
10.3 A module specification language 199

Example 10.6

initial mspec sorts set, import el
opns ; :! set

Insert: set� el! set
vars e; e1; e2: el
axioms Insert(Insert(s; e); e) = Insert(s; e)

Insert(Insert(s; e1); e2) = Insert(Insert(s; e2); e1)

endmspec

The specification is similar to that of Example 7.6 but the sortel is interpreted “loosely”. 2

As indicated above, a loose module specification((�i;�e);�) may be viewed as the
loose specification(�e;�). This does not hold for initial module specifications as illustrated
by the above example: in contrast with the initial specification(�e;�), the initial module
specification((�i;�e);�) does not “collapse” in the presence of sorts such asel, the term
languageT�e;el of which is empty.

The definition of constructive module specifications is left as Exercise 10.2-2. As an
important advantage the modules they define are guaranteed to be both persistent and con-
sistent. In fact, by a generalization of Theorem 8.11 a constructive module specification also
constitutes a loose module specification and an initial module specification; as a result it is
persistent and consistent. Alternatively, while a constructive specification may be viewed as a
(functional) program, a constructive module specification behaves likea procedure; clearly, a
procedure is “persistent” and “consistent”.

10.3 A module specification language

To illustrate the concepts of a module specification language an elementary language called
MSL is introduced. It contains the specification languageSL introduced in Chapter 9 as a
sublanguage when one views a specification as a module specification with an empty import
signature.

Again, the following definition associates with each module specificationmspa module
signatureS(msp). The constructs are straightforward generalizations of those of the specifi-
cation languageSLexcept for the additional construct “�”.
Definition 10.7 (Abstract syntax of the module specification language MSL)The set ofmod-
ule specifications mspof the languageMSLand their module signaturesS(msp) are defined
inductively:

(i) any atomic module specificationatm is a module specification;S(atm) is the module
signature of this atomic module specification;

(ii) if msp1 andmsp2 are module specifications withS(msp1) = (�1i;�1e), S(msp2) =(�2i;�2e) and if:� each sort and each operation of�1e \�2i is inherited inS(msp1),

200 10 Modularization and parameterization� each sort and each operation of�2e \ �1i is inherited inS(msp2),
then: (msp1 + msp2)
is a module specification withS(msp1 + msp2) = (�1i [�2i;�1e [�2e) (cf. Figure
10.2(a));

(iii) if msp1 and msp2 are module specifications withS(msp1) = (�i;�),S(msp2) = (�;�e), then:(msp2 �msp1)
is a module specification withS(msp2 �msp1) = (�i;�e) (cf. Figure 10.2(b));

(iv) if msp is a module specification withS(msp) = (�i;�e), if � : �e �! �0 is a
renaming such that�(so) 62 �i for each sort or operationsowith �(so) 6= so, then:(rename mspby �)
is a module specification withS(rename mspby �) = (�i; �(�e));

(v) to (x) the constructsforget, extend, model, generated, freely generated, freely
extend and quotient are defined similarly to (iv) (cf. Definition 9.1(iv) to (vii) and
Definition 9.20(viii) and (ix)). 2

......................................
......................................

......................................

......................................
.............................

.............................

(a) Illustration ofmsp1 +msp2�1i [�2i�1i�1e �1e [�2e�2e�2i
�e�e��i�i

msp1 msp2 msp2

msp1

(b) Illustration ofmsp2 � msp1

Figure 10.2.Illustration of the syntax of the constructs “+” and “�” of the module specifica-
tion languageMSL

10.3 A module specification language 201

Informally, the constructs of (iv) to (x) are those of the specification languageSL being
understood that they “act” on the export signature only. The syntactical constraints of the
constructs “+” and rename in this definition avoid “name clashes” that would turn sorts or
operations into inherited ones and thus harm the persistency. More precisely, the constraints
of “+” express the fact that any inherited sort or operation ofS(msp1 + msp2) was already
inherited inS(msp1) or inS(msp2). The constraints ofrenameexpress the fact that the “new”
exported sorts and operations are different from the imported ones.

As announced in Section 10.2 the language constructsrename and forget allow one to
obtain module specifications, the import signature of which is not a subsignature of the export
signature. In fact, it is sufficient to rename or forget inherited sorts oroperations.

A concrete syntax may be defined as usual.
The semantics of the different constructs ofMSLis similar to those ofSLexcept, of course,

for the new construct “�”. This construct puts together module specificationsmsp1 andmsp2,
wheremsp1 constitutes a “refinement” (in the sense of Example 1.7) ofmsp2. This construct
allows one to eventually obtain a module specification with an empty import signature, i.e. a
genuine specification.

Definition 10.8 (Semantics of the module specification language MSL)
The meaningM(msp) of a module specificationmsp is a module (in the sense of Defini-
tion 10.2) and is defined inductively according to Definition 10.7:

(i) the meaningM(atm) of an atomic module specificationatm is the module defined by
this atomic module specification according to Section 10.2;

(ii) if S(msp1) = (�1i;�1e) andS(msp2) = (�2i;�2e), then:M(msp1 + msp2)(A)= fB 2 Alg(�1e [�2e) j (B j�1e) 2 M(msp1)(A j �1i);(B j�2e) 2 M(msp2)(A j�2i) g

for all A 2 Alg(�1i [�2i);
(iii) if S(msp1) = (�i;�) andS(msp2) = (�;�e), then:M(msp2 �msp1)(A) = [B2M(msp1)(A)M(msp2)(B)

for all A 2 Alg(�i);
(iv) if S(msp) = (�i;�e), then:M(rename mspby �)(A)= fB 2 Alg(�(�e)) j (B j �) 2 M(msp)(A) g

for all A 2 Alg(�i) (remember that� : �e �! �0 is bijective);

202 10 Modularization and parameterization

(v) to (x) similar to (iv) (cf. Definition 9.4(iv) to (vii) and Definition 9.20(viii) and (ix)).2
Fact 10.9 For any module specificationmspwith S(msp) = (�i;�e):

(i) M(msp) maps�i-algebras into classes of�e-algebras;

(ii) for eachA 2 Alg(�i) the valueM(msp)(A) is an abstract data type.

Proof: Left as Exercise 10.3-1. 2

Fact 10.10

(i) Each construct of the specification languageMSL exceptfreely extendandquotient
preserves persistency.

(ii) The constructs�, rename, forget, extend, freely extendandquotient preserve consis-
tency; the construct+ preserves consistency when applied to persistent specifications.

Proof: Left as Exercise 10.3-2. 2

Note that the proof of Fact 10.10(i) draws heavily on the syntax ofMSL.
Adding an environment to the languageMSLmay be performed along the lines of Section

9.10. The resulting language is callede-MSL(see Exercise 10.3-3).

Example 10.11The following example is a module specification of the specification lan-
guagee-MSL. In this examplemspstands for the atomic module specification of Example
10.4.

LIST is msp;
BOOL is loose mspec sorts freely generatedbool

opns constrTrue:! bool
constr False:! bool

endmspec;
EL is loose mspec sortsel endmspec;
LIST� (BOOL+ EL)

The import signature of this module specification is empty. Hence it maybe viewed as a
specification with the signature:(fbool; el; listg; fTrue;False; [];Add; : : :g)

defining lists of “elements”. 2

To simplify the writing of module specifications it is possible tointroduce “sugared no-
tation” and/or “macros”. As an example, letmsp1 andmsp2 be module specifications withS(msp1) = (�1i;�1e), S(msp2) = (�2i;�2e). The syntax ofMSL allows one to write
msp2 � msp1 only if �1e = �2i. This notation is generalized for the case�1e � �2i by
viewing:

msp2 �msp1

10.4 A parameterized specification language 203

as a shorthand for:

msp2 � (1�2i��1e + msp1):

In this expression1� denotes the module specification defined by:S(1�) = (�;�);M(1�)(A) = fB 2 Alg(�) j A ' B g for eachA 2 Alg(�)

for any signature�.
Further comments on module specification languages may be found in Sections10.5 and

10.6�.
10.4 A parameterized specification language

The notion of parameterization to be introduced is an elementary one. Alternative notions will
be briefly discussed in Section 10.6�. It will be indicated how each of them may be simulated
by the elementary notion introduced here.

Informally, a parameter is a distinguished sort or operation of the import signature of a
module specification. In the module specification of Example 10.4 the imported sortel is
predestined as a parameter in contrast with the imported sortbool. The reason is that the sort
el has to do with reusability while the sortboolhas to do with modular design. More precisely,
the intended meaning of the sortbool is fixed while the meaning of the sortel is intentionally
left pending. In fact, it makes sense to use the module specification with different meanings
for el, for instance natural numbers, strings or lists of lists of natural numbers, but it is not
sensible to use the module with a meaning forboolother than the intended one. By the way,
the difference between imported sorts or operations that are parameters and those that are
not is similar to that between parameters and global variables in the procedurebody of an
imperative language.

As a result, imported sorts and operations that are parameters and those that are not do not
differ by their semantics but merely differ by their intended use. Providing a module speci-
fication language with a parameter mechanism may therefore be reduced to the introduction
of two additional language constructs calledimport rename andimport model respectively.
The first of these constructs allows parameter passing by renaming the (imported sorts and op-
erations that constitute the) formal parameters into their actual values. In the case of Example
10.4 it allows one to rename the sortel into, for instance,nat or string. The second construct
allows one to put semantic constraints on the parameters. For instance, a module specification
of “ordered lists” that is parameterized in the sort of its elements requires that the carriers of
this sort satisfy the axioms of a partial order — as will be illustratedin Example 10.16.

The following definition introduces a parameterized specification language called PSL.
This language is identical with the module specification languageMSL except for the two
additional language constructs mentioned above.

The definition of the constructimport rename is slightly more complex than the above
comments may suggest. While the construct introduces “new” names for thesorts and op-
erations of the import signature it generally modifies the export signature too. In fact, the
inherited sorts and operations in the export signature have to be renamed accordingly. The

204 10 Modularization and parameterization

same holds for the inherited sorts occurring in the arities of the exported operations. For this
reason the signature morphism is defined as a signature morphism� : �i [�e �! �0 rather
than� : �i �! �0.
Definition 10.12 (Abstract syntax of the parameterized specification language PSL)The set
of parameterized specifications pspof the languagePSLand their module signaturesS(psp)

are defined inductively:

(i) to (x) as Definition 10.7(i) to (x) but with “parameterized specification” instead of
“module specification”;

(xi) if pspis a parameterized specification with:S(psp) = (�i;�e) and if� : �i [�e �!�0 is a surjective signature morphism satisfying the following four conditions:

(a) for each sorts from�en�i: �(s) = s,
(b) for each operation! from�en�i: �(!) and! have the same operation name,

(c) for any two different sorts or operationsso1e and so2e from �e: �(so1e) =�(so2e) implies that bothso1e andso2e are inherited,

(d) for any sort or operationsoi from �i andsoe from �e: �(soi) = �(soe) implies
thatsoe is inherited,

then: (import rename pspby �)

is a parameterized specification with:S(import rename pspby �) = (�(�i); �(�e));

(xii) if pspis a parameterized specification withS(psp) = (�i;�e) and if� � L(�i) is a
set of formulas for some logicL, then:(pspimport model �)

is a parameterized specification with:S(pspimport model �) = S(psp): 2

Informally, the conditions (xi)(a) and (xi)(b) express the fact that� constitutes a renaming
of the import signature. More precisely, the condition (xi)(a) expresses the fact that� renames
sorts from�e only if they are inherited. The condition (xi)(b) expresses the sameproperty
for operations or, at least, for their names; the condition does not extend to their arities: if a
non-inherited operation! from�e contains imported sorts in its arity,! and�(!) may differ
from each other in their arities. The conditions (xi)(c) and (xi)(d) avoid “name clashes”. More
precisely, the condition (xi)(c) expresses the fact that� is injective on the non-inherited sorts
and operations from�e. The condition (xi)(d) expresses the fact that� may identify a sort or

10.4 A parameterized specification language 205

operation from�i and a sort or operation from�e only if the latter is inherited. Note that the
signature morphism� is not necessarily bijective and hence may fail to constitute a renaming
in the sense of Definition 4.1. This is sensible because it must be possible that two different
formal parameters get the same actual value (see Example 10.15(ii)).

Example 10.13The example illustrates respectively the conditions (a), (c) and (d) of Def-
inition 10.12(xi). Let�i = (fa; bg; ;), �e = (fa; cg; ;). The signature morphism� is
inappropriate if one of the following conditions holds:

(i) �(c) = d;

(ii) �(a) = �(c);
(iii) �(b) = �(c). 2

A concrete syntax forPSLmay be chosen to be identical with that forMSLbut withmspec
replaced bypspec. When using the concrete syntax of the constructimport rename one has
of course to check that the conditions (xi)(a) to (xi)(d) of Definition10.12 hold.

In the following definition�j�i and�j�e denote the restriction of the function� to the
signatures�i and�e respectively (according to Section 2.1.3). This notation should not be
confused with the notationB j : : : for reducts.

Definition 10.14 (Semantics of the parameterized specification language PSL)The meaningM(psp) of a parameterized specificationpspis a module (in the sense of Definition 10.2) and
is inductively defined according to Definition 10.12:

(i) to (x) as in Definition 10.8 but with “parameterized specification” insteadof “module
specification”;

(xi) if S(psp) = (�i;�e), then:M(import rename pspby �)(A)= fB 2 Alg(�(�e)) j (B j (�j�e)) 2M(psp)(A j (�j�i)) g
for eachA 2 Alg(�(�i));

(xii) if S(psp) = (�i;�e), then:M(pspimport model �)(A) = � M(psp)(A) if A j= �;; otherwise

for eachA 2 Alg(�i). 2
The meaning of the constructimport rename is “as expected”. In fact, first the renaming

is “undone” by building the(�j�i)-reduct ofA, nextM(psp) is applied and finally the result
is “renamed” according to the signature morphism�j�e. The effect of the constructimport
model is to “eliminate” arguments that are not a model of�.

206 10 Modularization and parameterization

Again, for any parameterized specificationpspthe module signature ofM(psp) isS(psp).
Moreover,M(psp)maps algebras into abstract data types (see Exercise 10.4-1). The construct
import rename preserves persistency; it also preserves consistency when applied to a persis-
tent specification. The constructimport model preserves persistency but not consistency (see
Exercise 10.4-2).

As the parameterized specification languagePSL is the module specification language
MSLaugmented by two language constructs, any module specification also constitutes a pa-
rameterized specification. As, moreover, a specification may be viewed as a modulespecifica-
tion with an empty import signature, the notion of a parameterized specification encompasses
the notion of a specification too.

Again, the addition of an environment leading to a languagee-PSLpresents no problem.
From now on all examples are written ine-PSL.

Example 10.15

(i) An example of a declaration of a parameterized specification is:

PAIR is loose pspec sorts freely generatedpair, import el1,
import el2

opns constr[;] : el1 � el2 ! pair
First : pair ! el1

Second: pair ! el2

vars e1: el1, e2: el2

axiomsFirst([e1; e2]) = e1

Second([e1; e2]) = e2

endpspec

(ii) An “instantiation” of this parameterized specification is, for instance:

import rename PAIRby sortsel1, el2 as sortsnat, nat:

More precisely, the parameterized specification:

PAIR is loose pspec sorts. . . endpspec;
import rename PAIRby sortsel1, el2 as sortsnat, nat

defines a(�i;�e)-module with:�i = (fnatg; ;);�e = (fnat; pairg; f[;] : nat� nat! pair;First : pair ! nat;

Second: pair ! natg):

The example shows that import renaming does not have to be injective.

(iii) Similarly, the parameterized specification:

10.4 A parameterized specification language 207

PAIRis loose pspec sorts . . . endpspec;
NAT is loose pspec sorts freely generatednat

opns constr0 :! nat
constr Succ: nat! nat

endpspec;
(import rename PAIRby sortsel1, el2 as sortsnat, nat) � NAT

defines a module with empty import signature, i.e. a specification (note that “�” is
the generalized construct introduced at the end of Section 10.3). This specification
constitutes a specification of pairs of natural numbers. Its signature is(S;
) with:S = fnat; pairg
 = f0 :! nat;Succ: nat! nat; [;] : nat� nat! pair;

First : pair ! nat; Second: pair ! natg: 2

The notation for an instantiation of a parameterized specification is clumsy,in particular
because it requires repetition of the “formal parameters”. This drawback may beavoided by
adopting the following “sugared” notation copied from that for procedures of programming
languages. According to this notation the parameters are written between brackets after the
name of the parameterized specification; this rule applies to the formal parameters at the
declaration as well as to the actual parameters at each instantiation. This notationhas the
additional advantage that a declaration explicitly distinguishes between imported sorts and
operations that are parameters and those that are not. A precise definition ofthis notation is
dispensed with. Instead it is illustrated by means of two examples.

Example 10.16The specification of Example 10.15(iii) may now be written:

PAIR(sortsel1; el2) is . . . endpspec;
NAT is . . .endpspec;
PAIR(sortsnat; nat)�NAT 2

The following example illustrates the use of the constructimport model to express pa-
rameter constraints. Informally,ORDERED-LISTSconstitutes a parameterized specification
of ordered lists of elements. A relation “v” on the elements is provided as a formal parame-
ter. The axioms of the constructimport model express the fact that this relation is a partial
order. The example contains an instantiation of this parameterized specification yielding a
specification of ordered lists of natural numbers.

Example 10.17

ORDERED-LISTS(sortsel, opns v : el� el! bool) is
((loose pspec sorts freely generatedlist, import bool, import el

opns import True:! bool
import False:! bool
import v : el� el! bool

208 10 Modularization and parameterization

constr [] :! list
constr Add: el� list ! list
Is-ordered: list ! bool

vars e; e1; e2: el, l: list
axiomsIs-ordered([]) = True

Is-ordered(Add(e; [])) = True(e1 v e2) = True�
Is-ordered(Add(e1;Add(e2; l))) =
Is-ordered(Add(e2; l))(e1 v e2) = False�

Is-ordered(Add(e1;Add(e2; l))) = False
endpspec)
import model

vars e; e1; e2; e3: el
axioms(e v e) = True(e1 v e2) = True^ (e2 v e3) = True�(e1 v e3) = True(e1 v e2) = True^ (e2 v e1) = True� e1 = e2);

NATBOOLis (loose pspec sorts freely generatedbool, freely generatednat
opns constrTrue:! bool

constr False:! bool
constr 0 :! nat
constr Succ: nat! nat� : nat� nat! bool

vars m;n: nat
axioms(0 � n) = True(Succ(m) � 0) = False(Succ(m) � Succ(n)) = (m � n)

endpspec);
ORDERED-LISTS(sortsnat, opns� : nat� nat! bool)� NATBOOL

Clearly, the module defined byORDERED-LISTSis persistent and monomorphic but not
consistent. Hence the specificationORDERED-LISTS(: : :)�NATBOOL makes sense only if
the module defined byORDERED-LISTSis consistent for each algebra of the (monomorphic)
abstract data type defined byNATBOOL. This is the case because “�” satisfies the axioms of
“v”. A proof of this property therefore constitutes an important check of the adequacy of the
specification. 2

10.5 Comments

The remarks on flattening, properties and proofs of Sections 9.5 and 9.6 carry over to the
specification languagePSL. Clearly, rapid prototyping is not possible as long as the meaning
of the imported sorts and operations and the “actual values” of the parametersare not fixed.

10.6� Alternative parameterization mechanisms 209

Two particular properties a user may be interested in are the persistency andconsistency
of the module defined by a parameterized specification. As already indicated, atomic loose
specifications are persistent but not necessarily consistent; atomic initial specifications are
consistent but not necessarily persistent; finally, atomic constructivespecifications are both
persistent and consistent. The language constructs introduced that may alter persistency are
freely extendandquotient; those that may alter consistency are+, model, generated, freely
generated, import rename andimport model. Hence these constructs have to be used with
caution. From this point of view constructive specifications have a definitive advantage over
initial and loose specifications. To check the persistency of a specification built from construc-
tive specifications it is sufficient to prove that each use of the constructsfreely extendand
quotient preserves the persistency. A similar remark holds for consistency beingunderstood
that the constructs+ and import renamehave to be checked only when they are applied to
specifications that are not persistent.

From the simple examples given above it may be clear that the design of “real-life” spec-
ifications with a parameterized specification language such ase-PSLis tedious. On the one
hand it is time-consuming to check the different syntactic constraints ofthe language con-
structs and it may be difficult to keep track of the signatures. On the otherhand it is often
necessary to prove persistency or consistency, or it is desirable to prove some other properties.
In practice the use of a computer system supporting the design of non-trivial specifications is
therefore indispensable; it should perform syntactic checks and update signatures; moreover
it should contain an automatic or interactive theorem prover.

10.6� Alternative parameterization mechanisms

The parameter mechanism ofPSL is said to belong to therenaming approachbecause its
parameter passing is based on renaming. Other parameter mechanisms of the same approach
have been described in the literature. Most of them differ from the parametermechanism of
PSLby renaming complete signatures rather than single sorts and operations.

Being based on renaming the renaming approach has a syntactic flavour. Two other ap-
proaches are now roughly sketched. Both have a semantic rather than a syntactic flavour.
Nevertheless, all three approaches are essentially equivalent to each other — at leastin the
framework of specification presented in this book.

In the�-calculus approacha parameter consists of a complete specification. More pre-
cisely, a parameterized specification is of the form:�X : par:sp (10.1)

wherepar andspare specifications of a specification language with environment — such as
the specification languagee-PSL— and whereX is a name. It is understood thatX may occur
in the specificationsp. Informally, the notation “X : par” indicates that actual parameters have
to be of “type”par, i.e. have to belong to the abstract data type defined bypar. Somewhat
more precisely, (10.1) is equivalent to the following parameterized specification ofe-PSL:� the environment is extended by the declarationX is : : :

210 10 Modularization and parameterization

where : : : stands for the loose atomic module specification((S(par);S(par));Th(M(par))); informally, this module specification leaves the signatureS(par) un-
changed but adds the formulas of the theory of the abstract data type definedby par;� sp is turned into a parameterized specification ofe-PSLby defining the sorts and oper-
ations ofS(par) as imported sorts and operations or, more precisely, as parameters.

Alternatively, one may define: : : to stand for the loose atomic module specification((S(par);S(par)); ;) and addTh(M(par)) to the parameterized specification obtained from
spwith the help of the constructimport model.

The following approach is called thepushout approachbecause the parameter passing
mechanism is defined as a pushout in an appropriate category. The approach was first de-
scribed in [EL78]. It makes use of the notion of a specification morphism (introduced in
Exercise 9.1-9). To simplify the description of the approach it is assumed that all specifi-
cations are atomic ones or, alternatively, have been turned into atomic onesby the meaning
functionN of Section 9.9. A parameterized specification is now a specification morphism:� : par ,! sp(par)
that is an inclusion. The specificationpar = (�par ;�par) constitutes the formal parameter;
the specificationsp(par) = (�sp(par);�sp(par)) constitutes the parameterized specification
proper. The notationsp(par) is intended to suggest thatpar is “part of” sp(par) according to
the inclusion�. Note that�par � �sp(par) and��par � ��sp(par) because� is a specification
morphism. Parameter passing is defined as a specification morphism:� : par�! act

whereact = (�act ;�act) is the specification constituting the actual parameter. Note again
that (�(�par))� � ��act because� is a specification morphism; this enforces the actual pa-
rameteract to “respect” the requirements�par imposed onpar. Finally, the effect of param-
eter passing is a specificationsp(act) that is characterized as the pushout object of� and�

in the category of specifications and specification morphisms (see Figure 10.3). This pushout
object is unique up to isomorphism and its existence is granted in theusual category of speci-
fications and specification morphisms. Roughly speaking, the pushout of � and� constitutes
the “minimal completion” to a commutative square. It yields the specification morphism�0 : sp(par) �! sp(act) describing the relationship between the specifications before and
after replacingpar by act, and the specification morphism�0 : act ,! sp(act) describing the
embedding of the actual parameter into the resulting specification.

The semantic counterpart of the pushout construction is given by the amalgamation lemma
([EM85], p. 217). The classM(sp(act)) consists of the�sp(act)-algebrasC for which(C j �0) = A and(C j �0) = B with A 2 M(act), B 2 M(sp(par)) and(A j �) = (B j �).
Informally, (A j �) = (B j �) requires that the parameter parts ofA andB coincide;C is the
algebraB with thepar part ofB replaced byA. A similar property holds for the�sp(act)-
homomorphisms.

It is not difficult to simulate the pushout approach in the specificationlanguagee-PSL
when the parameter passing� is surjective. The renaming effect of parameter passing may

Exercises 211

..
......................................

......................................
................................

................................

par

act

sp(par)

sp(act)

�0� �
�0

Figure 10.3. The specificationsp(act) is the pushout object of the specification morphisms� and�

then be simulated by theimport rename construct together with the (surjective) signature
morphism:�0 : �sp(par) �! �sp(act):

Essentially, this signature morphism performs the renaming of theimport signature�par into�act and of the inherited sorts and operations in the export signature�sp(par). The condition
that the different morphisms are specification morphisms may be taken care of by the construct
import model — as in the case of the (simulation of the)�-approach. When the parameter
passing� is not surjective the sorts and operations of�act ��(�par) have to be added to the
result of theimport rename construct as inherited sorts and operations. This may require a
preliminary renaming to avoid “name clashes”. Clearly, one of the advantages of the pushout
approach with respect to its simulation ine-PSLis that all renamings are performed implicitly.

Exercises

10.2-1: (i) Letmsp = ((�i;�e);�) be a loose module specification. LetA1; A2 2 Alg(�i).
Show thatM(msp)(A1) =M(msp)(A2), if A1 ' A2.

(ii) As (i) for an initial module specification. (Hint: Exercise 9.2-1.)

10.2-2: (i) Define the notion of a constructive module specification and illustrate it by an example.

(ii) Show that — in contrast with loose module specifications— constructive module spec-
ifications cannot be viewed as constructive specifications (see the comment following
Example 10.4).

10.3-1: Prove Fact 10.9.

10.3-2: Prove Fact 10.10.

10.3-3: Add an environment to the specification languageMSL. (Hint: Follow closely the definitions
of Section 9.10.)

10.3-4: (i) The generalized notationmsp2 �msp1 introduced at the end of Section 10.3 was defined
as a shorthand. Define this notation “directly” by rephrasing case (iii) of Definitions
10.7 and 10.8.

212 10 Modularization and parameterization

(ii) Show that the construct “�” introduced in (i) preserves persistency.

10.4-1: Prove that Fact 10.9 also holds for parameterized specifications.

10.4-2: (i) Prove that the constructimport rename of the parameterized specification language
PSLpreserves persistency; prove that it preserves consistency when it is applied to a
persistent specification.

(ii) Prove that the constructimport model preserves persistency but not consistency.

10.4-3: Design a parameterized specification for lists of lists of elements containing an operation that
determines the maximal element occurring in such a list of lists of elements. (Hint: Instantiate
twice a parameterized specification of lists and perform a renaming to avoid name clashes
between the results of these instantiations.)

10.4-4: (i) Design a parameterized specification of lists ofelements with a sortel and a binary
operation � : el� el ! el as parameters. The parameterized specification has to
specify an operationg : list �! el with g((el1; : : : ; elk)) = el1 � : : : � elk for anyk � 1.

(ii) Use the parameterized specification of (i) to obtain an operation that computes the sum
of the elements of a list of natural numbers.

(iii) As (ii) but with an operation that computes the sum of all natural numbers occurring in
a list of lists of natural numbers.

10.4-5: (i) Design a parameterized specification with parametersf : el1 ! el2 andg : el2 ! el3

that specifies an operationh : el1 ! el3 with h = g � f .

(ii) The parameterized specification designed in (i) shows that it is possible to “simulate”
higher-order functions such as the composition of two functions. What are the limits of
such “simulations”?

