
Domain Engineering

book by Dines Bjørner, presentation by Tero Hasu

February 9, 2012

Contents
1 Dines Bjørner 3

2 a domain 4

3 some domains 4

4 “To understand is all.” 4

5 motivation 5

6 problems 5

7 a domain description 5

8 a domain theory 5

9 a domain model 5

10 domain modelling in engineering 6

11 software engineering process 6

12 domain engineering process 6

13 central to domain engineering 6

14 phenomena vs. concepts 7

15 domain abstractions 7

1

16 higher-level abstractions 8

17 an entity 8

18 a function 8

19 an event 8

20 a behavior 9

21 mereology 9

22 a domain facet 9

23 facet: domain intrinsics 9

24 facet: domain support technology 9

25 facet: domain management and organisation 10

26 facet: domain rules and regulations 10

27 sub-facet: domain script 10

28 facet: human behavior 11

29 from descriptions to prescriptions 11

30 implementation relation 11

31 formal descriptions 11

32 RAISE 11

33 RSL 12

34 RSL types and values 12

35 RSL: applicative functions 12

36 RSL: imperative functions 13

37 model-oriented specification languages 13

2

38 property-oriented specification languages 13

39 event-based languages 13

40 temporal languages 14

41 process-based specification languages 14

42 industrial uses of RAISE 14
42.1 an on-board demonstration application for ESA 14
42.2 Ørsted microsatellite . 15

43 TRain (The Railway Domain) 15

44 draft models of various railway domain aspects 15

45
いたよせほうしき

板寄せ方式 15

46 a cautionary tale 15

47 Bjørner’s formalisation of some of the system 16

48 further reading 16

8 February 2012
INF329 course
Tero Hasu
<tero.hasu at ii.uib.no>

1 Dines Bjørner
• famous in the formal methods community

• current focus areas: (1) domain engineering, (2) requirements engi-
neering, and (3) software design methods

• behind RAISE (Rigorous Approach to Industrial Software Engineer-
ing)

– RAISE Specification Language (RSL) and tools

• homepage

3

http://www2.imm.dtu.dk/~db/

2 a domain
A (somewhat cyclic) definition:

An application (or business) domain: a universe of discourse, an area of
human and societal activity, …

3 some domains
Decreasing from “grand scale” (infrastructure components of society)

• financial services industry

• health care

• transportation

• …

• roads

• …

• buses

• …

• an automobile

• …

• wristwatch firmware ♠

4 “To understand is all.”
• Should study man-made universes (domains) in-and-by-themselves,

just like physicists study the universe.

• In isolation, without concern for requirements. (Bjørner’s novelty)

• Regardless of whether the understanding can be “translated” into en-
gineering tools and techniques.

4

http://www.metacase.com/support/45/manuals/watchtut/we.html

5 motivation
• general domain understanding is not application specific

– only domain specific

• clear and elegant understanding leads to better tools and better engi-
neering

– cf. e.g. λ-calculus and Scheme ♠

6 problems
• apparently not a popular research topic

– “author urges younger scientists to get going”

• with current understanding, “to establish a trustworthy and believable
theory of a [single] domain, it may take 10-15 years”

• not a single formalism will do

7 a domain description
• An informal narrative describing a domain, and a mathematical text

formalising the description.

• Serves as axioms (assumed truths) on top of which can build theorems.

8 a domain theory
A domain description together with lemmas, propositions and theorems that
can be proved about the description – and hence, can be claimed to hold in
the domain.

9 a domain model
Something satisfying a domain description. Either:

• an actual, real domain “out there”; or

• a mathematical structure

5

10 domain modelling in engineering
• aerospace, chemical, civil etc. engineers

– expected to model phenomena of domain in which artifacts placed

• software engineers

– might model own artifacts (compilers, etc.)
– seldom expected to model domain in which software operates

11 software engineering process
• domain engineering

• requirements engineering

• software design

12 domain engineering process
1. identification of and regular interaction with stakeholders

2. domain (knowledge) acquisition

3. domain analysis

4. domain modelling

5. domain verification

6. domain validation

7. domain theory formation

Stages 2 and 3 relate to domain description. Focus here on Stage 4.

13 central to domain engineering
Finding and expressing suitable abstractions.

• By observing phenomena.

6

– at least when there is no existing knowledge: no implementation,
no documentation, no domain experts ♠
* e.g. Copernicus and the work that followed in modelling the

solar system

• From repeated observations and identified patterns can form concepts.
Possibly further generalise to more abstract concepts.

– cf. category theory ♠
* very abstract, but can help identify patterns between con-

cepts

14 phenomena vs. concepts
• Phenomena are manifest.

– Observed by senses or by measuring instruments.

• Concepts are defined.

15 domain abstractions
• entity

• function

– over entities

• event

– involving changes in entities
– may be caused by function invocations

• behavior

– structure of actions and events

7

16 higher-level abstractions
• state

– an entity collection representing state

• action

– application of a state-changing function

17 an entity
• Something we can point to;

• something that manifests; or

• something abstracted from the above.

• Either atomic or composite.

• Has attributes to describe it.

18 a function
Something which when applied to argument values yields entities (consti-
tuting the result value).

f : A×B → C ×D (1)

19 an event
• An instantaneous change of state not directly brought about by ex-

plicitly willed action, but either by “external” forces or implicitly as a
non-intended result of an explicitly willed action.

• e.g.:

– bank account withdrawal with insufficient funds (internal event)
– disruption caused by a bank robbery (external event)

• cf. exceptions ♠

8

20 a behavior
• A structure of actions and events.

• A sequence in the simplest case.

• A set of sequences or (sub)behaviors in more complex cases.

• With interleaved or “true” concurrency of sequences.

• Communication between behaviors by having shared events.

21 mereology
• A theory of part-hood relations.

• How entities are connected and composed.

• cf. entity-relationship model ♠

• cf. information model (FODA) ♠

22 a domain facet
• One among a finite set of “generic” ways of analysing a domain.

• E.g.: intrinsics, support technology, management and organisation,
rules and regulations (and scripts), and human behavior.

23 facet: domain intrinsics
• Phenomena and concepts which are “basic” to any other facets.

• There may be several intrinsics, for different stakeholder perspectives.

24 facet: domain support technology
• Ways and means of implementation.

• E.g., or a rail unit switch for a railway.

• Support technologies typically reflect real-time embeddedness.

9

• Use techniques and languages similar to those for modelling event and
process intensity, with the focus on temporal notions.

25 facet: domain management and organisation
• definition

– management: people who set and enforce rules and strategies
– organisation: structuring of staff levels

• Spans entity, function, event, and behavior “intensities”.

• Typically requires full spectrum of modelling techniques and notations.

26 facet: domain rules and regulations
• definition

– rule: how expected to behave
– regulation: prescription of remedial actions for rule breaking

• Usually expressed in terms of domain entities. Typically involving
properties, axioms, state changes.

• May require various modelling techniques and notations, including
constraint satisfaction notation and fuzzy logic.

27 sub-facet: domain script
• A rule or a regulation that has legally binding power.

• E.g., licenses of digital works. Whether can render, copy, edit, or
sublicense a work.

– (Bjørner’s talk, video, Microsoft, 2008)

• Scripts are like programs.

• Techniques and notations for modelling programming languages apply.

– E.g., denotational semantics, operational semantics.

10

http://research.microsoft.com/apps/video/default.aspx?id=103815

28 facet: human behavior
• “Quality spectrum” for carrying out assigned work.

– diligent, sloppy, delinquent, criminal

• Humans interpret rules and regulations differently and inconsistently.

• Specification languages allowing non-determinism and looseness prefer-
able.

29 from descriptions to prescriptions
Domain descriptions serve as a basis for constructing requirements prescrip-
tions. These specify properties (not implementations) of a machine (hard-
ware and software) implementing them.

30 implementation relation
D,M |= R (2)

MachineM implements the requirementsR in the context of the domain
D.

31 formal descriptions
• no single specification language suffices

– “It seems highly unlikely and appears not to be desirable to obtain
a single, “universal” specification language capable of “equally”
elegantly, suitably abstractly modelling all aspects of a domain.”

32 RAISE
• formal specification language (RSL)

• associated method for software development

– stepwise refinement
– invent and verify paradigm

• supporting tools

11

33 RSL
• supports different specification styles

– algebraic or model-oriented
– applicative or imperative
– sequential or concurrent

• modular specifications

• types, values, variables, channels, axioms

• George and Haxthausen: The Logic of the RAISE Specification Lan-
guage

34 RSL types and values

type Colour
value

black, white : Colour
axiom

black 6= white

35 RSL: applicative functions

value
reverse : Int∗ → Int∗
reverse(l) ≡

if l = 〈〉 then 〈〉
else reverse(tl l) ̂ 〈hd l〉 end

12

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.7182
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.7182

36 RSL: imperative functions

variable v : Int
value

add_to_v : Int → write v Unit
add_to_v(x) ≡ v := v+ x

37 model-oriented specification languages
• e.g., Z and VDM-SL

– Among the most popular formal methods. Both are ISO Stan-
dards.

• Z notation (ISO/IEC 13568) semantics are based on logic and ZF set
theory.

• VDM-SL (ISO/IEC 13817) is used to specify data types and operations
on them.

38 property-oriented specification languages
e.g., CafeOBJ

• For specifying models and verifying their properties.

• Equational logic and theorem proving.

• Logical semantics based on institutions.

39 event-based languages
e.g., Petri nets

• For specifying distributed systems. States and transitions specified.
Non-deterministic execution.

13

http://www.ldl.jaist.ac.jp/cafeobj/

40 temporal languages
e.g., TLA+

• Temporal Logic of Actions

• by Leslie Lamport, the LaTEX creator

• for specifying concurrent and reactive systems

• PlusCal (an algorithm language) is based on it

– an algorithm implemented in PlusCal can be automatically trans-
lated to a TLA+ specification for checking and reasoning (see
Lamport, 2009)

41 process-based specification languages
e.g., CSP

• Communicating Sequential Processes

• a process algebra

• events, primitive processes, algebraic operators

• originally described in Hoare, 1978

42 industrial uses of RAISE
by Terma

42.1 an on-board demonstration application for ESA
• ESA (the European Space Agency)

• “RAISE was used to specify and develop part of a standard on-board
instrument control unit, and the Ada translator was used to produce
a prototype of the code.”

14

http://research.microsoft.com/en-us/um/people/lamport/pubs/pluscal.pdf
http://dl.acm.org/citation.cfm?doid=359576.359585
http://www.terma.com/

42.2 Ørsted microsatellite
• “The spacecraft was assembled and integrated at Terma. Terma has

used the RAISE method for developing its parts of the on-board soft-
ware.”

43 TRain (The Railway Domain)
www.railwaydomain.org

“Because we need a grand challenge project in order to gather enough
momentum to make progress along the road to industrially scalable and
useful, integrated formal techniques.”

44 draft models of various railway domain aspects
Towards a TRain book

45
いたよせほうしき

板寄せ方式

• Itayose method is used for stock price formulation at TSE.

– opening and closing prices, etc.

• Domain rules. Probably of interest for those developing trading appli-
cations.

46 a cautionary tale
• “An employee at Mizuho Securities, intending to sell one share at

610,000 yen, mistakenly typed an order to sell 610,000 shares at 1
yen.”

– Tetsuo Tamai: Social impact of information system failures

• Caused a “highly exceptional situation”.

– seven conditions holding at the same time

• Previously uncovered flaw in TSE Stock Order System meant order
went through, and couldn’t be cancelled. → 40,000,000,000¥ loss

15

http://www.railwaydomain.org/
http://www.railwaydomain.org/PDF/tb.pdf
http://doi.ieeecomputersociety.org/10.1109/MC.2009.199

47 Bjørner’s formalisation of some of the system
Dines Bjørner: The TSE Trading Rules (2010)

48 further reading
• Bjørner’s Software Engineering trilogy (Springer, 2006)

– for more details

• Henry N. Pollack: Uncertain Science… Uncertain World (2003) ♠

– on the difficulty of modelling the real world

16

http://www2.imm.dtu.dk/~db/todai/tse-2.pdf

	Dines Bjørner
	a domain
	some domains
	``To understand is all.''
	motivation
	problems
	a domain description
	a domain theory
	a domain model
	domain modelling in engineering
	software engineering process
	domain engineering process
	central to domain engineering
	phenomena vs. concepts
	domain abstractions
	higher-level abstractions
	an entity
	a function
	an event
	a behavior
	mereology
	a domain facet
	facet: domain intrinsics
	facet: domain support technology
	facet: domain management and organisation
	facet: domain rules and regulations
	sub-facet: domain script
	facet: human behavior
	from descriptions to prescriptions
	implementation relation
	formal descriptions
	RAISE
	RSL
	RSL types and values
	RSL: applicative functions
	RSL: imperative functions
	model-oriented specification languages
	property-oriented specification languages
	event-based languages
	temporal languages
	process-based specification languages
	industrial uses of RAISE
	an on-board demonstration application for ESA
	Ørsted microsatellite

	TRain (The Railway Domain)
	draft models of various railway domain aspects
	10.950.4height.7depthwidth板寄せ方式heightdepth.3widthいたよせほうしき-to 0-
	a cautionary tale
	Bjørner's formalisation of some of the system
	further reading

