
. . . . . .

Domain engineering of railroad systems

source material:
Dines Bjørner et al

presentation:
Tero Hasu

tero@ii.uib.no

INF329 course

19 March 2012

mailto:tero@ii.uib.no


. . . . . .

source material

I Bjørner et al: Towards a TRain book (2004)
I particularly Chapter 2

I Bjørner et al: “UML”-ising Formal Techniques (2004)

http://www.railwaydomain.org/PDF/tb.pdf
http://www.railwaydomain.org/PDF/umlising.pdf


. . . . . .

Dines Bjørner

I famous in the formal methods community
I current focus areas: (1) domain engineering, (2)

requirements engineering, and (3) software design
methods

I behind RAISE (Rigorous Approach to Industrial Software
Engineering)

I RAISE Specification Language (RSL) and tools
I www2.imm.dtu.dk/˜db/

http://www2.imm.dtu.dk/~db/


. . . . . .

a domain

A (somewhat cyclic) definition:
Definition
An application (or business) domain: a universe of discourse,
an area of human and societal activity, ...



. . . . . .

TRain (The Railway Domain)

I www.railwaydomain.org

”Because we need a grand challenge project in order
to gather enough momentum to make progress along
the road to industrially scalable and useful,
integrated formal techniques.”

http://www.railwaydomain.org/


. . . . . .

“basic railway domain model”
I the physical structure of railways

I an intrinsic facet of the railway domain(?) ♠
I as collections and compositions of “railway nets, lines,

stations, tracks (rail) units, and connectors”
I components which “can be physically demonstrated”

I but abstracting away a number of physical attributes
I “top-down” description—decreasingly composite



. . . . . .

examples of attributes abstracted away

I of rail units
I length
I topology, i.e. the three-dimensional layout of a unit,

including “tilting” of rails in curves, etc.
I context: on a bridge, in a tunnel, along a platform,

along a quay, etc.



. . . . . .

a domain description

I An informal narrative describing a domain, and a
mathematical text formalising the description.

I Problem: Our use of natural language is very flexible. We
hardly notice as we slip from one mode of description to
another.

I might encounter serious problems in formalising an
informal description

I no single specification language can cater for all modes:
functional, imperative, logical, temporal, concurrency
(with events and behaviors)



. . . . . .

a natural language description of railway nets

1. A railway net consists of one or more lines and two or
more stations.

2. A railway net consists of rail units.
3. A line is a linear sequence of one or more linear rail units.
4. The rail units of a line must be rail units of the railway

net of the line.
5. A station is a set of one or more rail units.
6. The rail units of a station must be rail units of the railway

net of the station.
7. No two distinct lines and/or stations of a railway net

share rail units.
8. …



. . . . . .

RAISE specification language (RSL)

I supports different specification styles
I algebraic or model-oriented
I applicative or imperative
I sequential or concurrent

I supports modular specifications
I does not cater for “true” concurrency or time



. . . . . .

a mathematical description of railway nets

I sorts
I abstract types—no specified structure
I respectively: network, line, station, track, rail unit,

connector

type N, L, S, Tr, U, C



. . . . . .

example: railway net representation and constraints
1. A railway net consists of one or more lines and two or more
stations.
2. A railway net consists of rail units.

value
1. obs_Ls : N → L-set
1. obs_Ss : N → S-set
2. obs_Us : N → U-set
axiom
1. ∀ n:N • card obs_Ls(n) ≥ 1

1. ∀ n:N • card obs_Ss(n) ≥ 2



. . . . . .

example: linear sequence predicate
17. A linear sequence of (linear) rail units is a non-cyclic
sequence of linear units such that neighbouring units share
connectors.

value
lin_seq: U-set → Bool
lin_seq(us) ≡

∀ u:U • u ∈ us ⇒ is_Linear(u) ∧
∃ q:U* • len q = card us ∧ elems q = us ∧
∀ i:Nat • {i, i+i} ⊆ inds q ⇒ ∃ c:C •

obs_Cs(q(i)) ∩ obs_Cs(q(i+1)) = {c} ∧
len q > 1 ⇒

obs_Cs(q(i)) ∩ obs_Cs(q(len q)) = {}



. . . . . .

example: well-formed route subtype
(A route is a sequence of pairs of units and paths…)
23. …such that the path of a unit/path pair is a possible path
of some state of the unit, and such that “neighbouring”
connectors are identical.

type
R = {| r : R′ • wf_R(r) |}
axiom
wf_R : R′ → Bool
wf_R(r) ≡ len r > 0 ∧
∀ i : Nat • i ∈ inds r ∧ let (u, (c, c′)) = r(i) in

(c, c′) ∈
∪

obs_Ω(u) ∧ i + 1 ∈ inds r ⇒
let (_, (c′′,_)) = r(i + 1) in c′ = c′′ end end



. . . . . .

example: “does a line connect to a station” query
I LS_Connection is a partial function, with guards
I N for railway net, L for line, S for station
I U for rail unit, C for connector
I a station is a set of units; cf. 5. obs_Us : S → U-set
I note overload of obs_Us

value
LS_Connection : N × L × S →̃ Bool
LS_Connection(n, l, s) ≡
∃ u, u′ : U • u ∈ obs_Us(l) ∧ u′ ∈ obs_Us(s) ∧

∃ c : C • obs_Cs(u) ∩ obs_Cs(u′) = {c}
pre l ∈ obs_Ls(n) ∧ s ∈ obs_Ss(n)



. . . . . .

modular RSL

I RSL supports scheme and class syntax
I for structuring, i.e. breaking up a model into smaller

parts
I this opens up reuse possibilities

I like concepts, with types, signatures, and axioms
I a scheme declaration is parameterizable
I a scheme may combine and extend others by adding

types, signatures, and axioms
I Examples: [extend] and [generics]



. . . . . .

modular RSL versus UML

I suitable structuring of an RSL specification may make it
amenable to “UML-ising”

I not everything is expressible in UML, but makes for a
more visual representation

I may provide a useful “view” into certain aspects of the
model



. . . . . .

UML example

I Example [uml]
I 1. A railway net consists of one or more lines and two or

more stations.
I can be modeled with UML composition

I 12. A rail unit is either a linear unit, a switch, a simple
crossover, or a switchable crossover.

I can be modeled with UML generalization; unit is an
abstract class

I 14. A linear rail unit has two distinct connectors, a
switch rail unit has three distinct connectors, crossover
rail units have four distinct connectors, etc.

I can be modeled with UML associations



. . . . . .

dynamism
I a railway net would ideally be a programmed, dynamic

active system
I less ideally (in the real world) it is a dynamic reactive

system
I Bjørner et al primarily regard a railway net as

“programmed”, assuming its managers are in control of
its time-wise behavior

I a managed rail net has state
I e.g. switches and signals have state

I “small” parts of a rail net may be undergoing change
I e.g. new lines and stations being added, old ones

removed or put under repair
I T → N



. . . . . .

states of a rail unit

I either in stable, transition, or reconfiguration state
I it is assumed that durations can be observed
I stable state: determines how a train can move across a

unit
I transition state: between stable states; a transition takes

time
I reconfiguration state: change of (stable) state space

I enable additional paths, or disable previously valid paths
I units may have “dangling” connectors



. . . . . .

formalisms for modeling time

I plain RSL
I Timed RSL (TRSL)
I Duration Calculus (DC)



. . . . . .

plain RSL

I no built-in way to model time
I time can be modeled, but “not in general very

satisfactorily”
I e.g. impossible to specify timeout
I Example [time]



. . . . . .

Timed RSL (TRSL)
I an extension to RSL; only

I type Time, an alias for the non-negative subtype of Real
I a wait construct; takes an expression of type Time

sensor_state := high ; wait δ ; sensor_state := low

I implementing a timeout with wait and the external
choice operator

normal? ; ...

debc
wait t ; abnormal!()



. . . . . .

Duration Calculus (DC)

I well suited for (timed) requirements specifications
I example: any complete period with a high state must

have a duration ` of at least δ

2((dsensor_state = lowe•
dsensor_state = highe•
dsensor_state = lowe) ⇒ ` ≥ δ)



. . . . . .

RSL, TRSL, and DC used together

1. specify un-timed properties in RSL
2. specify requirements for real-time properties in DC
3. add timing information to RSL, with TRSL extensions
4. verify that the TRSL specification satisfies the DC

specification

I satisfaction verification typically through abstract
interpretation

I by defining operational semantics for TRSL wrt DC



. . . . . .

“all things railways”

I timetables (Chapter 3 of Towards a TRain book)
I rolling stock maintenance (Chapter 4)
I rostering (Chapter 5)
I station interlocking (Chapter 6)
I signalling on lines (Chapter 7)
I line direction agreement (Chapter 8)

http://www.railwaydomain.org/PDF/tb.pdf


. . . . . .

timetables
I route and timetable information might be published in

some machine accessible/readable manner ♠
I to allow for implementation of services

I suggested: use OWL (Web Ontology Language), a
semantic markup language for specifying ontologies

I “An ontology formally represents knowledge as a set of
concepts within a domain, and the relationships between
those concepts.” (Wikipedia)

I the Semantic Web idea/movement: publish information
on the web in a structured form

I to enable complex queries, especially in combination
with other information providers

I application-independence matches Bjørner’s thinking ♠

I popular choice: scraping and web service APIs ♠



. . . . . .

rolling stock maintenance
I “Rolling stock comprises all the vehicles that move on a

railway. It usually includes both powered and unpowered
vehicles, for example locomotives, railroad cars, coaches
and wagons.” (Wikipedia)

I maintenance: regular checks, cleaning of carriages,
refuelling, refilling supplies, etc.

I maintenance routing: for types of maintenance not
planned in advance for given rolling stock, modify plans
to route rolling stock to maintenance stations in a timely
manner, according to operating hours elapsed and
kilometers travelled and associated limits

I output: set of changes in rolling stock roster for the next
few days (or all possible sets)



. . . . . .

rostering

I staff rostering: ordering of duties (short-term working
schedules) into base rosters (long-term working
schedules), and assignment of specific staff members to
rosters

I hiring decisions can be made based on such staff
planning

I based on a suitable formal model, from a given schedule,
staff type, depot, and rules, can produce a set of rosters

gen_sross: SCH× StfTp× Dep× eRS → Ros



. . . . . .

station interlocking: recall definition for a route

22. A route is a sequence of pairs of units and paths…
23. …such that the path of a unit/path pair is a possible path
of some state of the unit, and such that “neighbouring”
connectors are identical.



. . . . . .

station interlocking
I routes may (also) be described in terms of units,

switches, signals, and interlocking tables
I “A signal is a mechanical or electrical device erected

beside a railway line to pass information relating to the
state of the line ahead to train/engine drivers.”
(Wikipedia)

I “An interlocking is an arrangement of signal apparatus
that prevents conflicting movements through an
arrangement of tracks such as junctions or crossings.”
(Wikipedia)

I an interlocking table: for all routes of a station, can
present valid interlockings (required setting—if any—for
each switch and signal) as a table

I Example [table]



. . . . . .

station interlocking: modeling formalism
I capture interlocking requirements as Petri nets

I consist of places, transitions, and arcs; places may
contain tokens

I are suitable for modeling and simulating concurrent
behavior of distributed systems

I have nondeterministic execution semantics

I e.g. ensure that a switch can only change state when no
route requiring its current state is active

I by having transitions require a certain number of tokens
to fire, and by having open routes keep tokens away
from switches



. . . . . .

interlude: Statecharts and Live Sequence Charts

I entities in the charts may be physical phenomena,
processes, objects, etc.

I Statecharts (SC) are used to describe the sequences of
states an entity may pass through in response to external
stimuli (internal behavior)

I Live Sequence Charts (LSC) are used to specify sequences
of communication—i.e. the protocol—between two or
more entities (external behavior)

I in combination specify both internal and external behavior



. . . . . .

signalling on lines

I high-speed trains cannot stop within a sighting distance
of a signal—hence automatic signalling

I might model automatic line signalling as Statecharts (as
opposed to Petri nets)

I states for a line (agreed line direction): OpenAB, OpenBA,
Close

I states for a line segment: segFree, segOccupied (i.e.,
occupied by a train)

I signal states: sigOnRed, sigOnGreen, sigOnYellow,
sigOff



. . . . . .

signalling on lines: example Statechart



. . . . . .

line direction agreement

I safety property: two trains are not allowed to move in
opposite directions on any railway line

I Line Direction Agreement System (LDAS) for two
stations to agree on the direction of trains between them

I the externally visible behavior of an LDAS may be
specified using Live Sequence Charts

I entities: Station A (SA), LDAS, and Station B (SB)



. . . . . .

line direction agreement: protocol



. . . . . .

line direction agreement: external behavior

Live Sequence Chart



. . . . . .

line direction agreement: internal behavior
Statechart



. . . . . .

what can be done with a formal model

I queries
I e.g., recall the LS_Connection function to compute

whether a line connects to a station
I e.g., compute possible changes to the rolling stock roster

to meet maintenance requirements
I verification

I e.g., check interlocking and the LDAS logic for
correctness, for safety reasons

I documentation
I particularly diagrammatic constructs might appeal to

readers (Petri Nets, SCs, LSCs, UML diagrams, …)



. . . . . .

further reading

I Univan Ahn and Chris George. C++ Translator for RAISE
Specification Language. Technical Report 220,
UNU-IIST, P.O. Box 3058, Macau, November 2000.

I George and Haxthausen: The Logic of the RAISE
Specification Language.

I doesn’t cover scheme syntax or Timed RSL (TRSL)

I He Hua. A Prettyprinter for the RAISE Specification
Language. Technical Report 150, UNU-IIST, P.O.Box
3058, Macau, December 1998.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.7182
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.7182

