
Programming Cuda and OpenCL 
A Case Study Using Modern C++ 

Libraries 



Frameworks 

• Cuda 

• NVIDIA 

• Large set of libraries 

• Compute kernels compiled to PTX (low level) 

• OpenCL 

• Cross platform 

• API - Boilerplate code 

• Compute kernels compiled to C-like sources (higher level) 

 

 

 



Libraries 

• (C)MTL4 (The Matrix Template Library) 

• Linear algebra library 

• DSL embedded in c++ 

• High level, compile time transformations 

• Cuda 

• VexCL (Vector Expression Template Library) 

• Convenient vector and matrix 

• OpenCL 

• Reduce boilerplate code 

• ViennaCL (The Vienna Computing Library) 

• Linear Algebra 

• Cuda and OpenCL (only OpenCL in article) 

• Thrust 

• Resembles c++ STL 

• Reference point 

 



Ordinary differential equation 

• Derivatives with respect to only one variable 

• With PDE, surface change over time, ODE particle moving through 
time 

• Eulers method: 

 



Odeint 

• C++ library for solving ODE’s numerically 

• Use odeint solving cababilities with gpgpu libraries 

• State type, algebra, operation. 

 

 



Odeint – Stepper (runge-kutta) 



Odeint - integrate 



Lorenz system 



Lorenz - Thrust 



Lorenz - CMTL4 

150 % overhead with a 3-component vector with 4K entries compared to one vector of size 12K 



Lorenz - VexCL 

1 Kernel call instead of 3 -> 25% performance gain 

   (Large systems) 



ViennaCL 

Kernel is created once and buffered 



Results 

 


