Coordinate-free numerics: all your variation points for free?

Variation points

- Design for change/easily accommodated to change
- Different PDEs
- Discretisations
 - Numerical methods
 - Time stepping technique
 - Underlying grid
- Computational simplifications
 - Dimensions
 - Coordinate system
 - Symmetries
 - Problem size
 - Sequential vs parallel

Coordinate free numerics

Algebraic specifications

- Core abstractions
 - Scalar field
 - Tensor field

Scalar-field level

- Boundary beetween continous level and discrete level
- Coordinate free
- Value at every point in space
- Operators:
 - (a + b)[p] = a[p] + b[p]
 - Partial differential operator (Rate of change along a direction)
 - Integration

Scalar-field level

- Discretisations (FDM, FEM, FVM)
- Example FDM
 - Data values sampled at regular intervals along each axis
 - Pointwise operations performed elementwise (a+b)[i,j] = a[i,j] + b[i,j]
 - Partial derivatives use neighbouring data.
- Problems with physical symmetries:
 - Represent 3D as 2D
 - 1000³ -> 1000², Saving a factor of 1000

Tensor level

- Boundary between coordinate-free and coordinate-aware level
- Different ranks
- Built up of scalar-fields, vector-fields and covector-fields
- Used in formulation of coordinate-free PDE solvers
- Coordinate free operators
 - Tensor product: K1 and K2 rank -> K1 x K2
 - Tensors can be added together if same components and rank
 - Differentiation operations: Divergence, Gradient and Covariant derivatives

$$\nabla \cdot \mathbf{F}$$
 ∇f $\nabla \mathbf{v} f$

Integration only on scalar tensor-fields

Tensor level

- Basic data structure for a tensor-field is a multi-indexed collection of scalar-fields together with vector/covector composition info
- Coordinate system coded into tensor implementation
- Linear operators are collective operators on component scalar-fields
- Derivation is partial derivation on component scalar-fields

PDE solver level

$$\rho \frac{\partial^2 \vec{u}}{\partial t^2} = \nabla \cdot \sigma + \vec{f}(t),$$
$$\sigma = \Lambda(e),$$
$$e = \mathcal{L}_{\vec{u}}(g).$$

Elastic wave equation

$$\begin{split} \rho_{11} \frac{\partial^2 \vec{u}}{\partial t^2} + \rho_{12} \frac{\partial^2 \vec{U}}{\partial t^2} &= \nabla \cdot \sigma + \vec{f}(t) + b \left(\frac{\partial \vec{U}}{\partial t} - \frac{\partial \vec{u}}{\partial t} \right) \\ \rho_{12} \frac{\partial^2 \vec{u}}{\partial t^2} + \rho_{22} \frac{\partial^2 \vec{U}}{\partial t^2} &= \nabla s + \vec{f}(t) - b \left(\frac{\partial \vec{U}}{\partial t} - \frac{\partial \vec{u}}{\partial t} \right), \\ \sigma &= \Lambda(e) + Q(\epsilon), \\ s &= M(e) + R(\epsilon), \\ e &= \mathcal{L}_{\vec{u}}(g), \\ \epsilon &= \nabla \cdot \vec{U}. \end{split}$$

Poro-elastic wave equation

- Can reprogram one to the other by changing 600-700 lines of code
- Full program 13500 lines

Mix and match

- Mesh storing discrete data in arrays
- Tn Scalar field
- Bn Boundary handling
- Seismod Time stepping seismic equation solver