
.

Feature-oriented programming

Tero Hasu
tero@ii.uib.no

INF329 course

16 April 2012

mailto:tero@ii.uib.no

.

contents

I focus on feature-oriented programming
I many methods and tools

I we pick one and focus mostly on it…
I …but do mention others

I also: domain implementation and software generation
I not covered: other aspects of feature-oriented software

development (FOSD)
I no FODA or such

.

primary source material

I Batory et al: Scaling Step-Wise Refinement (2004)�
I a popular citation for feature-oriented programming

I Batory: A Tutorial on Feature Oriented Programming and
the AHEAD Tool Suite (2004)�

I for a more concrete programming and tooling angle

http://www.cs.utexas.edu/ftp/predator/TSE-AHEAD.pdf
http://www.cs.utexas.edu/users/schwartz/ATS/fopdocs/AHEAD-Tutorial.pdf
http://www.cs.utexas.edu/users/schwartz/ATS/fopdocs/AHEAD-Tutorial.pdf

.

Don Batory

I www.cs.utexas.edu/˜dsb/ (homepage)
I www.cs.utexas.edu/users/schwartz/search.cgi

(publications)
I research on product-line architectures and automated

software development
I entails: “model-driven engineering, feature-based

software designs, extensible software, adaptive software,
software architectures, object-oriented design patterns,
extensible languages, domain modeling, and
parameterized programming”

http://www.cs.utexas.edu/~dsb/
http://www.cs.utexas.edu/users/schwartz/search.cgi

.

domain engineering

I for systematic code reuse
I create reusable assets for the application domain

I possible approach: architect feature-oriented systems so
that can “instantiate” products with the desired feature
set

.

Why feature-oriented? �

I requirements tend to be given in terms of features
I the customer is unlikely to be interested in what DLLs (or

other components) you’re using to construct your
software

I the customer (hopefully) knows their requirements, and
can see how a certain feature set satisfies said
requirements

.

different flavors of “shrink-wrapped” software
products also possible

I “entry-level through deluxe”
I Windows 8 Enterprise Edition
I Windows 8 Enterprise Eval edition
I Windows 8 Home Basic Edition
I Windows 8 Home Premium edition
I Windows 8 ARM edition
I Windows 8 Professional edition
I Windows 8 Professional Plus edition
I Windows 8 Starter edition
I Windows 8 Ultimate edition

.

Feature-Oriented Programming (FOP)

I term apparently coined by Christian Prehofer in 1997
I but “feature-orientation” has been around for a while

I particularly in the context of software product lines
(SPL)

I FOP is the study of feature modularity and programming
models supporting it�

I “Feature modularity goes far beyond conventional
notions of code modularity.”

.

separation of concerns H

I separation of concerns is one of the most important
principles in software engineering

I means decomposing software into manageable pieces
along a dimension in concern space

I abstractions like features and classes are viewed as
dimensions in concern space

I consists of identification, encapsulation, and integration
I identification means a software is decomposed into

entities that represent the abstraction,
I encapsulation means some mechanism is provided so

that these entities can be manipulated separately, and
I integration means that some composition mechanism is

provided that integrates said entities

.

compositional vs. annotative feature-oriented
systems

I there are compositional and annotative approaches
I “Compositional approaches for implementing features

represent features as distinct modules, which are
composed at compile time or deployment time or
similar.” H

I “Annotative approaches implement features by
identifying code belonging to a feature in the source and
annotating it, so that variants may be created by
including or removing annotated code from the source.”
H

I Sunkle et al believe that “by using a combination of
compositional and annotative approaches, we can create a
better representation of features” H

.

Programming with Feature Orientation (PFO)

I we don’t consider the annotative approach as “true” FOP,
as the code doesn’t have feature-oriented structure

I although: What about IDEs (like CIDE) that have
first-class support for annotated features?

I annotative domain implementation can still be a part of a
FOSD process

I when so, we call it programming with feature orientation
(PFO)

.

PFO with CPP conditionals

I #if probably the most common solution in the industry
I even with commercial FOSD tooling such as

pure::variants
I #if style annotations can be used without architecting or

refactoring for modularity or explicit parameterizability
I code may become messy as the number of features

increases
I feature implementations are spread around codebase,

hard to see as a whole or reuse
I but tools can help in viewing and analysis

.

other language support for PFO

I e.g. color annotations in CIDE
I good for “featurizing” legacy codebases

I e.g. rbFeatures
I Günther & Sunkle: rbFeatures: Feature-Oriented

Programming with Ruby (2011)

http://www.sebastianguenther.org/media/pdf/soc2011_authors_version.pdf
http://www.sebastianguenther.org/media/pdf/soc2011_authors_version.pdf

.

How extensive should feature-oriented structuring
support be?

I ideally across the code base (all languages)
I general-purpose programming language code (both

static and dynamic), resource files, makefiles

I ideally with statement and expression level
feature-specificity (not just module, class, or function
level)

I problem: statements and expressions are (normally) not
named

.

What language support does FOP require?

I at least some support for modularity required
I parameterizable modules or classes, classes with

inheritance, mixins, concepts, …

I AOP style code insertion may be useful to adapt existing
“base code” for a feature

I if necessary, first-class feature module support can be
added e.g. through source-to-source translation

I Batory talks of precompilation or preprocessing
I even highly dynamic and reflective languages may not be

easy to adopt for FOP
I see Günther & Sunkle: Enabling Feature-Oriented

Programming in Ruby (2009)

http://wwwiti.cs.uni-magdeburg.de/~sunkle/publications/SGSS Tech Report 09.pdf
http://wwwiti.cs.uni-magdeburg.de/~sunkle/publications/SGSS Tech Report 09.pdf

.

the library scaling problem

I just e.g. having “traditional” parameterizable
(non-feature) modules may not be that practical

I i.e. when instantiating a module specify concrete
implementations of all types and functions that have
variability

I if your components are large they’re probably too specific;
if they are small and highly parameterizable people must
write a lot of code to instantiate and compose them

I Biggerstaff: The Library Scaling Problem and the Limits
of Concrete Component Reuse (1994)

http://homepages.cwi.nl/~storm/teaching/reader/Biggerstaff94.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Biggerstaff94.pdf

.

Solutions for the library scaling problem?

I perhaps: features should allow for adding new
components and for cross-cutting refinement of (multiple)
existing components

I no advance parameterization: applied “externally”
I inheritance allows for before, after, and overriding

“advice” of methods �
I but may have to identify join points for some artifact

types
I e.g. XML documents: How to refine elements? Which

ones? How to identify them?—Anfurrutia et al: On
Refining XML Artifacts (2007)

I Batory: we need a combination of building blocks and
generative techniques

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.8484&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.8484&rep=rep1&type=pdf

.

RQO: a “spectacular example” of futuristic
software engineering�

I relational query optimization (RQO)
I SQL is a domain-specific language (DSL)

I a declarative language for retrieving data from tables
I an SQL compiler translates an SQL statement into a

relational algebra expression

I a query optimizer realizes automatic programming (AP)
by applying equational rewrite rules

I the back end does generative programming (GP) by
translating the optimized expression into an efficient
program

.

AHEAD (Algebraic Hierarchical Equations for
Application Design)�

I a theory of feature-oriented programming
I aims to generalize the success of RQO to other domains
I direct successor and generalization of GenVoca

.

AHEAD Tool Suite (ATS)�

I http://www.cs.utexas.edu/users/schwartz/ATS.html
I a suite of tools that implement the AHEAD theory

http://www.cs.utexas.edu/users/schwartz/ATS.html

.

step-wise refinement (SWR)�

I a methodology that can serve as a basis for a powerful
form of FOP

I a simple and ancient idea: construct complex programs
from simple ones by incrementally adding details

I if the increments are features, the SWR becomes FOP
I This is the starting point of AHEAD.

.

feature refinement

I a feature refinement adds a feature to a program�
I a module that encapsulates an individual feature
I may e.g. encapsulate fragments of multiple classes �

I then the refinement cross-cuts those classes

I feature refinements are composed using generators to
synthesize code for a full program

I one feature refinement might consist e.g. of a set (or
sequence) of class refinements

.

implementing class refinement

I refinements must be realized in code somehow
I e.g., a class refinement refines a class by e.g. introducing

new methods and extending or overriding existing ones
I How to represent a class refinement? Want it as a

separate, modular fragment.
I can implement e.g. based on so-called mixin inheritance

I i.e. the superclass of a class is parameterized
I one problem: a mixin doesn’t assume the name of its

superclass, so cannot add to a class (cf. open
classes)—can be addressed via generative techniques

I some languages (e.g. Ruby) support “mixing in” mixins
without inheritance

.

a mixin in C++

template <class Graph>
class Counting : public Graph {

int nodes_visited, edges_visited;
public:
Counting() : nodes_visited(0), edges_visited(0), Graph() { }
node succ_node(node v) {
nodes_visited++;
return Graph::succ_node(v);

}
...

};

Smaragdakis & Batory: Mixin-Based Programming in C++

(2000)

http://www.cs.utexas.edu/ftp/predator/gcse2000.pdf

.

synthesizing classes

I one we have feature specific class fragments represented
as mixins or whatever, can have tooling synthesize a
concrete class that has the desired name and mixes in all
the fragments required for the desired feature set

I in the mixin inheritance case, only terminal classes of the
refinement chains are instantiated

.

Should features be first class rather than design
patterns?

I many techniques are used to implement features H
I the main kind of concern supported by them is one of

functions, classes, aspects, hyperslices, mixins, and
frames, etc.

I features, which are themselves a kind of concern, are
essentially implemented in terms of entities that
basically represent some other kind of concern

I this abstraction and representation mismatch causes
problems such as hierarchical misalignments, limitations
in feature composition and order, and inexpressive
program deltas H

.

FOP languages

I Jak
I FeatureC++

I Apel et al: FeatureC++: Feature-Oriented and
Aspect-Oriented Programming in C++ (2005)

I Apel et al: FeatureC++: On the Symbiosis of
Feature-Oriented and Aspect-Oriented Programming
(2005)

I XAK
I Anfurrutia et al: On Refining XML Artifacts (2007)

http://www.infosun.fim.uni-passau.de/cl/publications/docs/TR-0503.pdf
http://www.infosun.fim.uni-passau.de/cl/publications/docs/TR-0503.pdf
http://www.infosun.fim.uni-passau.de/cl/publications/docs/GPCE2005.pdf
http://www.infosun.fim.uni-passau.de/cl/publications/docs/GPCE2005.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.8484&rep=rep1&type=pdf

.

FOP language implementation support

I FeatureHouse
I provides an easy-to-use plug-in mechanism for new

languages, based on attribute grammars N
I for preparing languages for implementing and composing

features
I Java, C#, C, Haskell, etc. have been plugged in
I Apel et al: Language-Independent and Automated

Software Composition: The FeatureHouse Experience
(2012)

http://www.infosun.fim.uni-passau.de/cl/publications/docs/IEEETSE2011.pdf
http://www.infosun.fim.uni-passau.de/cl/publications/docs/IEEETSE2011.pdf

.

Jak

I short for Jakarta
I an extended and extensible Java

I extended with first-class feature support
I feature, refines, Super

I extended with meta programming support
I extended with language for state machines

I bootstrapped: implemented based on a toolkit
implemented in Jak

I Jak-to-Java compiler included in ATS

.

constructing and composing code fragments
import jak2java.*;

class ex1 { // example from ATS documentation
public static void main(String args[]) {

AST_Modifiers m = mod{ public final }mod;
AST_Exp e = exp{ i+1 }exp;
AST_FieldDecl f = mth{ int i;

int inc(int i) { return $exp(e); } }mth;
AST_TypeNameList t = tlst{ empty }tlst;
AST_QualifiedName q = id{ foo }id;
AST_Class c = cls{ interface empty{};
$mod(m) class $name(q)
implements $tlst(t) { $mth(f) } }cls;

System.out.print(c);
}

}

.

class refinement in AHEAD and Jak: a class�

feature Base;

class B {
int x;

}

I a base artifact (here: a class) is a constant in the AHEAD
algebra

.

a class refinement�

feature Customization;

refines class B {
int y;
void z() {...}

}

I a refinement (here: a class refinement) is a function
mapping artifacts

I a single-argument function (no multiple inheritance)

.

composition in a flattened form�

class B {
int x;
int y;
void z() {...}

}

.

composition by jampack�

feature Program;

class B {
int x;
int y;
void z() {...}

}

.

equivalent refinement chain�

class BP {
int x;

}

class BR extends BP {
int y;
void z() {...}

}

class B extends BR {}

I recall INF220

.

composition by mixin�

feature Program;

SoUrCe Base ”Base/B.jak”;
abstract class B001 {

int x;
}

SoUrCe Customization ”Customization/B.jak”;
public class B extends B001 {

int y;
void z() {...}

}

.

a “program” may be something more than a set of
classes�

I a full system (of multiple programs and libraries) with
associated knowledge representations (e.g., process
models, UML models, makefiles, design documents, etc.)

I AHEAD specifies an algebraic model of application
synthesis that treats all representations in a uniform way:
code and noncode, individual programs, and multiple
programs

.

a containment hierarchy of artifacts

I classes in a package
I packages in JAR files
I JAR files in a program
I programs in an application suite

.

Principle of Uniformity�

I Impose an object-based structure on artifacts of a given
type, taking advantage of any natural indexing scheme
that may already exist, and define refinement to follow
the notions of mixin inheritance (or more specifically,
class refinement).

I many artifact types have an object-based structure,
although few support inheritance

I a refinement operation realizing mixin inheritance must
be implemented for AHEAD support

.

makefile example

I see makefile refinement and composition (Figure 5)
I impose an object-based structure on makefiles�
I natural indexing scheme: targets are uniquely named�
I cf. targets with actions vs. methods with statements
I super references expanded by textual substitution

I Is this strictly necessary?

.

the algebra of AHEAD�

I AHEAD talks of units: either constants, functions, or
collectives

I units may be grouped into collectives
I a single feature may consist of multiple constants (base

artifacts) or functions (refinements)

I composition of units is defined by the laws of inheritance
I composition is recursive (as is the definition of units),

pairwise according to the names of units
I the composition operator • is polymorphic on the artifact

type

.

recursive composition

h • f = {ah, bh, ch} • {af, bf, df}
= {ah • af, bh • bf, ch, df}

.

equation file

I a synthesization specification
I Program.equation:

Base
Customization

I composer --target=Program Base Customization
I Program = Customization • Base
I Principle of Uniformity here, too. An equation file may be

a refinement, and may use the super keyword to refer to
the refined equation.

.

ATS functionality�

I collective implemented as a file system directory
I feature composition is directory composition

I composer takes an equation, and creates a composite
feature directory (named after the equation), invoking
artifact-specific composition tools

I jampack and mixin are alternative composition tools for
Jak files

I unmixin back-propagates updates made to mixin
generated files

I jak2java translates Jak into Java

.

AHEAD compared to RQO�

I programs with the desired feature set are specified as
expressions in a domain-specific language (DSL) of sorts

I in .equation files
I automatic programming (AP) is realizable in theory as

can pick from multiple implementations of a feature, and
AHEAD expressions can be optimized

I Batory et al: Design Wizards and Visual Programming
Environments for GenVoca Generators (2000)

I ATS includes tools for generative programming (GP):
modules implementing features can be composed by
synthesizing code required for a complete program

http://www.cs.utexas.edu/ftp/predator/ieee-tse-00.pdf
http://www.cs.utexas.edu/ftp/predator/ieee-tse-00.pdf

.

FeatureIDE

I FeatureIDE Eclipse plugin for FOSD
I “supports all phases” of FOSD
I includes:

I Feature Model Editor (graphical and text based)
I Constraint Editor (constraint checking, content assist,

etc.)
I Configuration Editor (for creating and editing

configurations, with support for deriving valid ones)

I supports AHEAD (in addition to FeatureC++,
FeatureHouse, etc.)

I Jak language aware editing with refactorings, etc.

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

.

FeatureIDE with AHEAD scenario

I a possible project organization for a pure Java
project

I define your feature model in a .m file
I can edit dependencies and constraints graphically

I have an .equation file for each product configuration
I editor support for ordering / optional auto-ordering of

refinement chains
I implement classes as .jak files

I one file per feature involving said class
I different directory for each feature used to store files
I usual assisted editing (as for Java in Eclipse)

.

GUI calculator example

I see GUI calculator (Figure 20)
I addition and subtraction features of a graphical calculator

.

AHEAD in use�

I AHEAD is being used to build next-generation distributed
fire support simulators (FSATS) for the US Army
Simulation, Training, and Instrumentation Command
(STRICOM).

I Bootstrapping AHEAD itself. As mentioned earlier,
AHEAD tools were initially built using JTS. To bootstrap
AHEAD, JTS source was converted into AHEAD features.

.

feature interaction N

A feature interaction is a situation in which two or more
features exhibit unexpected behavior that does not occur when
the features are used in isolation.

feature Base;
class List {}
class Node {}

.

feature interaction N

feature Single;
refines class List {
Node first;
void prepend(Node n) {
n.next = first; first = n;

}
}
refines class Node { Node next; }

.

feature interaction N

feature Reverse;
refines class List {
Node last;
void append(Node n) {
n.prev = last; last = n;

}
}
refines class Node { Node prev; }

.

feature interaction N

class List {
Node first;
void prepend(Node n) {
n.next = first; first = n;

}
Node last;
void append(Node n) {
n.prev = last; last = n;

}
}
class Node {
Node next; Node prev;

}

.

references

I Apel and Kästner: An Overview of Feature-Oriented
Software Development (2009) N

I an FOSD survey

I Sunkle et al: Features as First-class Entities – Toward a
Better Representation of Features (2008) H

http://www.jot.fm/issues/issue_2009_07/column5/
http://www.jot.fm/issues/issue_2009_07/column5/
http://www.infosun.fim.uni-passau.de/cl/publications/docs/MCGPLE2008first.pdf
http://www.infosun.fim.uni-passau.de/cl/publications/docs/MCGPLE2008first.pdf

.

further reading

I Batory et al: JTS: Tools for Implementing
Domain-Specific Languages (1998)

I info on Jak and the associated Jakarta Tool Suite (JTS)
I JTS is a domain implementation for producing extended

industrial PLs and component-based generators

I Batory et al: The Objects and Arrows of Computational
Design (2008)

I about AHEAD etc., for the categorically inclined
I Prehofer: Feature-Oriented Programming: A Fresh Look

At Objects (1997)
I highly sited for FOP (coined the term?)

http://www.cs.utexas.edu/users/schwartz/ATS/fopdocs/JTS-Theory.pdf
http://www.cs.utexas.edu/users/schwartz/ATS/fopdocs/JTS-Theory.pdf
http://www.cs.utexas.edu/ftp/predator/BatoryMODELS08Keynote.pdf
http://www.cs.utexas.edu/ftp/predator/BatoryMODELS08Keynote.pdf
http://people.csail.mit.edu/dnj/teaching/6898/papers/prehofer.pdf
http://people.csail.mit.edu/dnj/teaching/6898/papers/prehofer.pdf

.

further reading and listening

I Thüm et al: Applying Design by Contract to
Feature-Oriented Programming (2012)

I presented at FASE 2012
I correction: discusses integrating design by contract with

FOP
I if it’s not hard enough with just OO

I www.fosd.de
I for links to lots of FOSD tools and material

I Feature-Oriented Software Development with Sven Apel
(Software Engineering Radio episodes 172 & 173)

I easy listening

http://www.infosun.fim.uni-passau.de/cl/publications/docs/FASE2012.pdf
http://www.infosun.fim.uni-passau.de/cl/publications/docs/FASE2012.pdf
http://www.fosd.de/
http://www.se-radio.net/2011/02/episode-172-feature-oriented-software-development-with-sven-apel-pt-1/
http://www.se-radio.net/2011/03/episode-173-feature-oriented-software-development-with-sven-apel-pt-1/

