ccc

TLClass aaa
TLClass aaa : InnerB bbb
TLClass aaa : InnerB bbb : InnerC ccc

Example 8.6 illustrates the special form of the this construct employed to access
members in the enclosing context, and also demonstrates the special form of the
new construct employed to create instances of non-static member classes. The exam-
ple shows the non-static member class InnerC at (11), which is nested in the non-
static member class InnerB at (5), which in turn is nested in the top-level class
TLClass at (1). All three classes have a private non-static String field named id and
a non-static method named printId. The member name in the nested class hides the
name in the enclosing context. These members are not overridden in the nested
classes because no inheritance is involved. In order to refer to the hidden members,
the nested class can use the special this construct, as shown at (9), (15), (16), (19),
and (20). Within the nested class InnerC, the three forms used in the following state-
ments to access its field id are equivalent:

System.out.println(id); // (17)
System.out.println(this.id); // (17a)
System.out.println(InnerC.this.id); // (17b)

The main() method at (23) uses the special syntax of the new operator to create
objects of non-static member classes and associate them with enclosing objects. An
instance of class InnerC (denoted by c) is created at (26) in the context of an instance
of class InnerB (denoted by b), which was created at (25) in the context of an
instance of class TLClass (denoted by a), which in turn was created at (24). The ref-

PGJC3.book Page 364 Tuesday, November 25, 2008 9:10 PM

8.3: NON-STATIC MEMBER CLASSES 365

erence c1 is used at (29) to invoke the method printId() declared at (14) in the
nested class InnerC. This method prints the field id from all the objects associated
with an instance of the nested class InnerC.

When the intervening references to an instance of a non-static member class are of
no interest (i.e., if the reference values need not be stored in variables), the new oper-
ator can be chained as shown at (31) and (35).

Note that the (outer) objects associated with the instances denoted by the refer-
ences c1, cc, and ccc are distinct, as evident from the program output. However, the
instances denoted by references c1 and c2 have the same outer objects associated
with them.

Inheritance Hierarchy and Enclosing Context

Inner classes can extend other classes, and vice versa. An inherited field (or
method) in an inner subclass can hide a field (or method) with the same name in
the enclosing context. Using the simple name to access this member will access the
inherited member, not the one in the enclosing context.

Example 8.7 illustrates the situation outlined earlier. The standard form of the this
reference is used to access the inherited member, as shown at (4). The keyword
super would be another alternative. To access the member from the enclosing con-
text, the special form of the this reference together with the enclosing class name
is used, as shown at (5).

Example 8.7 Inheritance Hierarchy and Enclosing Context

class Superclass {
 protected double x = 3.0e+8;
}
//___
class TopLevelClass { // (1) Top-level Class
 private double x = 3.14;

 class Inner extends Superclass { // (2) Non-static member Class
 public void printHidden() { // (3)

 // (4) x from superclass:
 System.out.println("this.x: " + this.x);

 // (5) x from enclosing context:
 System.out.println("TopLevelClass.this.x: " + TopLevelClass.this.x);
 }
 } // Inner
} // TopLevelClass
//___
public class HiddenAndInheritedAccess {
 public static void main(String[] args) {
 TopLevelClass.Inner ref = new TopLevelClass().new Inner();

PGJC3.book Page 365 Tuesday, November 25, 2008 9:10 PM

366 CHAPTER 8: NESTED TYPE DECLARATIONS

 ref.printHidden();
 }
}

Output from the program:

this.x: 3.0E8
TopLevelClass.this.x: 3.14

Some caution should be exercised when extending an inner class. Some of the
subtleties involved are illustrated by Example 8.8. The nesting and the inherit-
ance hierarchy of the classes involved is shown in Figure 8.3. The question that
arises is how do we provide an outer instance when creating a subclass instance of
a non-static member class, e.g., when creating objects of the classes SubclassC and
OuterB in Figure 8.3.

The non-static member class InnerA, declared at (2) in the class OuterA, is extended
by SubclassC at (3). Note that SubclassC and the class OuterA are not related in any
way, and that the subclass OuterB inherits the class InnerA from its superclass OuterA.
An instance of SubclassC is created at (8). An instance of the class OuterA is explicitly
passed as argument in the constructor call to SubclassC. The constructor at (4) for
SubclassC has a special super() call in its body at (5). This call ensures that the con-
structor of the superclass InnerA has an outer object (denoted by the reference
outerRef) to bind to. Using the standard super() call in the subclass constructor is
not adequate, because it does not provide an outer instance for the superclass con-
structor to bind to. The non-default constructor at (4) and the outerRef.super()
expression at (5) are mandatory to set up the proper relationships between the
objects involved.

The outer object problem mentioned above does not arise if the subclass that
extends an inner class is also declared within an outer class that extends the outer
class of the superclass. This situation is illustrated at (6) and (7): the classes InnerB
and OuterB extend the classes InnerA and OuterA, respectively. The type InnerA is

Figure 8.3 Nested Classes and Inheritance

InnerA

OuterA

InnerB

OuterB SubclassC

PGJC3.book Page 366 Tuesday, November 25, 2008 9:10 PM

8.3: NON-STATIC MEMBER CLASSES 367

inherited by the class OuterB from its superclass OuterA. Thus, an object of class
OuterB can act as an outer object for an instance of class InnerA. The object creation
expression at (9)

new OuterB().new InnerB();

creates an OuterB object and implicitly passes its reference to the default construc-
tor of class InnerB. The default constructor of class InnerB invokes the default con-
structor of its superclass InnerA by calling super() and passing it the reference of
the OuterB object, which the superclass constructor can readily bind to.

Example 8.8 Extending Inner Classes

class OuterA { // (1)
 class InnerA { } // (2)
}
//___
class SubclassC extends OuterA.InnerA { // (3) Extends NSMC at (2)

 // (4) Mandatory non-default constructor:
 SubclassC(OuterA outerRef) {
 outerRef.super(); // (5) Explicit super() call
 }
}
//___
class OuterB extends OuterA { // (6) Extends class at (1)
 class InnerB extends OuterB.InnerA { } // (7) Extends NSMC at (2)
}
//___
public class Extending {
 public static void main(String[] args) {

 // (8) Outer instance passed explicitly in constructor call:
 new SubclassC(new OuterA());

 // (9) No outer instance passed explicitly in constructor call to InnerB:
 new OuterB().new InnerB();
 }
}

Review Questions

8.1 What will be the result of compiling and running the following program?

public class MyClass {
 public static void main(String[] args) {
 Outer objRef = new Outer();
 System.out.println(objRef.createInner().getSecret());
 }
}

PGJC3.book Page 367 Tuesday, November 25, 2008 9:10 PM

368 CHAPTER 8: NESTED TYPE DECLARATIONS

class Outer {
 private int secret;
 Outer() { secret = 123; }

 class Inner {
 int getSecret() { return secret; }
 }

 Inner createInner() { return new Inner(); }
}

Select the one correct answer.
(a) The program will fail to compile because the class Inner cannot be declared

within the class Outer.
(b) The program will fail to compile because the method createInner() cannot be

allowed to pass objects of the class Inner to methods outside of the class Outer.
(c) The program will fail to compile because the field secret is not accessible from

the method getSecret().
(d) The program will fail to compile because the method getSecret() is not visible

from the main() method in the class MyClass.
(e) The code will compile and print 123, when run.

8.2 Which statements about nested classes are true?

Select the two correct answers.
(a) An instance of a static member class has an inherent outer instance.
(b) A static member class can contain non-static fields.
(c) A static member interface can contain non-static fields.
(d) A static member interface has an inherent outer instance.
(e) An instance of the outer class can be associated with many instances of a non-

static member class.

8.3 What will be the result of compiling and running the following program?

public class MyClass {
 public static void main(String[] args) {
 State st = new State();
 System.out.println(st.getValue());
 State.Memento mem = st.memento();
 st.alterValue();
 System.out.println(st.getValue());
 mem.restore();
 System.out.println(st.getValue());
 }

 public static class State {
 protected int val = 11;

 int getValue() { return val; }
 void alterValue() { val = (val + 7) % 31; }
 Memento memento() { return new Memento(); }

 class Memento {

PGJC3.book Page 368 Tuesday, November 25, 2008 9:10 PM

8.3: NON-STATIC MEMBER CLASSES 369

 int val;

 Memento() { this.val = State.this.val; }
 void restore() { ((State) this).val = this.val; }
 }
 }
}

Select the one correct answer.
(a) The program will fail to compile because the static main() method attempts to

create a new instance of the static member class State.
(b) The program will fail to compile because the class State.Memento is not acces-

sible from the main() method.
(c) The program will fail to compile because the non-static member class Memento

declares a field with the same name as a field in the outer class State.
(d) The program will fail to compile because the State.this.val expression in the

Memento constructor is invalid.
(e) The program will fail to compile because the ((State) this).val expression in

the method restore() of the class Memento is invalid.
(f) The program will compile and print 11, 18, and 11, when run.

8.4 What will be the result of compiling and running the following program?

public class Nesting {
 public static void main(String[] args) {
 B.C obj = new B().new C();
 }
}

class A {
 int val;
 A(int v) { val = v; }
}

class B extends A {
 int val = 1;
 B() { super(2); }

 class C extends A {
 int val = 3;
 C() {
 super(4);
 System.out.println(B.this.val);
 System.out.println(C.this.val);
 System.out.println(super.val);
 }
 }
}

Select the one correct answer.
(a) The program will fail to compile.
(b) The program will compile and print 2, 3, and 4, in that order, when run.
(c) The program will compile and print 1, 4, and 2, in that order, when run.

PGJC3.book Page 369 Tuesday, November 25, 2008 9:10 PM

370 CHAPTER 8: NESTED TYPE DECLARATIONS

(d) The program will compile and print 1, 3, and 4, in that order, when run.
(e) The program will compile and print 3, 2, and 1, in that order, when run.

8.5 Which statements about the following program are true?

public class Outer {
 public void doIt() {
 }
 public class Inner {
 public void doIt() {
 }
 }

 public static void main(String[] args) {
 new Outer().new Inner().doIt();
 }
}

Select the two correct answers.
(a) The doIt() method in the Inner class overrides the doIt() method in the Outer

class.
(b) The doIt() method in the Inner class overloads the doIt() method in the Outer

class.
(c) The doIt() method in the Inner class hides the doIt() method in the Outer class.
(d) The full name of the Inner class is Outer.Inner.
(e) The program will fail to compile.

8.6 What will be the result of compiling and running the following program?

public class Outer {
 private int innerCounter;

 class Inner {
 Inner() {innerCounter++;}
 public String toString() {
 return String.valueOf(innerCounter);
 }
 }

 private void multiply() {
 Inner inner = new Inner();
 this.new Inner();
 System.out.print(inner);
 inner = new Outer().new Inner();
 System.out.println(inner);
 }

 public static void main(String[] args) {
 new Outer().multiply();
 }
}

PGJC3.book Page 370 Tuesday, November 25, 2008 9:10 PM

8.4: LOCAL CLASSES 371

Select the one correct answer.
(a) The program will fail to compile.
(b) The program will compile but throw an exception when run.
(c) The program will compile and print 22, when run.
(d) The program will compile and print 11, when run.
(e) The program will compile and print 12, when run
(f) The program will compile and print 21, when run.

8.4 Local Classes

A local class is an inner class that is defined in a block. This could be a method
body, a constructor body, a local block, a static initializer, or an instance initializer.

Blocks in a non-static context have a this reference available, which refers to an
instance of the class containing the block. An instance of a local class, which is
declared in such a non-static block, has an instance of the enclosing class associated
with it. This gives such a non-static local class much of the same capability as a
non-static member class.

However, if the block containing a local class declaration is defined in a static con-
text (that is, a static method or a static initializer), the local class is implicitly static
in the sense that its instantiation does not require any outer object. This aspect of
local classes is reminiscent of static member classes. However, note that a local
class cannot be specified with the keyword static.

Some restrictions that apply to local classes are

• Local classes cannot have static members, as they cannot provide class-specific
services. However, final static fields are allowed, as these are constants. This is
illustrated in Example 8.9 at (1) and (2) in the NonStaticLocal class, and also by
the StaticLocal class at (11) and (12).

• Local classes cannot have any accessibility modifier. The declaration of the
class is only accessible in the context of the block in which it is defined, subject
to the same scope rules as for local variable declarations.

Example 8.9 Access in Enclosing Context (Local Classes)

class Base {
 protected int nsf1;
}

class TLCWithLocalClasses { // Top level Class
 private double nsf1; // Non-static field
 private int nsf2; // Non-static field
 private static int sf; // Static field

PGJC3.book Page 371 Tuesday, November 25, 2008 9:10 PM

372 CHAPTER 8: NESTED TYPE DECLARATIONS

 void nonStaticMethod(final int fp) { // Non-static Method
 final int flv = 10; // final local variable
 final int hlv = 30; // final (hidden) local variable
 int nflv = 20; // non-final local variable

 class NonStaticLocal extends Base { // Non-static local class
 //static int f1; // (1) Not OK. Static members not allowed.
 final static int f2 = 10;// (2) final static members allowed.
 int f3 = fp; // (3) final param from enclosing method.
 int f4 = flv; // (4) final local var from enclosing method.
 //double f5 = nflv; // (5) Not OK. Only finals from enclosing method.
 double f6 = nsf1; // (6) Inherited from superclass.
 double f6a = this.nsf1; // (6a) Inherited from superclass.
 double f6b = super.nsf1; // (6b) Inherited from superclass.
 double f7 = TLCWithLocalClasses.this.nsf1;// (7) In enclosing object.
 int f8 = nsf2; // (8) In enclosing object.
 int f9 = sf; // (9) static from enclosing class.
 int hlv; // (10) Hides local variable.
 }
 }

 static void staticMethod(final int fp) { // Static Method
 final int flv = 10; // final local variable
 final int hlv = 30; // final (hidden) local variable
 int nflv = 20; // non-final local variable

 class StaticLocal extends Base { // Static local class
 //static int f1; // (11) Not OK. Static members not allowed.
 final static int f2 = 10;// (12) final static members allowed.
 int f3 = fp; // (13) final param from enclosing method.
 int f4 = flv; // (14) final local var from enclosing method.
 //double f5 = nflv; // (15) Not OK. Only finals from enclosing method.
 double f6 = nsf1; // (16) Inherited from superclass.
 double f6a = this.nsf1; // (16a) Inherited from superclass.
 double f6b = super.nsf1; // (16b) Inherited from superclass.
 //double f7 = TLCWithLocalClasses.this.nsf1; //(17) No enclosing object.
 //int f8 = nsf2; // (18) No enclosing object.
 int f9 = sf; // (19) static from enclosing class.
 int hlv; // (20) Hides local variable.
 }
 }
}

Accessing Declarations in Enclosing Context

Example 8.9 illustrates how a local class can access declarations in its enclosing
context. Declaring a local class in a static or a non-static block influences what the
class can access in the enclosing context.

PGJC3.book Page 372 Tuesday, November 25, 2008 9:10 PM

8.4: LOCAL CLASSES 373

Accessing Local Declarations in the Enclosing Block

A local class can access final local variables, final method parameters, and final
catch-block parameters in the scope of the local context. Such final variables are
also read-only in the local class. This situation is shown at (3) and (4), where the
final parameter fp and the final local variable flv of the method nonStaticMethod()
in the NonStaticLocal class are accessed. This also applies to static local classes, as
shown at (13) and (14) in the StaticLocal class.

Access to non-final local variables is not permitted from local classes, as shown at
(5) and (15).

Declarations in the enclosing block of a local class can be hidden by declarations in
the local class. At (10) and (20), the field hlv hides the local variable by the same
name in the enclosing method. There is no way for the local class to refer to such
hidden declarations.

Accessing Members in the Enclosing Class

A local class can access members inherited from its superclass in the usual way.
The field nsf1 in the superclass Base is inherited by the local subclass NonStatic-
Local. This inherited field is accessed in the NonStaticLocal class, as shown at (6),
(6a), and (6b), by using the field’s simple name, the standard this reference, and
the super keyword, respectively. This also applies for static local classes, as shown
at (16), (16a), and (16b).

Fields and methods in the enclosing class can be hidden by member declarations
in the local class. The non-static field nsf1, inherited by the local classes, hides the
field by the same name in the class TLCWithLocalClasses. The special form of the this
construct can be used in non-static local classes for explicit referencing of members
in the enclosing class, regardless of whether these members are hidden or not.

double f7 = TLCWithLocalClasses.this.nsf1; // (7)

However, the special form of the this construct cannot be used in a static local
class, as shown at (17), since it does not have any notion of an outer object. The
static local class cannot refer to such hidden declarations.

A non-static local class can access both static and non-static members defined in
the enclosing class. The non-static field nsf2 and static field sf are defined in the
enclosing class TLCWithLocalClasses. They are accessed in the NonStaticLocal class at
(8) and (9), respectively. The special form of the this construct can also be used in
non-static local classes, as previously mentioned.

However, a static local class can only directly access members defined in the
enclosing class that are static. The static field sf in the class TLCWithLocalClasses is
accessed in the StaticLocal class at (19), but the non-static field nsf1 cannot be
accessed, as shown at (17).

PGJC3.book Page 373 Tuesday, November 25, 2008 9:10 PM

374 CHAPTER 8: NESTED TYPE DECLARATIONS

Instantiating Local Classes

Clients outside the scope of a local class cannot instantiate the class directly
because such classes are, after all, local. A local class can be instantiated in the block
in which it is defined. Like a local variable, a local class must be declared before
being used in the block.

A method can return instances of any local class it declares. The local class type
must then be assignable to the return type of the method. The return type cannot
be the same as the local class type, since this type is not accessible outside of the
method. A supertype of the local class must be specified as the return type. This
also means that, in order for the objects of the local class to be useful outside the
method, a local class should implement an interface or override the behavior of its
supertypes.

Example 8.10 illustrates how clients can instantiate local classes. The nesting and
the inheritance hierarchy of the classes involved is shown in Figure 8.4. The non-
static local class Circle at (5) is defined in the non-static method createCircle() at
(4), which has the return type Shape. The static local class Map at (8) is defined in the
static method createMap() at (7), which has the return type IDrawable. The main()
method creates a polymorphic array drawables of type IDrawable[] at (10), which is
initialized at lines (10) through (13) with instances of the local classes.

Example 8.10 Instantiating Local Classes

interface IDrawable { // (1)
 void draw();
}
//___
class Shape implements IDrawable { // (2)
 public void draw() { System.out.println("Drawing a Shape."); }
}
//___
class Painter { // (3) Top-level Class
 public Shape createCircle(final double radius) { // (4) Non-static Method

Figure 8.4 Local Classes and Inheritance Hierarchy

IDrawable

Shape

Painter

Circle

Shape createCircle() {

}

static IDrawable createMap() {

}

Map
{static}

PGJC3.book Page 374 Tuesday, November 25, 2008 9:10 PM

8.4: LOCAL CLASSES 375

 class Circle extends Shape { // (5) Non-static local class
 public void draw() {
 System.out.println("Drawing a Circle of radius: " + radius);
 }
 }
 return new Circle(); // (6) Object of non-static local class
 }

 public static IDrawable createMap() { // (7) Static Method
 class Map implements IDrawable { // (8) Static local class
 public void draw() { System.out.println("Drawing a Map."); }
 }
 return new Map(); // (9) Object of static local class
 }
}
//___
public class LocalClassClient {
 public static void main(String[] args) {
 IDrawable[] drawables = { // (10)
 new Painter().createCircle(5), // (11) Object of non-static local class
 Painter.createMap(), // (12) Object of static local class
 new Painter().createMap() // (13) Object of static local class
 };
 for (int i = 0; i < drawables.length; i++) // (14)
 drawables[i].draw();

 System.out.println("Local Class Names:");
 System.out.println(drawables[0].getClass()); // (15)
 System.out.println(drawables[1].getClass()); // (16)
 }
}

Output from the program:

Drawing a Circle of radius: 5.0
Drawing a Map.
Drawing a Map.
Local Class Names:
class Painter1Circle
class Painter1Map

Creating an instance of a non-static local class requires an instance of the enclosing
class. In Example 8.10, the non-static method createCircle() is invoked on the
instance of the enclosing class to create an instance of the non-static local class, as
shown at (11). In the non-static method, the reference to the instance of the enclos-
ing context is passed implicitly in the constructor call of the non-static local class
at (6).

A static method can be invoked either through the class name or through a refer-
ence of the class type. An instance of a static local class can be created either way
by calling the createMap() method, as shown at (12) and (13). As might be expected,
no outer object is involved.

PGJC3.book Page 375 Tuesday, November 25, 2008 9:10 PM

376 CHAPTER 8: NESTED TYPE DECLARATIONS

As references to a local class cannot be declared outside of the local context, the
functionality of the class is only available through supertype references. The
method draw() is invoked on objects in the array at (14). The program output indic-
ates which objects were created. In particular, note that the final parameter radius
of the method createCircle() at (4) is accessed by the draw() method of the local
class Circle at (5). An instance of the local class Circle is created at (11) by a call to
the method createCircle(). The draw() method is invoked on this instance of the
local class Circle in the loop at (14). The value of the final parameter radius is still
accessible to the draw() method invoked on this instance, although the call to the
method createCircle(), which created the instance in the first place, has com-
pleted. Values of final local variables continue to be available to instances of local
classes whenever these values are needed.

The output in Example 8.10 also shows the actual names of the local classes. In fact,
the local class names are reflected in the class file names.

Another use of local classes is shown in Example 8.11. The code shows how local
classes can be used, together with assertions, to implement certain kinds of post-
conditions (see Section 6.10, p. 275). The basic idea is that a computation wants to
save or cache some data that is later required when checking a postconditon. For
example, a deposit is made into an account, and we want to check that the transac-
tion is valid after it is done. The computation can save the old balance before the
transaction, so that the new balance can be correlated with the old balance after
the transaction.

The local class Auditor at (2) acts as a repository for data that needs to be retrieved
later to check the postcondition. Note that it accesses the final parameter, but dec-
larations that follow its declaration would not be accessible. The assertion in the
method check() at (4) ensures that the postcondition is checked, utilizing the data
that was saved when the Auditor object was constructed at (5).

Example 8.11 Objects of Local Classes as Caches

class Account {
 int balance;

 /** (1) Method makes a deposit into an account. */
 void deposit(final int amount) {

 /** (2) Local class to save the necessary data and to check
 that the transaction was valid. */
 class Auditor {

 /** (3) Stores the old balance. */
 private int balanceAtStartOfTransaction = balance;

 /** (4) Checks the postcondition. */
 void check() {
 assert balance - balanceAtStartOfTransaction == amount;
 }
 }

PGJC3.book Page 376 Tuesday, November 25, 2008 9:10 PM

8.5: ANONYMOUS CLASSES 377

 Auditor auditor = new Auditor(); // (5) Save the data.
 balance += amount; // (6) Do the transaction.
 auditor.check(); // (7) Check the postcondition.
 }

 public static void main(String[] args) {
 Account ac = new Account();
 ac.deposit(250);
 }
}

8.5 Anonymous Classes

Classes are usually first defined and then instantiated using the new operator.
Anonymous classes combine the process of definition and instantiation into a sin-
gle step. Anonymous classes are defined at the location they are instantiated, using
additional syntax with the new operator. As these classes do not have a name, an
instance of the class can only be created together with the definition.

An anonymous class can be defined and instantiated in contexts where a reference
value can be used (i.e., as expressions that evaluate to a reference value denoting
an object). Anonymous classes are typically used for creating objects on the fly in
contexts such as the value in a return statement, an argument in a method call, or
in initialization of variables. Typical uses of anonymous classes are to implement
event listeners in GUI-based applications, threads for simple tasks (see examples in
Chapter 13, p. 613), and comparators for providing a total ordering of objects (see
Example 15.11, p. 774).

Like local classes, anonymous classes can be defined in static or non-static context.
The keyword static is never used.

Extending an Existing Class

The following syntax can be used for defining and instantiating an anonymous
class that extends an existing class specified by <superclass name>:

new <superclass name> (<optional argument list>) { <member declarations> }

Optional arguments can be specified, which are passed to the superclass con-
structor. Thus, the superclass must provide a constructor corresponding to the
arguments passed. No extends clause is used in the construct. Since an anonymous
class cannot define constructors (as it does not have a name), an instance initializer
can be used to achieve the same effect as a constructor. Only non-static members
and final static fields can be declared in the class body.

PGJC3.book Page 377 Tuesday, November 25, 2008 9:10 PM

378 CHAPTER 8: NESTED TYPE DECLARATIONS

Example 8.12 Defining Anonymous Classes

interface IDrawable { // (1)
 void draw();
}
//___
class Shape implements IDrawable { // (2)
 public void draw() { System.out.println("Drawing a Shape."); }
}
//___
class Painter { // (3) Top-level Class

 public Shape createShape() { // (4) Non-static Method
 return new Shape(){ // (5) Extends superclass at (2)
 public void draw() { System.out.println("Drawing a new Shape."); }
 };
 }
 public static IDrawable createIDrawable() { // (7) Static Method
 return new IDrawable(){ // (8) Implements interface at (1)
 public void draw() {
 System.out.println("Drawing a new IDrawable.");
 }
 };
 }
}
//___
public class AnonClassClient {
 public static void main(String[] args) { // (9)
 IDrawable[] drawables = { // (10)
 new Painter().createShape(), // (11) non-static anonymous class
 Painter.createIDrawable(), // (12) static anonymous class
 new Painter().createIDrawable() // (13) static anonymous class
 };
 for (int i = 0; i < drawables.length; i++) // (14)
 drawables[i].draw();

 System.out.println("Anonymous Class Names:");
 System.out.println(drawables[0].getClass());// (15)
 System.out.println(drawables[1].getClass());// (16)
 }
}

Output from the program:

Drawing a new Shape.
Drawing a new IDrawable.
Drawing a new IDrawable.
Anonymous Class Names:
class Painter$1
class Painter$2

Class declarations from Example 8.10 are adapted to use anonymous classes in
Example 8.12. The non-static method createShape() at (4) defines a non-static anony-

PGJC3.book Page 378 Tuesday, November 25, 2008 9:10 PM

8.5: ANONYMOUS CLASSES 379

mous class at (5), which extends the superclass Shape. The anonymous class over-
rides the inherited method draw().

// ...
class Shape implements IDrawable { // (2)
 public void draw() { System.out.println("Drawing a Shape."); }
}

class Painter { // (3) Top-level Class

 public Shape createShape() { // (4) Non-static Method
 return new Shape() { // (5) Extends superclass at (2)
 public void draw() { System.out.println("Drawing a new Shape."); }
 };
 }
 // ...

}
// ...

As we cannot declare references of an anonymous class, the functionality of the
class is only available through superclass references. Usually it makes sense to
override methods from the superclass. Any other members declared in an anony-
mous class cannot be accessed directly by an external client.

Implementing an Interface

The following syntax can be used for defining and instantiating an anonymous
class that implements an interface specified by <interface name>:

new <interface name>() { <member declarations> }

An anonymous class provides a single interface implementation, and no argu-
ments are passed. The anonymous class implicitly extends the Object class. Note
that no implements clause is used in the construct. The class body has the same
restrictions as previously noted for anonymous classes extending an existing class.

An anonymous class implementing an interface is shown below. Details can be
found in Example 8.12. The static method createIDrawable() at (7) defines a static
anonymous class at (8), which implements the interface IDrawable, by providing an
implementation of the method draw(). The functionality of objects of an anonymous
class that implements an interface is available through references of the interface
type and the Object type (i.e., the supertypes).

interface IDrawable { // (1) Interface
 void draw();
}
// ...
class Painter { // (3) Top-level Class
 // ...
 public static IDrawable createIDrawable() { // (7) Static Method
 return new IDrawable(){ // (8) Implements interface at (1)
 public void draw() {

PGJC3.book Page 379 Tuesday, November 25, 2008 9:10 PM

380 CHAPTER 8: NESTED TYPE DECLARATIONS

 System.out.println("Drawing a new IDrawable.");
 }
 };
 }
}
// ...

The following code is an example of a typical use of anonymous classes in building
GUI-applications. The anonymous class at (1) implements the ActionListener inter-
face that has the method actionPerformed(). When the addActionListener() method
is called on the GUI-button denoted by the reference quitButton, the anonymous
class is instantiated and the reference value of the object is passed as a parameter
to the method. The method addActionListener() of the GUI-button can use the ref-
erence value to invoke the method actionPerformed() in the ActionListener object.

quitButton.addActionListener(
 new ActionListener() { // (1) Anonymous class implements an interface.
 // Invoked when the user clicks the quit button.
 public void actionPerformed(ActionEvent evt) {
 System.exit(0); // (2) Terminates the program.
 }
 }
);

Instantiating Anonymous Classes

The discussion on instantiating local classes (see Example 8.10) is also valid for
instantiating anonymous classes. The class AnonClassClient in Example 8.12 creates
one instance at (11) of the non-static anonymous class defined at (5), and two
instances at (12) and (13) of the static anonymous class defined at (8). The program
output shows the polymorphic behavior and the runtime types of the objects.
Similar to a non-static local class, an instance of a non-static anonymous class has
an instance of its enclosing class at (11). An enclosing instance is not mandatory for
creating objects of a static anonymous class, as shown at (12).

The names of the anonymous classes at runtime are also shown in the program
output in Example 8.12. They are also the names used to designate their respective
class files. Anonymous classes are not so anonymous after all.

Accessing Declarations in Enclosing Context

Access rules for local classes (see Section 8.4, p. 372) also apply to anonymous
classes. Example 8.13 is an adaptation of Example 8.9 and illustrates the access
rules for anonymous classes. The local classes in Example 8.9 have been adapted
to anonymous classes in Example 8.13. The TLCWithAnonClasses class has two
methods, one non-static and the other static, which return an instance of a non-
static and a static anonymous class, respectively. Both anonymous classes extend
the Base class.

PGJC3.book Page 380 Tuesday, November 25, 2008 9:10 PM

8.5: ANONYMOUS CLASSES 381

Anonymous classes can access final variables only in the enclosing context. Inside
the definition of a non-static anonymous class, members of the enclosing context
can be referenced using the <enclosing class name>.this construct. Non-static
anonymous classes can also access any non-hidden members in the enclosing con-
text by their simple names, whereas static anonymous classes can only access non-
hidden static members.

Example 8.13 Accessing Declarations in Enclosing Context (Anonymous Classes)

class Base {
 protected int nsf1;
}
//___
class TLCWithAnonClasses { // Top level Class
 private double nsf1; // Non-static field
 private int nsf2; // Non-static field
 private static int sf; // Static field

 Base nonStaticMethod(final int fp) { // Non-static Method
 final int flv = 10; // final local variable
 final int hlv = 30; // final (hidden) local variable
 int nflv = 20; // non-final local variable

 return new Base() { // Non-static anonymous class
 //static int f1; // (1) Not OK. Static members not allowed.
 final static int f2 = 10; // (2) final static members allowed.
 int f3 = fp; // (3) final param from enclosing method.
 int f4 = flv; // (4) final local var from enclosing method.
 //double f5 = nflv; // (5) Not OK. Only finals from enclosing method.
 double f6 = nsf1; // (6) Inherited from superclass.
 double f6a = this.nsf1; // (6a) Inherited from superclass.
 double f6b = super.nsf1; // (6b) Inherited from superclass.
 double f7 = TLCWithAnonClasses.this.nsf1; // (7) In enclosing object.
 int f8 = nsf2; // (8) In enclosing object.
 int f9 = sf; // (9) static from enclosing class.
 int hlv; // (10) Hides local variable.
 };
 }

 static Base staticMethod(final int fp) { // Static Method
 final int flv = 10; // final local variable
 final int hlv = 30; // final (hidden) local variable
 int nflv = 20; // non-final local variable

 return new Base() { // Static anonymous class
 //static int f1; // (11) Not OK. Static members not allowed.
 final static int f2 = 10; // (12) final static members allowed.
 int f3 = fp; // (13) final param from enclosing method.
 int f4 = flv; // (14) final local var from enclosing method.
 //double f5 = nflv; // (15) Not OK. Only finals from enclosing method.
 double f6 = nsf1; // (16) Inherited from superclass.
 double f6a = this.nsf1; // (16a) Inherited from superclass.
 double f6b = super.nsf1; // (16b) Inherited from superclass.

PGJC3.book Page 381 Tuesday, November 25, 2008 9:10 PM

382 CHAPTER 8: NESTED TYPE DECLARATIONS

 //double f7 = TLCWithAnonClasses.this.nsf1; //(17) No enclosing object.
 //int f8 = nsf2; // (18) No enclosing object.
 int f9 = sf; // (19) static from enclosing class.
 int hlv; // (20) Hides local variable.
 };
 }
}

Review Questions

8.7 Which statement is true?

Select the one correct answer.
(a) Non-static member classes must have either default or public accessibility.
(b) All nested classes can declare static member classes.
(c) Methods in all nested classes can be declared static.
(d) All nested classes can be declared static.
(e) Static member classes can contain non-static methods.

8.8 Given the declaration

interface IntHolder { int getInt(); }

which of the following methods are valid?

//----(1)----
 IntHolder makeIntHolder(int i) {
 return new IntHolder() {
 public int getInt() { return i; }
 };
 }
//----(2)----
 IntHolder makeIntHolder(final int i) {
 return new IntHolder {
 public int getInt() { return i; }
 };
 }
//----(3)----
 IntHolder makeIntHolder(int i) {
 class MyIH implements IntHolder {
 public int getInt() { return i; }
 }
 return new MyIH();
 }
//----(4)----
 IntHolder makeIntHolder(final int i) {
 class MyIH implements IntHolder {
 public int getInt() { return i; }
 }
 return new MyIH();
 }
//----(5)----

PGJC3.book Page 382 Tuesday, November 25, 2008 9:10 PM

8.5: ANONYMOUS CLASSES 383

 IntHolder makeIntHolder(int i) {
 return new MyIH(i);
 }
 static class MyIH implements IntHolder {
 final int j;
 MyIH(int i) { j = i; }
 public int getInt() { return j; }
 }

Select the two correct answers.
(a) The method labeled (1).
(b) The method labeled (2).
(c) The method labeled (3).
(d) The method labeled (4).
(e) The method labeled (5).

8.9 Which statements are true?

Select the two correct answers.
(a) No other static members, except final static fields, can be declared within a

non-static member class.
(b) If a non-static member class is nested within a class named Outer, methods

within the non-static member class must use the prefix Outer.this to access
the members of the class Outer.

(c) All fields in any nested class must be declared final.
(d) Anonymous classes cannot have constructors.
(e) If objRef is an instance of any nested class within the class Outer, the expres-

sion (objRef instanceof Outer) will evaluate to true.

8.10 What will be the result of compiling and running the following program?

import java.util.Iterator;
class ReverseArrayIterator<T> implements Iterable<T>{

 private T[] array;
 public ReverseArrayIterator(T[] array) { this.array = array; }

 public Iterator<T> iterator() {
 return new Iterator<T>() {
 private int next = array.length - 1;

 public boolean hasNext() { return (next >= 0); }
 public T next() {
 T element = array[next];
 next--;
 return element;
 }
 public void remove() { throw new UnsupportedOperationException(); }
 };
 }

PGJC3.book Page 383 Tuesday, November 25, 2008 9:10 PM

384 CHAPTER 8: NESTED TYPE DECLARATIONS

 public static void main(String[] args) {
 String[] array = { "Hi", "Howdy", "Hello" };
 ReverseArrayIterator<String> ra = new ReverseArrayIterator<String>(array);
 for (String str : ra) {
 System.out.print("|" + str + "|");
 }
 }
}

Select the one correct answer.
(a) The program will fail to compile.
(b) The program will compile but throw an exception when run.
(c) The program will compile and print |Hi||Howdy||Hello|, when run.
(d) The program will compile and print |Hello||Howdy||Hi|, when run.
(e) The program will compile and print the strings in an unpredictable order,

when run.

8.11 Which statement is true?

Select the one correct answer.
(a) Top-level classes can be declared static.
(b) Classes declared as members of top-level classes can be declared static.
(c) Local classes can be declared static.
(d) Anonymous classes can be declared static.
(e) No classes can be declared static.

8.12 Which expression can be inserted at (1) so that compiling and running the program
will print LocalVar.str1?

public class Access {
 final String str1 = "Access.str1";

 public static void main(final String args[]) {
 final String str1 = "LocalVar.str1";

 class Helper { String getStr1() { return str1; } }
 class Inner {
 String str1 = "Inner.str1";
 Inner() {
 System.out.println(/* (1) INSERT EXPRESSION HERE */);
 }
 }
 Inner inner = new Inner();
 }
}

Select the one correct answer.
(a) str1
(b) this.str1
(c) Access.this.str1
(d) new Helper().getStr1()
(e) this.new Helper().getStr1()

PGJC3.book Page 384 Tuesday, November 25, 2008 9:10 PM

8.5: ANONYMOUS CLASSES 385

(f) Access.new Helper().getStr1()
(g) new Access.Helper().getStr1()
(h) new Access().new Helper().getStr1()

8.13 What will be the result of compiling and running the following program?

public class TipTop {
 static final Integer i1 = 1;
 final Integer i2 = 2;
 Integer i3 = 3;

 public static void main(String[] args) {
 final Integer i4 = 4;
 Integer i5 = 5;

 class Inner {
 final Integer i6 = 6;
 Integer i7 = 7;

 Inner () {
 System.out.print(i6 + i7);
 }
 }
 }
}

Select the one correct answer.
(a) The program will fail to compile.
(b) The program will compile but throw an exception when run.
(c) The program will compile and print 67, when run.
(d) The program will compile and print 13, when run.
(e) The program will compile but will not print anything, when run.

8.14 Which expressions, when inserted at (1), will result in compile-time errors?

public class TopLevel {
 static final Integer i1 = 1;
 final Integer i2 = 2;
 Integer i3 = 3;

 public static void main(String[] args) {
 final Integer i4 = 4;
 Integer i5 = 5;

 class Inner {
 final Integer i6 = 6;
 Integer i7 = 7;
 Inner (final Integer i8, Integer i9) {
 System.out.println(/* (1) INSERT EXPRESSION HERE */);
 }
 }
 new Inner(8, 9);
 }
}

PGJC3.book Page 385 Tuesday, November 25, 2008 9:10 PM

386 CHAPTER 8: NESTED TYPE DECLARATIONS

Select the three correct answers.
(a) i1
(b) i2
(c) i3
(d) i4
(e) i5
(f) i6
(g) i7
(h) i8
(i) i9

Chapter Summary

The following information was included in this chapter:

• categories of nested classes: static member classes and interfaces, non-static
member classes, local classes, anonymous classes

• discussion of salient aspects of nested classes and interfaces:
❍ the context in which they can be defined
❍ which accessibility modifiers are valid for such classes and interfaces
❍ whether an instance of the enclosing context is associated with an

instance of the nested class
❍ which entities a nested class or interface can access in its enclosing

contexts
❍ whether both static and non-static members can be defined in a nested

class

• importing and using nested classes and interfaces

• instantiating non-static member classes using <enclosing object reference>.new
syntax

• accessing members in the enclosing context of inner classes using <enclosing
class name>.this syntax

• accessing members both in the inheritance hierarchy and the enclosing context
of nested classes

• implementing anonymous classes by extending an existing class or by imple-
menting an interface

Programming Exercise

8.1 Create a new program with a nested class named PrintFunc that extends class
Print from Exercise 7.2, p. 350. In addition to just printing the value, class Print-

PGJC3.book Page 386 Tuesday, November 25, 2008 9:10 PM

PROGRAMMING EXERCISE 387

Func should first apply a Function object on the value. The class PrintFunc should
have a constructor that takes an instance of Function type as a parameter. The
evaluate() method of the class PrintFunc should use the Function object on its
argument. The evaluate() method should print and return the result. The eval-
uate() method in superclass Print should be used to print the value.

The program should behave like the one in Exercise 7.2, p. 350, but this time use
the nested class PrintFunc instead of class Print.

PGJC3.book Page 387 Tuesday, November 25, 2008 9:10 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

