Formal software engineering for computational modelling

Formal software engineering

- Focus on the formal, mathematical side of software
- Ex. Algebra
- Three problems
 - What are the concepts that have to be used for the construction of software in this domain
 - What is a good programming notation for these concepts
 - How can they be implemented as software code
- Domain specific language (DSL)
- Domain specific embedded language (DSEL)

Software process model for developing DSEL

- Establish an appropriate DSL
- Validate the suggested DSL
 - Usefulness
 - Implementability
- Decide the architecture of the software library
- Design and implement a prototype
- Maintain the library

Establish an appropriate DSL

Algebraic specification

• Ring

```
(a+b)+c = a+(b+c),
                                                                   (1)
+ : R, R \to R,
                         a+b = b+a,
                                                                   (2)
-: R, R \to R,
                         (a*b)*c = a*(b*c),
                                                                   (3)
* : R, R \rightarrow R,
                        (a+b)-b = a,
                                                                   (4)
0: \to R
                            0+a = a,
                                                                   (5)
1 : \rightarrow R.
                            1*a = a,
                                                                   (6)
                                                                   (7)
                             a * 1 = a
                        (a+b)*c = (a*c) + (b*c),
                                                                   (8)
```

a*(b+c) = (a*b) + (a*c).

(9)

Validate the suggested DSL

- Usefulness
 - Searching for oil
- Implementability
 - Discretization

$$ho rac{\partial^2 ec{u}}{\partial t^2} =
abla \cdot \sigma + ec{f}(t),$$
 $\sigma = \Lambda(e),$
 $e = \mathcal{L}_{ec{u}}(g).$
Elastic wave equation

Software architecture

- How to arrange different concepts
- Mesh (S or P)
- Scalar fields (Discretization)
- Tensors (coordinate system)

Results

Configuration	seismic	ultrasonic in borehole
Mesh	D	D
	S or P	S or P
Tn	D	D
	S	S
Bn	D	D
	S or U	U
Tensor	SI or TI or TA	UI or UTI
Seismod	SE or PE	SE or PE

Module	D	S/SI/SE	Р	TI	TA	U/UI	UTI	PE
Mesh	2000	2000	2700					
Tn	1700	1600						
Bn	1500	1900				2100		
Tensor		1000		1000	1800	1000	1100	1200
Seismod		600						700

Total: 12300 5500 4200 1900