
INF329

Presentation of
Alaña, Rodríguez (2007) Domain Engineering

Methodologies Survey (GMVSA 20580/07, GMV,
July 2007, 38 pp.)

by Anne Elise Weiss
2012-02-06

http://www.pnp-software.com/cordet/download/pdf/GMV-CORDET-RP-001_Iss1.pdf
http://www.pnp-software.com/cordet/download/pdf/GMV-CORDET-RP-001_Iss1.pdf
http://www.pnp-software.com/cordet/download/pdf/GMV-CORDET-RP-001_Iss1.pdf
http://www.pnp-software.com/cordet/download/pdf/GMV-CORDET-RP-001_Iss1.pdf
http://www.pnp-software.com/cordet/download/pdf/GMV-CORDET-RP-001_Iss1.pdf

Last time

● Domain Engineering in general
● Definition of a domain
● Some DE methods
● Problems wrt DE + OOA/D
● Some OOA/D methods supporting DE

Purpose and scope of the report

● Identify methodologies
● Identify and select language for generic models
● Summarize different models, notations and tools
● Analyse compliance of GMV-proposed approach with ISO

12207

Methodologies

Divides DE into three phases:
● Domain analysis
● Domain design
● Domain implementation

Work to be carried out according to the SOW:

● Perform a DE analysis through a variation analysis of space
systems

● Perform a DE design to be reused for design and
development of future space crafts

Methodologies
The phases:

1. Domain analysis
Discovers and formally describes the commonalities and
variabilities. Output: domain model; explicit representation

Domain model consists of:
● Domain dictionary – defines terms
● Context models – specify boundaries
● Feature models – hierarchical decomposition of features

2. Domain design
● Input: Domain model
● Applies a partitioning strategy to produce a generic design
● Defines different elements and how the domain features are

allocated to them

3. Domain implementation
● Input: Design models and generic architectures
● Main output: reusable assets, application generations,

domain languages

Methodologies

Main groups of DE methods

Methods based on the analysis of the
domain

ODM (Organization Domain Modeling)
Developed to provide an overall framework for a DE life cycle.

Divides DE into three phases:
● Plan the domain – "Domain of focus" based on

stakeholders' interests
● Model the domain – document domain information, produce

domain model
● Engineer an asset base – sub-phases to scope, architect

and implement

Methods based on analysis of the domain

ODM (Organization Domain Modeling)
Advantages:

● Useful for a wide range of organisations and domains
● May be integrated with a variety of SE processes, methods

and implementation technologies

Disadvantage:

● No support for creating DSL and application generators

Most successful: mature, stable, economically viable domains.

Methods based on analysis of the domain
FODA (Feature-Oriented Domain Analysis)

● Based on identification, analysis and documentation of the
main features

● Result: generic domain products based on abstraction

Three phases:
1. Context analysis – Establish bounds of domain, relation with

other domains
■ Result: structure and data-flow diagrams

2. Domain modelling – Analyse context model to generate
domain models

Methods based on analysis of the domain
FODA (Feature-Oriented Domain Analysis)

Three phases:
3. Architecture modelling – create high-level architecture model
from the domain model

● FODA's features represented hierarchically --> simple to
identify and understand feature model

○ Component-based development not encouraged, but
can be achieved using Object Connection Architecture

● FODA has no specific process for req. spec, verification and
management

Methods based on analysis of the domain

FORM (Feature-Oriented Reuse Method)
● Extends FODA to the design phase
● Uses feature model to develop domain architectures and

components
● Reason: Features + code should be packed, managed and

reused as software modules

Three phases:

● Context analysis: identify scope and interaction
● Feature modelling: commonalities and variabilities.

Hierarchical feature diagram
● Architecture/component modelling: define a set of reference

architectures

Methods based on analysis of the domain

 FORM (Feature-Oriented Reuse Method)
● Reference architectures are defined using the feature model
● Organized in three hierarchical levels

○ Subsystem model (system structure)
○ Process model (dynamic behaviour)
○ Module model (set of features)

● The modules are basis for generation of reusable

components.
● Mapping between feature and architectural model is needed.

Methods based on analysis of the domain

FeatureRSEB (Feature Reuse-Driven Software Engineering
Business)

● Process that has integrated the feature modelling of FODA
into processes and work products of Reuse-Driven Software
Engineering Business (RSEB).

● RSEB: Use-case driven systematic reuse process based on
UML.

RSEB DE activities:
● Application Family Engineering (higher level)
● Component System Engineering (lower level)

Methods based on analysis of the domain

FeatureRSEB
● FeatureRSEB developed because RSEB is based on

modelling variability, but doesn't include DA techniques or
description of a systematic way to perform the asset
development

● Combines FODA and ODM concepts
● Feature models are simpler than FODA's
● Architecture + reusable subsystems: use-case diagrams,

transformed into object models

Methods based on analysis of the domain

FeatureRSEB
● Includes DA, solving the limitations of RSEB

○ DA starts with domain scoping and feature modelling
■ Components
■ High level use case model

○ Next: identification of commonality and variability of the
elements.

■ Use case and object model: domain entities and the
interaction between them

■ Sequence and interaction diagrams: dynamic
relations among the domain entities

Methods based on analysis of the domain

DSSA (Domain-Specific Software Architectures)
● Architecture for a specific domain based on commonalities

and differences
● Focus on the process: how to define these features and

derive the final architecture

● Domain analysis:
○ capture components and operations in a class of similar

systems in a particular domain
○ define relationships + data and control flow

■ result: requirements document
○ Identify constraints and requirements

Methods based on analysis of the domain

DSSA (Domain-Specific Software Architectures)
● Develop architecture

● Last step: Develop reusable components based on the

architecture and information

Methods based on analysis of the domain

Sandwich method
● Specifies components that can be implemented and put into

a library
● Domain models: generic architecture or standard designs
● Low-level components act as building blocks --> reuse

guaranteed

Domain analysis:
● Domain information, entities, models, expand and verify

models and classification
● Result: Domain model

Methods based on analysis of the domain
Sandwich method
Domain model includes:

● Concepts to enable specification of systems
● Plans describing how to map specifications into code
● Rationales for the specification concepts

Two procedures:

● Bottom-up activities, low-level common functions. Products
are associated with the structures derived by:

● Top-down activities, for system analysis. Result: generic
architectures

Drawbacks:

● Little information related to the whole process
● No support for development of languages

Methods based on analysis of the domain
DARE (Domain Analysis and Reuse Environment)

● Support environment for partially automating the activities of
domain analysis

● Focus: activities to acquire and structure knowledge
● Domain Analysis Book
● Domain must already be defined

Four activities (iterative):
1. Acquire domain knowledge
2. Structure domain knowledge automatically
3. Identify commonalities
4. Generate domain models

DE methods based on the product line
● Methods linked to product lines and software families

○ groups of products that share common features and
meet the needs of a particular market area

● Few available methodologies

FAST (Family-Oriented Abstraction, Specification and
Translation)

● Defines DE + Application Engineering process
 --> covers the whole product-line engineering process

Domain has to satisfy these requirements:

● mature
● stable
● experts must exist and be available

DE methods based on the product line

FAST
● Software family is defined
● Environment for producing family members is developed
● DE process is based on sharing common features

Two phases:

● Domain/commonality analysis
○ Collect/document knowledge
○ Define decision model
○ Design Application Modelling Language (AML)

● Domain implementation
○ Development and refinement of the specified

environment

DE methods based on the product line

FAST
● No specific technique recommended
● When domain specified: translation into products is carried

out using a DSL, so translation can be done automatically

DE methods based on the product line

PuLSE (Product Line Software Engineering)

Elements:

● Four deployment phases
○ Initialization
○ Infrastructure construction
○ Infrastructure usage
○ Management/evolution

● Technical components
● Support components

No recommended tool or technique for any of the activities.

DE and OOA/D methods

OOram (Object Oriented Role Analysis and Modelling)
● Provides a framework for creating a variety of methodologies
● Dev. cycle focused on interactions: improves reuse,

traceability, complexity
● Idea: different methodologies needed for different purposes
● Defines a "role model", collecting objects together according

to common goal

Three processes

● Model creation process
● System development process
● Reusable asset building process

DE and OOA/D methods

JODA (Joint Integrated Avionics Working Group Object-
Oriented Domain Analysis)

● Uses OOA/D instead of functional methods for domain
analysis

● DA: what is reusable, how can it be structured and reused

DA consists of three phases:
● Domain preparation
● Domain definition
● Domain modelling -- which extends from OOA/D

1. Def. attributes and services, objects, relationships
2. Domain scenarios
3. Abstraction and grouping of objects

DE and OOA/D methods

Sherlock

● Product line practice
● Uses OOA for analysis
● Uses different diagrams for modelling
● Input: informal description of the domain
● Output: set of architectural models
● Tool support for managing each activity
● No specific technique for req.spec., verification, traceability

SODA (Strategic Options design and
Assessment)

● Approach to design long-lived system architectures
Activities:
1. Develop strategic scenarios
2. Propose business strategies
3. Design architectural scenarios (result: proposed

architectures)
4. Assess scenario feasibility

● Aim for the final result: flexible architecture that is adaptable
to change over time

Architectural analysis methods
● Methods concerning the transition from the domain

modelling to the domain architecture definition

● During the architectural analysis, the domain engineer
selects an appropriate design approach for building a
generic design

● Many methods only provide a high-level feature model --> a
transition from the domain model to the final architectural
design is needed

Architectural analysis methods
OCA (Object Connection Architecture)

● Architectural model used to structure a generic design
● Typically used with FODA
● Input: domain model, architecture information
● Result: generic design, used in application development

Mapping process:
1. Analysis of the domain model
2. Process of mapping objects and subsystems onto code

templates

DE notations and tools

● During DA: the bounds of a domain are identified
● These bounds have to be represented somehow

Some notations linked to features:
● SADT (Structured Analysis and Design Technique):

describing systems as a hierarchy of functions
● UML (Unified Modelling Language): semi-formal, object-

oriented
● SysML (System Modelling Language): based on UML

2.0, DSML for system engineering applications.

The generated reusable assets: output to XML files

DE notations and tools

Many domain analysis methodologies are based on features, so
tools that can model features are also needed. E.g.:

● Xfeature – supports feature modelling, uses standard
technology

● RequiLine – requirements engineering tools for
management of software product lines

● pure::variants – commercial tool, supports feature modelling
and configuration

DE notations and tools

Notations to represent the domain design:
● SysML
● UML2 – supports MDA and MDD
● AADL (Architecture Analysis and Design

Language) – provides features for modelling a software
system’s conceptual architecture

Tools for developing domain design:
CORBA, Eclipse framework, MS Visio, TOPCASED

DE notations and tools
Some notations supporting domain implementation

● MDA – provides a framework to MDD.
○ Basic function: generation of applications from a set of

procedures (UML model) --> mechanism to transform the
feature model instances into an executable application
automatically or semi-automatically.

● HRT-UML (Hard-Real Time UML Models) – defines an
extension profile of UML.

○ Used to model generic architectures, especially useful for
modelling hard real-time systems.

Conclusion
Conclusion regarding the most suitable DE approach:
Feature-Oriented Domain Analysis (FODA).

Reasons:
● FODA represents the domain knowledge using several

complementary models
● Oriented towards commonalities and variabilities
● Easily understandable feature models (end user + designer)
● The method is generic
● Tight relationship between FODA-generated models and

those found in the majority of OOA/D

Conclusion
Reasons:

● FODA specifies the whole DA process until the architecture
design

● Has been applied to several industry application domains
with good results

