

© 2006 - 2011 Hans Schaefer Slide 1 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Specification Based
Techniques (Black Box)

(and a little on experience based testing)

Hans Schaefer
hans.schaefer@ieee.org

http://www.softwaretesting.no

© 2006 - 2011 Hans Schaefer Slide 2 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Test Basis

Specification / change request

If we do not have this:
– User manual
– Online help
– Standards for interfaces
– Business rules and process
– Data model, data use descriptions etc.
– Heuristics / experience

In the worst case: The system itself (what we know, what we
see under test)

© 2006 - 2011 Hans Schaefer Slide 3 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Basic Techniques for Black
Box-Testing

Focus on data variation :
– Equivalence class partitioning
– Boundary value analysis
– Special value test

Focus on logic:
– Decision tables

Focus on longer scenarios:
– Use of state transitions diagrams (state transition testing)
– Use case-based test

© 2006 - 2011 Hans Schaefer Slide 4 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Test coverage for black box

Percentage of all equivalence classes tested
Percentage of all boundary values tested
Percentage of all “specialities” tested

Percentage of combinations tested
Percentage of “possible combinations” tested

Percentage of state transitions tested
Percentage of use case flows tested

© 2006 - 2011 Hans Schaefer Slide 5 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Techniques for Data Variation

Data can have different values
– Input data
– Internal data
– Settings, preferences, references
– Environment data
– Output data

Focus at least on right and wrong data!
– Input (right, wrong, extreme, special, present, not present,

default)
– Output (different formats, values, relations, extreme, problem

messages)
– Intermediate values (normal, extreme, place problems)

© 2006 - 2011 Hans Schaefer Slide 6 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

What are such Techniques Good for?

Find problems with input validation
Find missing error handling
Find unclear boundaries
Find problems with too large output
Find problems with special values

© 2006 - 2011 Hans Schaefer Slide 7 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Donʼt Forget Data!

Where do inputs come from and outputs go to?

Input:
Keyboard, mouse, files, data bases, internal global data,
network, operating system, parameters, devices...

Output:
Screen, printer, loudspeaker, files, data bases, internal
global data, network, devices, operating system,
parameters...

Do not forget internal storage.
Do not forget what is not easily visible!

© 2006 - 2011 Hans Schaefer Slide 8 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Equivalence Class Partitioning

Definition: An equivalence class is a collection of values where
YOU BELIEVE the program handles all of them in the same
way.

Four main concepts:

• Cover ALL POSSIBLE inputs and/or outputs
• Assume: Every value in a class is handled in principle in the

same way
• No overlap between classes: A value belongs to exactly one

class
• Mark every class depending of it is valid or invalid (error)

The technique is useful for all test levels.
It may be blind for some faults.

© 2006 - 2011 Hans Schaefer Slide 9 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

How to Find Equivalence Classes

Numerical data with a value range: 3 classes
(1) too small values
(2) allowed values
(3) too large values

© 2006 - 2011 Hans Schaefer Slide 10 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

How to Find Equivalence Classes
Time

(1) too early,
(2) in allowable time range,
(3) too late.

• Before
• Same time
• After
 something else

(4) Impossible data values

© 2006 - 2011 Hans Schaefer Slide 11 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

How to Find Equivalence Classes

Discrete values: Many classes
(1)...(n) One class for every allowed value, and
(n+1) for ”something else" (not allowed).

Condition: Two classes.
(1) Condition fulfilled
(2) Condition not fulfilled.

© 2006 - 2011 Hans Schaefer Slide 12 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

How to Find Equivalence Classes

Existence of an input: Two classes
(1) input is found / given
(2) input is not found / given

Format / data type of an input: Two or more classes
(1) correct format and data type (maybe alternatives)
(2) not correct

© 2006 - 2011 Hans Schaefer Slide 13 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

More rules to apply

• If you believe some values are handled differently,
partition into subclasses! (Pessimist-rule)

• Do this with all inputs and outputs.
• If data are checked before, there may be no

“invalid” classes.

You may make the class partition hierarchic, if classes are dependent
on each other (see logic based methods - decision tables,

classification tree method (->www.systematic-testing.com).

© 2006 - 2011 Hans Schaefer Slide 14 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Example for a test table

Function 1
– Input channel 1

• Data structure 1
– Data element 1
– Data element 2

• Class 1 OK
• Class 2 error
• Class 3 OK

– Data element 3
• Data structure 2

– Input channel 2
– Output channel 1

Columns for test cases

© 2006 - 2011 Hans Schaefer Slide 15 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Data selection from Class-partitioning
Work steps:

(1) Choose test data and cover all input-classes.
(2) Check which output-classes (effects) are covered. Try to cover all

of them.
(3) Choose combinations of classes if you think you need. (covering

cause and effect combinations - see later)

Data not relevant for “this” test should be included using standard
values.

© 2006 - 2011 Hans Schaefer Slide 16 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Details

For ”OK" input classes:

Choose data such that they cover as many ”OK" classes as possible
(all inputs “OK”)

For "error" input classes: Do not combine!

Choose data such that they only cover one "error" class, and
everything else is "OK" (any random ”OK" classes as far as possible)
(otherwise, bugs may be “masked”)

Start with global input. (File, database, tables, ...)

Choose global input in such a way that all other classes have a
chance to be covered

© 2006 - 2011 Hans Schaefer Slide 17 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Do you want to test combinations?

Necessary, but not in foundation syllabus.
Explosive growth in number of test cases.
Possible to combine pair wise between parameters.

Possible compromise: Put the most important
combinations into the equivalence class table.

Example: Last day in a month. Four classes. Classes for February also depend
on the kind of year!

© 2006 - 2011 Hans Schaefer Slide 18 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Boundary value analysis

Boundary value uncover these faults:
Wrong operator: <, <=, >, >=, ”off-by-one”, Maybe also ==, <>

– (1) Choose boundaries for all inputs and outputs.
– (2) Choose values at and just around the boundaries

Boundary
Class A Class B

Test Cases

”just around” =
+ or -1
+ or - tolerance

© 2006 - 2011 Hans Schaefer Slide 19 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Details for boundary value analysis

– Just below minimum
– Minimum
– Just above minimum

– Just below maximum
– Maximum
– Just above maximum

– First, last, element in a list, buffer or file.
– Fastest, slowest signal arrival times
– Much input, no input (empty and full table, file, buffer)
– Change of day, month, year.
– Boundary values for several dimensions.

Smaller method:
If two out of three cases:
At least one value in each
equivalence class!

Maximal (safe) method:
Two values near boundary in both
equivalence classes.

© 2006 - 2011 Hans Schaefer Slide 20 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Notes On Notation

• < means ”less than”
• <= means ”less than or equal to”
• > means ”greater than”
• >= means ”greater than or equal to”
• [1 .. 12] means ”from and including 1 to and

including 12” - like for month number
• (1 .. 12) means ”between 1 and 12” (1 and 12 are

not included here)

© 2006 - 2011 Hans Schaefer Slide 22 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Boundary Values For Repetitions

List- and table processing
(1) Zero in the list
(2) One in the list
(3) Several in the list (especially 2, max - 1)
(4) Maximum list length
(5) Too many in the list

© 2006 - 2011 Hans Schaefer Slide 23 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Valid And Invalid Boundaries

Valid boundaries are boundaries in valid
equivalence classes, invalid boundaries the
opposite.

Example
Valid area [1 ... 100]
Valid boundaries = 1, 2, 99, 100
Invalid boundaries = 0, 101

2 and 99 are
less important!
(same class as

1 and 100)

© 2006 - 2011 Hans Schaefer Slide 24 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

More On Boundary Values (not for exam)

Boundaries can be forgotten to describe (never declared) (but
implemented in the program). -> Think which boundaries COULD be
interesting.
There may be boundaries in reality, but forgotten in the program. ->
check specification and domain.
Boundaries may be copied from some other place (another module or
program or system). -> Check if interfaces or used software or
hardware imply boundaries.
Boundaries may be dynamic. For example when several users or
threads share memory or resources. -> Think about dynamic
boundaries.
Boundaries may be hidden in the algorithm. -> Think about possible
boundaries in the mathematics, in results remembered on the way or
in outputs.

© 2006 - 2011 Hans Schaefer Slide 25 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Error guessing / Special Value Test

Some values often show faults.
Make test cases with values where the used functions works in

a special way.
You need knowledge about typical faults!
Maintain a living list, depending on methods, programming

language, platform, application domain etc.
Use this method after systematic methods!
-> Exploratory testing

“The in-built bad nature of things”:
Implicit conditions and restrictions.

Also: fault-attack

© 2006 - 2011 Hans Schaefer Slide 26 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Error Guessing / Special Value Test

Make test data for any special values.

• Zero, minus one and plus one for arithmetic functions
• 90 degrees and multiples for angle functions
• Max and min values due to hardware (32 bits or else)
• Empty string, special and national characters for text functions
• Special characters used in programming language, file system etc:
• “#$%&/()=`´´*@:-.;_< >
• Empty data area for buffer handling
• ”magic numbers” in general
• Default values
• For database fields, example: Mr. <" </XML> % , “Brian O’Date”

Very important for security tests against Cross Site Scripting!

© 2006 - 2011 Hans Schaefer Slide 27 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

More: Error Guessing
– Empty input lists
– Quit just after start
– Database full or not accessible
– Input missing
– Too much input (repeated too

many times)
– Wrong correlation between

inputs
– ”Forbidden” situations
– ”Impossible” situations
– Reset of timer
– National characters
– Numbers with blanks, leading

plus, dots for thousands, ...

General ideas:

– Unclear items
– Inconsistencies
– Misunderstandings
– What if...
– What you would like
– Not well analyzed areas

© 2006 - 2011 Hans Schaefer Slide 28 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Techniques Focusing On Logic

Systems often have complex decisions.
A good specification method is decision tables.

Tests can be derived from these.
The method may lead to much work, if all

combinations are considered.

© 2006 - 2011 Hans Schaefer Slide 29 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

What Are Logic Tests Good For?

Find logic faults
– AND - OR exchanged
– Conditions forgotten
– Conditions wrong way (NOT)
– Faults in combining conditions (parenthesis setting)

© 2006 - 2011 Hans Schaefer Slide 30 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Analyze: Possible Relations Between Data

• Combinations
• Order
• Syntax
• Conditions across fields
• If things really matter: Check all input data

elements against each other.

© 2006 - 2011 Hans Schaefer Slide 31 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Possible Logic Tests

• All combinations of decisions and actions
• Systematic use of decision tables
• Pair wise combinations
• Every condition yes and no, by itself

Cost

© 2006 - 2011 Hans Schaefer Slide 32 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

How To Make A Decision Table

Start from the table over equivalence classes (in
column 1).

Make a table with many empty columns to the right.
Make a row for every condition or every equivalence

class.
Write the outputs or effects below the input

equivalence classes (in column 1).

© 2006 - 2011 Hans Schaefer Slide 33 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Example: ATM
Conditions (causes)
Valid card (y/n)

first PIN correct

1-2 times wrong PIN

3 incorrect PIN

Money available (y/n)

Effects (output)

Reject card (y/n)

Try again! (y/n)

Eat card (y/n)

Cash out (y/n)

© 2006 - 2011 Hans Schaefer Slide 34 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Decision Table Continued

Make columns for every combination of conditions.
(If they all are logical values, the number is 2 n otherwise the

product of the numbers of equivalence classes).

Get rid of conditions that are impossible (“limited entry
decision table”).

List all effects for every combination of conditions.

Make sure every condition and effect is present at least once
as YES and as NO.

© 2006 - 2011 Hans Schaefer Slide 35 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Example Decision Table (ATM)
Condition # 1 2 3 4 5 6 7 Check, both Y and

N?
Valid card N Y Y Y Y Y Y OK
first PIN correct - N N Y Y N N OK
3 incorrect PIN - N N N N Y Y OK
1-2 wrong PIN - Y Y N N N N OK
Money available - N Y N Y N Y OK

Output

Reject card Y N N N N N N OK
Try again! N Y Y N N Y Y OK
Eat card N N N N N Y Y OK
Cash out N N Y N Y N N OK

Number of correct/incorrect PIN trials is mutually exclusive.
Test case 1 covers all possible combinations of PIN and money: You cannot go

further with an invalid card!

© 2006 - 2011 Hans Schaefer Slide 36 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Decision Table Completeness Check

Every column gets a counter:

If Y and N everywhere: Counter := 1
For every condition where a dash is given:
Counter := Counter * number of equivalence classes for this

condition.

Sum of all counter values should be 2n (for n conditions) or the
product of number of equivalence classes.

Sum on next page = 12.

© 2006 - 2011 Hans Schaefer Slide 37 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Example Decision Table (ATM)
Condition # 1 2 3 4 5 6 7 Check, both Y and N?
Valid card N Y Y Y Y Y Y OK
first PIN correct - N N Y Y N N OK
3 incorrect PIN - N N N N Y Y OK
1-2 wrong PIN - Y Y N N N N OK
Money available - N Y N Y N Y OK
Counter 6 1 1 1 1 1 1 12
Output

Reject card Y N N N N N N OK
Try again! N Y Y N N Y Y OK
Eat card N N N N N Y Y OK
Cash out N N Y N Y N N OK

Number of correct/incorrect PIN trials is
mutually exclusive!

© 2006 - 2011 Hans Schaefer Slide 38 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Decision Table: Deleting
Unnecessary Columns

We can still delete some cases:

If columns have identical outputs (effects),
And only one input conditions varies,
then they can be combined.

Replace the respective input which is not interesting with a
dash.

Continue doing this until all columns differ.

© 2006 - 2011 Hans Schaefer Slide 40 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Example Decision Table (ATM)
Condition # 1 2 3 4 5 6 Check, both Y and

N?
Valid card N Y Y Y Y Y OK
first PIN correct - N N Y Y N OK
3 incorrect PIN - N N N N Y OK
1-2 wrong PIN - Y Y N N N OK
Money available - N Y N Y - OK
Counter 6 1 1 1 1 2 12
Output

Reject card Y N N N N N OK
Try again! N Y Y N N Y OK
Eat card N N N N N Y OK
Cash out N N Y N Y N OK

This is the final result: One test case per column!

© 2006 - 2011 Hans Schaefer Slide 41 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Techniques With Focus On
Longer Scenarios

Test based on state transitions diagrams
Test based on use cases

© 2006 - 2011 Hans Schaefer Slide 42 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Test Based On States And State
Transitions

Does the program change its behavior based on the history of inputs?
Is the order of actions important?

Think of a mobile phone: It could be a camera, SMS machine or phone.

In this case:
• Find every state
• Find every transition
• What triggers a transition?
• Result of every transition
• Possible ”guards” (conditions for transitions)
• Even wrong inputs to the states
• Make a state transition diagram!
• Test all transitions

© 2006 - 2011 Hans Schaefer Slide 43 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

What Is A State Based Test Good For?

Find faults where history of input plays a role.
Find faults where input possibilities are forgotten.
Find faults in longer scenarios or dialogs.
Many real time systems are implemented using state

machines.

© 2006 - 2011 Hans Schaefer Slide 44 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

State Transition Diagrams

Off
On

Phone book

eVMenuPhonebook [SIM Card
Is in phone] / StartPhonebook

Event ActionState

eVCbutton / beep
Transition

to self

Guarded
transition

Guard

eVPowerOn / InitPhone

Transition

© 2006 - 2011 Hans Schaefer Slide 45 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Example ATM

© 2006 - 2011 Hans Schaefer Slide 46 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Example Digital Watch
How does your digital clock work?

Show time

Show alarm time

Show stop watch

Clock setting

Left lower button

Left lower button

Left lower button

Left lower button

Hour set Min. set
Left upper button

Left upper button

Left upper button

Time and light

Left upper button

Left upper button

© 2006 - 2011 Hans Schaefer Slide 47 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Specification Methods

State diagram
State table
“Finite state machine”
Syntax description for input
Communication protocol
State tree

© 2006 - 2011 Hans Schaefer Slide 48 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Test Case Design Methods

(State cover)

Transition (or Branch) cover
State-event cover
Switch cover
More advanced criteria

© 2006 - 2011 Hans Schaefer Slide 49 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Faults In Models And Implementation
(not for exam)

Faults in the model --------------------------> REVIEW
– Start state not defined
– Guard coupled to state (not transition)
– Guards overlap, wrong, missing, extra
– States wrong, missing, extra
– Transitions wrong, missing, extra
– Several transitions from same state with same input (not deterministic)
– …

Faults in the implementation -------------> TEST
– Extra / missing / corrupt / wrong state
– Missing / wrong action
– Deadlocks
– Sneak paths
– Trap doors …

© 2006 - 2011 Hans Schaefer Slide 50 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Designing Test Cases
Define a set of input sequences starting from the start state and if

possible coming back to it.
Example for digital watch.

–

Start with test cases that test typical flows, design more complex ones later.
Do not forget impossible or invalid transitions!

Test
step nr.

Input +
Guards

Start state Expected
next state

Expected
output

1 Left upper button
just at alarm time

Show alarm time Show alarm time Alarm stop, Show
alarm time

2 Left upper button Show alarm time Time set Time blinks

© 2006 - 2011 Hans Schaefer Slide 51 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Transition (or Branch) Cover

Every state-transition, i.e. every branch, is used (at

least) once.

This test reliably detects output (or operation) errors.
The test does not detect forgotten states.

This state will not be found
 if not specified!

The test generates two test cases:
1. Horizontal path
2. “Down” path

© 2006 - 2011 Hans Schaefer Slide 52 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Generating A Transition / Branch Cover
By Transition Tour

Start at the start state.
Choose events which run through the state machine

in such a way as to cover every transition in the
diagram at least once.

(Chinese Postman algorithm)

The state machine under test is assumed to be minimal (no duplicate
states), and strongly connected (no islands).

The method can be applied to both fully and incompletely specified
state machines (Fully specified = a transition for every event
specified in every state).

© 2006 - 2011 Hans Schaefer Slide 53 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

State-event Cover

Execute every event in every state. Check that this
is handled correctly.

This test is equivalent to branch cover for
completely specified state machines.

This test detects transitions that are forgotten in the
design. This state will be found

 even if not specified!

The test generates three test cases:
1. Horizontal path
2. “Down” path
3. “Up” path

© 2006 - 2011 Hans Schaefer Slide 54 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Switch Cover (not for exam)

A switch (or 1-switch) is a transition-to-transition pair
(combination of two transitions).

Every switch starting in every transition must be executed.

With this test design, Operation errors are detected.
State-transition errors will be detected if states are “1-distinguishable”.
I.e. if, for each pair of states, there is at least one input which, when applied to the pair,

yields different outputs.
Equivalent to branch coverage for program code, starting from every state.

© 2006 - 2011 Hans Schaefer Slide 55 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

N-Switch Cover (not for exam)

n-switch = A sequence of consecutive transitions
(branches) of length n+1.

Impossible to do in practice!

If n = the number of states - 1
Then

You reliably find
 Output (operation) errors
 Transfer errors
 Missing state

© 2006 - 2011 Hans Schaefer Slide 56 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Summary For Test Of State Transitions

Run object life histories through the system.
Example: Life of an account, order etc.

Every test case back to start (i.e. Start screen).
Exceptions, user errors, cancel!
Make some long histories (soap operas).

© 2006 - 2011 Hans Schaefer Slide 57 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Use Case-Based Test

The method checks business flows, even across
several systems or system parts.
– Normal flow (everything correct)
– Alternative scenarios (user errors, input errors,

equipment failures, alarms, online-help...)
– Cancel, repetitions
– Even misuse (Internet search -> misuse cases)

© 2006 - 2011 Hans Schaefer Slide 58 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Use Case-Based Test

• A USE CASE describes “something the program
shall do”, and is triggered by an external actor.

• It is about who is trying to achieve what with the
system, and in what context.

What if input is wrong or left out?
Exceptions?
User errors?
Equipment failures?
Set up parameters?

© 2006 - 2011 Hans Schaefer Slide 59 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

What Is Use Case-Based Test Good
For?

Problems and risks in the process flow through the
system

Problems due to long scenarios
For system and acceptance test
Finds interaction faults that test of single

components does not find

© 2006 - 2011 Hans Schaefer Slide 60 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Work Steps For Use Case-
Based Test

1. >= 1 test case for normal flow
2. >= 1 test case for every alternative flow
3. Possibly special combinations of partial flows

(maybe even combinations of different use cases after each other)

4. Define test data

© 2006 - 2011 Hans Schaefer Slide 61 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Test Data For Use Case-Based
Test

Use the normal data-based methods
(equivalence classes, boundary values, special

values, decision tables)

© 2006 - 2011 Hans Schaefer Slide 62 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

For Reference: Design By Contract

Design by Contract is a mechanism pioneered by Eiffel that characterizes every software element
by answering three questions:

– What does it expect?
– What does it guarantee?
– What does it maintain?

Answers take the form of preconditions, postconditions, and invariants. For example, starting a
car has the precondition that the ignition is turned on and the postcondition that the engine is
running. The invariant, applying to all operations of the class CAR, includes such properties
as dashboard controls are illuminated if and only if ignition is on. With Design by Contract,
such properties are not expressed in separate requirements or design documents but
become part of the software; languages such as Eiffel and Spec#, and language extensions
such as JML, include syntax keywords such as require, ensure, and invariant to state
contracts. Applications cover many software tasks: analysis, to make sure requirements are
precise yet abstract; design and implementation, to obtain software with fewer faults since it
is built to a precise specification; automatic documentation, through tools extracting the
contracts; support for managers, enabling them to understand program essentials free from
implementation details; better control over language mechanisms such as inheritance and
exceptions; and, with runtime contract monitoring, improvements in testing and debugging,
which AutoTest (EiffelStudio) takes further.

Reference 1. B. Meyer, Applying Design by Contract, IEEE Computer, Oct. 1992, pp. 40-51.

© 2006 - 2011 Hans Schaefer Slide 63 ISTQB Foundation Course Chapter 4.2 - Test Case Design - Black box-techniques

Literature

• Glenford Myers, The Art of Software Testing, John Wiley, 1979

• Boris Beizer, Software Testing Techniques, Van Nostrand Reinhold, 1990.

• Boris Beizer, Black box-testing, 1995

• James Whittaker, How to Break Software, Addison-Wesley, 2002.

• Linz, Spillner, Schaefer, Software Testing Foundations, 3rd ed., Rocky Nook,
2011.

• Paul C. Jorgensen, Software Testing - A Craftmanʼs Approach, 2nd ed., CRC
Press 2002.

• Graham Bath and Judy McKay, The Software Test Engineerʼs Handbook, A
Study Guide for the ISTQB Test Analyst and Technical Test Analyst Advanced
Level Certificates, Rocky Nook, 2008.

