10.3 A module specification language 199

Example 10.6

initial mspec sorts set import el
opns 0:— set
Insert: setx el — set
vars e, ep,es:el
axioms Inserf(Inserf(s, ¢), ¢) = Inserf(s, ¢)
Insert(Insert(s, e1), e2) = Insert(Insert(s, e2), e1)
endmspec

The specification is similar to that of Example 7.6 but the sbig interpreted “loosely”. O

As indicated above, a loose module specificatjn;, =.), ®) may be viewed as the

loose specificatiofiz., ®). This does not hold for initial module specifications as illustrated

by the above example: in contrast with the initial specificatibn, ®), the initial module
specification((Z;, =,), ®) does not “collapse” in the presence of sorts sucklathe term
languag€l’s. ., of which is empty.

The definition of constructive module specifications is left as Exerdis2-2. As an
important advantage the modules they define are guaranteed to be bostepéisnd con-
sistent. In fact, by a generalization of Theorem 8.11 a constructive megekification also
constitutes a loose module specification and an initial module specificai$oa result it is
persistent and consistent. Alternatively, while a constructive spedificatay be viewed as a
(functional) program, a constructive module specification behaves lkecedure; clearly, a
procedure is “persistent” and “consistent”.

10.3 A module specification language

To illustrate the concepts of a module specification language an elementguagencalled
MSL is introduced. It contains the specification langu&gentroduced in Chapter 9 as a
sublanguage when one views a specification as a module specification withpgnierport
signature.

Again, the following definition associates with each module specificatispa module
signatureS(msp. The constructs are straightforward generalizations of those of #ufisp
cation languag&L except for the additional construct™

Definition 10.7 (Abstract syntax of the module specification language MBtg set oimod-
ule specifications mspf the languagdSL and their module signaturé§msp are defined
inductively:

(i) any atomic module specificaticatmis a module specificatior§(atm) is the module
signature of this atomic module specification;

(if) if msp andmsp, are module specifications with(msp) = (Z1;, S1e), S(Msp,) =
(X2:, Bae) and if:

o each sort and each operation’df, N Xs; is inherited inS(msp),

200 10 Modularization and parameterization

o each sort and each operationof, N Xy, is inherited inS(msp,),

then:
(msp + msp,)
is a module specification with(msp + msp,) = (Z1; U a4, £1. U .) (cf. Figure
10.2(a));
(i) if msp and msp are module specifications withS(msp) = (%;,%),

S(msp,) = (T,), then:
(msp, o msp)

is a module specification with(msp, o msp) = (Z;, =) (cf. Figure 10.2(b));

(iv) if mspis a module specification wits(msp = (Z;, %), if p : &, — T isa
renaming such that(so) ¢ X, for each sort or operaticsowith ;(so) # so, then:

(rename mspby 1)

is a module specification with(rename mspby n) = (Z;, u(Ze));

(v) to (x) the constructdorget, extend model, generated freely generated freely
extend and quotient are defined similarly to (iv) (cf. Definition 9.1(iv) to (vii) and
Definition 9.20(viii) and (ix)). m]

=
4 (]

msp
i
| R 4
i
(@) lllustration ofmsp + msp, (b) lllustration ofmsp, o msp

Figure 10.2.lllustration of the syntax of the constructs™ and “o” of the module specifica-
tion languageMSL

10.3 A module specification language 201

Informally, the constructs of (iv) to (x) are those of the specificatanguageSL being
understood that they “act” on the export signature only. The syotdatonstraints of the
constructs %" and renamein this definition avoid “name clashes” that would turn sorts or
operations into inherited ones and thus harm the persistency. Morsgiyethe constraints
of “+" express the fact that any inherited sort or operatios ohsp + msp,) was already
inherited inS(msp) orinS(msp,). The constraints aEnameexpress the fact that the “new”
exported sorts and operations are different from the imported ones.

As announced in Section 10.2 the language constreciame andforget allow one to
obtain module specifications, the import signature of which is nabaignature of the export
signature. In fact, it is sufficient to rename or forget inherited sortgperations.

A concrete syntax may be defined as usual.

The semantics of the different constructdBLis similar to those oSLexcept, of course,
for the new constructs”. This construct puts together module specificatiotsg andmsp,,
wheremsp constitutes a “refinement” (in the sense of Example 1.fsf. This construct
allows one to eventually obtain a module specification with an empty iingignature, i.e. a
genuine specification.

Definition 10.8 (Semantics of the module specification language MSL)
The meaningM (msp of a module specificatiomspis a module (in the sense of Defini-
tion 10.2) and is defined inductively according to Definition 10.7:

(i) the meaning\ (atm) of an atomic module specificatiaimis the module defined by
this atomic module specification according to Section 10.2;

(ii) if S(msp) = (X14, X1e) andS(msp) = (i, X2), then:

M(msp + msp)(4)
= {Be€ Alg(S1. Us,) | (B]S1.) € M(msp) (4| 1),

forall A € Alg(S1; U S;);

(iii) if S(msp) = (Z;,X) andS(msp,) = (T, X.), then:

M(msp, o msp)(4) = U M(msp,)(B)
BeM(MSP)(4)

forall A € Alg(Z;);
(iv) if S(msp = (%;,%.), then:

M (rename mspby p)(A)
= (B e Au(S) | (B] 1w € M(msp(4)}

forall A € Alg(3;) (rememberthat : £, — X' is bijective);

202 10 Modularization and parameterization
(v) to (x) similar to (iv) (cf. Definition 9.4(iv) to (vii) and Defition 9.20(viii) and (ix)).
O

Fact 10.9 For any module specificatianspwith S(msp = (Z;,Z.):

(i) M(msp mapsX;-algebras into classes Bf. -algebras;

(i) foreachA € Aly(X;) the valueM(msp(A) is an abstract data type.
Proof: Left as Exercise 10.3-1. O
Fact10.10

(i) Each construct of the specification languad8L exceptfreely extend andquotient
preserves persistency.

(i) The constructs, rename, forget, extend, freely extendandquotient preserve consis-
tency; the construct preserves consistency when applied to persistent specifications.

Proof: Left as Exercise 10.3-2. O

Note that the proof of Fact 10.10(i) draws heavily on the syntaM$t.
Adding an environment to the languagkSL may be performed along the lines of Section
9.10. The resulting language is calledMSL(see Exercise 10.3-3).

Example 10.11 The following example is a module specification of the specification lan-
guagee-MSL In this examplemspstands for the atomic module specification of Example
10.4.

LISTis msp
BOOLis loose mspec sorts freely generateubol
opns constrTrue: — bool
constr False: — bool
endmspe¢
EL is loose mspec sortel endmspec
LISTo (BOOL+ EL)

The import signature of this module specification is empty. Hence it beayiewed as a
specification with the signature:

({bool, el list}, {True False [],Add, ...})
defining lists of “elements”. u]

To simplify the writing of module specifications it is possibleiteroduce “sugared no-
tation” and/or “macros”. As an example, letsp andmsp, be module specifications with
S(msp) = (X15,51e), S(Msp) = (X2:,¥2.). The syntax ofMSL allows one to write
msp, o msp only if £, = X,;. This notation is generalized for the caSe. C X, by
viewing:

msp o msp

10.4 A parameterized specification language 203

as a shorthand for:
msp, o (1s,,-x,, + Msp).
In this expressiony, denotes the module specification defined by:
S(x) = (5.9),
M(1g)(4) {B € Ay(%)

for any signaturé..
Further comments on module specification languages may be found in Seidiérend
10.6°.

A~ B} foreachd4 € Alg(X)

10.4 A parameterized specification language

The notion of parameterization to be introduced is an elementary one. Aiternations will
be briefly discussed in Section 10.6t will be indicated how each of them may be simulated
by the elementary notion introduced here.

Informally, a parameter is a distinguished sort or operation of ttpirsignature of a
module specification. In the module specification of Example 10.4 tip@ited sortel is
predestined as a parameter in contrast with the importedbeott The reason is that the sort
el has to do with reusability while the sdroolhas to do with modular design. More precisely,
the intended meaning of the stolis fixed while the meaning of the saetis intentionally
left pending. In fact, it makes sense to use the module specification iffiéhesht meanings
for el, for instance natural numbers, strings or lists of lists of natunahlvers, but it is not
sensible to use the module with a meaninglfool other than the intended one. By the way,
the difference between imported sorts or operations that are parametersaedttat are
not is similar to that between parameters and global variables in the prodsatlyeof an
imperative language.

As aresult, imported sorts and operations that are parameters and e thot do not
differ by their semantics but merely differ by their intended use. Progid module speci-
fication language with a parameter mechanism may therefore be reduced toddedtion
of two additional language constructs calletbort rename andimport model respectively.
The first of these constructs allows parameter passing by renaming ther{@d sorts and op-
erations that constitute the) formal parameters into their actual valudse tase of Example
10.4 it allows one to rename the settinto, for instancenat or string. The second construct
allows one to put semantic constraints on the parameters. For instancdugerspecification
of “ordered lists” that is parameterized in the sort of its elements reqiiagshe carriers of
this sort satisfy the axioms of a partial order — as will be illustrateixample 10.16.

The following definition introduces a parameterized specification languatge 6L
This language is identical with the module specification langudgé except for the two
additional language constructs mentioned above.

The definition of the construdmport rename is slightly more complex than the above
comments may suggest. While the construct introduces “new” names feptteeand op-
erations of the import signature it generally modifies the exportatige too. In fact, the
inherited sorts and operations in the export signature have to laeneghaccordingly. The

204 10 Modularization and parameterization

same holds for the inherited sorts occurring in the arities of thereag operations. For this
reason the signature morphism is defined as a signature morphidimu 3, — ¥’ rather
thany : &, — ¥,

Definition 10.12 (Abstract syntax of the parameterized specification language P& pet
of parameterized specifications pspthe languag@®SLand their module signature&psp
are defined inductively:

(i) to (x) as Definition 10.7(i) to (x) but with “parameterized specificatigmstead of
“module specification”;
(xi) if pspis a parameterized specification witki{psp = (=;,Z.) and ifu : T, U S, —
S is a surjective signature morphism satisfying the following feenditions:
(a) for each sort from . \Z;: pu(s) = s,
(b) for each operation from £.\X;: ;1(w) andw have the same operation name,

(c) for any two different sorts or operatioss. and so,. from =.: u(so.) =
11(soy) implies that botlso,. andso;,. are inherited,

(d) for any sort or operatioso; from &; andsa. from Z.: u(so;) = p(so.) implies
thatsa. is inherited,

then:
(import rename pspby 1)
is a parameterized specification with:
S(import rename pspby) = (u(X;), p(Xe));

(xii) if pspis a parameterized specification wiffipsp = (Z;,Z.) and if® C L(Z;) is a
set of formulas for some logiE, then:

(pspimport model d)
is a parameterized specification with:

S(pspimport model) = S(psp. O
Informally, the conditions (xi)(a) and (xi)(b) express the fact fhabnstitutes a renaming
of the import signature. More precisely, the condition (xi)(a) esges the fact thatrenames
sorts fromX. only if they are inherited. The condition (xi)(b) expresses the sproperty
for operations or, at least, for their names; the condition does noteiaetheir arities: if a
non-inherited operation from £, contains imported sorts in its arity,andu(w) may differ
from each other in their arities. The conditions (xi)(c) and (xi)(d)idvoame clashes”. More
precisely, the condition (xi)(c) expresses the fact thi injective on the non-inherited sorts
and operations frort, . The condition (xi)(d) expresses the fact thanay identify a sort or

10.4 A parameterized specification language 205

operation from; and a sort or operation frol, only if the latter is inherited. Note that the
signature morphism is not necessarily bijective and hence may fail to constitute a renaming
in the sense of Definition 4.1. This is sensible because it must kshpeshat two different
formal parameters get the same actual value (see Example 10.15(ii)).

Example 10.13The example illustrates respectively the conditions (a), (c) and (d)eéf D
inition 10.12(xi). LetZ; = ({a,b},0), Z. = ({a,c},0). The signature morphism is
inappropriate if one of the following conditions holds:

W) ule) = d:
(i) () = p(e);
(i) (b)) = p(c). m]

A concrete syntax foPSLmay be chosen to be identical with that MBLbut withmspec
replaced bypspec When using the concrete syntax of the constigtort rename one has
of course to check that the conditions (xi)(a) to (xi)(d) of Definitidh12 hold.

In the following definitiony y;, andyx; denote the restriction of the functignto the
signaturest; andX, respectively (according to Section 2.1.3). This notation should not be
confused with the notatioR? | . . . for reducts.

Definition 10.14 Semantics of the parameterized specification language F8k)meaning
M (psp of a parameterized specificatipapis a module (in the sense of Definition 10.2) and
is inductively defined according to Definition 10.12:

(i) to (x) as in Definition 10.8 but with “parameterized specification” instetimodule
specification”;

(xi) if S(psp = (;,), then:
M (import rename pspby u)(A)
= {BeAlg(uE)) | (B (nx,)) € M(psp(A | (ux,) }
for eachA4 € Alg(u(Z;));
(xii) if S(psp = (Z;, Z¢), then:

if AR @,

M (pspimport model ®)(A) = { ;Ow (psp(4) otherwise

for eachA € Alg(%;). m]

The meaning of the construichport rename is “as expected”. In fact, first the renaming
is “undone” by building the{;z,‘ ¥,)-reduct ofA, nextM(psp is applied and finally the result
is “renamed” according to the signature morphismc. The effect of the construanport
modelis to “eliminate” arguments that are not a modeffof

206 10 Modularization and parameterization

Again, for any parameterized specificatimspthe module signature o¥1(psp) is S(psp.
Moreover, M (psp maps algebras into abstract data types (see Exercise 10.4-1). The construct
import rename preserves persistency; it also preserves consistency when applied tcsa persi
tent specification. The construntport model preserves persistency but not consistency (see
Exercise 10.4-2).

As the parameterized specification langu&fiis the module specification language
MSL augmented by two language constructs, any module specification also wesstifpa-
rameterized specification. As, moreover, a specification may be viewed as a repelifica-
tion with an empty import signature, the notion of a parameterized speifi@icompasses
the notion of a specification too.

Again, the addition of an environment leading to a languadrSLpresents no problem.
From now on all examples are writteneéaPSL

Example 10.15

(i) An example of a declaration of a parameterized specification is:

PAIRis loose pspec sorts freely generatgghir, import el;,

import el

opns constr[_, _]:el; x el, — pair
First : pair — el;
Secondpair — el

vars ep:€el, ez:el

axiomsFirst([eq, e2]) = ey
Seconde, e2]) = e

endpspec

(i) An “instantiation” of this parameterized specification is, for instance:
import rename PAIRby sortsel;, el, as sortsnat, nat
More precisely, the parameterized specification:

PAIRis loose pspec sorts.. endpspe¢
import rename PAIRby sortsel,, el, as sortsnat, nat

defines g%, 3.)-module with:

11

({nat}, 0),
({nat pair}, {[-, -]:natx nat— pair, First: pair — nat,
Secondpair — nat}).

I

The example shows that import renaming does not have to be injective.

(i) Similarly, the parameterized specification:

10.4 A parameterized specification language 207

PAIRis loose pspec sorts ... endpspec
NATIs loose pspec sorts freely generatatht
opns constr0: — nat
constr Succ nat — nat
endpspe¢
(import rename PAIRDby sortsel;, el, as sortsnat, naf) o NAT

defines a module with empty import signature, i.e. a specification (hete“t” is
the generalized construct introduced at the end of Section 10.3). This speaifi
constitutes a specification of pairs of natural numbers. Its signat(fe) with:

S = {natpair}
Q {0: — nat, Succ nat — nat, [_, _]: natx nat — pair,
First: pair — nat, Second pair — nat}.

]

The notation for an instantiation of a parameterized specification is clumpgrticular
because it requires repetition of the “formal parameters”. This drawback mayolded by
adopting the following “sugared” notation copied from that for procedwf programming
languages. According to this notation the parameters are written betweertsraftier the
name of the parameterized specification; this rule applies to the formal parana¢tthe
declaration as well as to the actual parameters at each instantiation. This nbttitine
additional advantage that a declaration explicitly distinguishes betweparied sorts and
operations that are parameters and those that are not. A precise definitiis rdtation is
dispensed with. Instead it is illustrated by means of two examples.

Example 10.16 The specification of Example 10.15(iii) may now be written:

PAIR(sortsel;, ely) is ... endpspe¢
NAT s ...endpspe¢
PAIR(sorts nat, naf)oNAT d

The following example illustrates the use of the constiogiort model to express pa-
rameter constraints. Informall@RDERED-LIST$onstitutes a parameterized specification
of ordered lists of elements. A relatio.” on the elements is provided as a formal parame-
ter. The axioms of the construichport model express the fact that this relation is a partial
order. The example contains an instantiation of this parameterized spegifigatiding a
specification of ordered lists of natural numbers.

Example 10.17

ORDERED-LIST$sortsel, opns_ C _:el x el — bool) is
((loose pspec sorts freely generatddst, import bool, import el
opns import True: — bool
import False: — bool
import _ C _:el x el - bool

208 10 Modularization and parameterization

constr[]:— list
constr Add: el x list — list
Is-ordered list — bool
vars e, ey, ez €l l:list
axiomsls-ordered|]) = True
Is-orderedAdd(e, [])) = True
(e1 Cey) =True>
Is-orderedAdd(e;, Add(ez, 1)) =
Is-orderedAdd(ez, 1))
(e1 C ey) = FalseD
Is-orderedAdd(e;, Add(e-, 1)) = False

endpsped

import model
vars e, e, e, ez €l
axioms(e C e) = True

€

e1 C es) = TrueA (e Cez) = True D
(e1 C e3) = True
(&

NATBOOlLis (loose pspec sorts freely generatdabol, freely generatednat
opns constrTrue: — bool
constr False: — bool
constr0: — nat
constr Succ nat — nat
_ < _:natx nat— bool
vars m,n:nat
axioms(0 < n) = True
(Sucgm) < 0) = False
(Sucgm) < Sucgn)) = (m < n)
endpspey;
ORDERED-LIST&ortsnat, opns< : nat x nat — boolo NATBOOL

Clearly, the module defined bPRDERED-LISTSs persistent and monomorphic but not
consistent. Hence the specificatoRDERED-LISTS . .) o NATBOOL makes sense only if
the module defined BYRDERED-LIST® consistent for each algebra of the (monomorphic)
abstract data type defined B\ ATBOOL This is the case becausg ™ satisfies the axioms of
“C". A proof of this property therefore constitutes an important check efttiequacy of the
specification. m]

10.5 Comments
The remarks on flattening, properties and proofs of Sections 9.5 and 9y6ovar to the

specification languageSL Clearly, rapid prototyping is not possible as long as the meaning
of the imported sorts and operations and the “actual values” of the pararaegterst fixed.

10.6° Alternative parameterization mechanisms 209

Two particular properties a user may be interested in are the persistencpmsistency
of the module defined by a parameterized specification. As already indicatedc doose
specifications are persistent but not necessarily consistent; atomé sg#cifications are
consistent but not necessarily persistent; finally, atomic construgpeeifications are both
persistent and consistent. The language constructs introduced that ergyeadtistency are
freely extendandquotient; those that may alter consistency aremodel, generated freely
generated import rename andimport model. Hence these constructs have to be used with
caution. From this point of view constructive specifications have aitigé advantage over
initial and loose specifications. To check the persistency of a specificafilbfrbm construc-
tive specifications it is sufficient to prove that each use of the constinegtly extend and
quotient preserves the persistency. A similar remark holds for consistency baufeystood
that the constructg- andimport renamehave to be checked only when they are applied to
specifications that are not persistent.

From the simple examples given above it may be clear that the design ofifeéapec-
ifications with a parameterized specification language suaiRSLis tedious. On the one
hand it is time-consuming to check the different syntactic constraintBeofanguage con-
structs and it may be difficult to keep track of the signatures. On the btat it is often
necessary to prove persistency or consistency, or it is desirablev®e gsme other properties.
In practice the use of a computer system supporting the design dfin@ispecifications is
therefore indispensable; it should perform syntactic checks and updaggisies; moreover
it should contain an automatic or interactive theorem prover.

10.6° Alternative parameterization mechanisms

The parameter mechanism BSLis said to belong to theenaming approachbecause its
parameter passing is based on renaming. Other parameter mechanisms of the saauh app
have been described in the literature. Most of them differ from the parametgranism of
PSLby renaming complete signatures rather than single sorts and operations.

Being based on renaming the renaming approach has a syntactic flavour. ievapt
proaches are now roughly sketched. Both have a semantic rather than aisyfteectr.
Nevertheless, all three approaches are essentially equivalent to each other —iattleast
framework of specification presented in this book.

In the A-calculus approacta parameter consists of a complete specification. More pre-
cisely, a parameterized specification is of the form:

AX: par.sp (10.1)

wherepar andspare specifications of a specification language with environment — such as
the specification languagePSL-— and whereX is a name. Itis understood th&tmay occur
in the specificatiosp. Informally, the notation X : par” indicates that actual parameters have
to be of “type”par, i.e. have to belong to the abstract data type definegary Somewhat
more precisely, (10.1) is equivalent to the following parameterized spatiifn ofe-PSL

e the environmentis extended by the declaration

Xis ...

210 10 Modularization and parameterization

where ... stands for the loose atomic module specificatig (par), S(par)),
Th(M(par))); informally, this module specification leaves the signatfifgar) un-
changed but adds the formulas of the theory of the abstract data type dsfipad

e spis turned into a parameterized specificatioree®SLby defining the sorts and oper-
ations ofS(par) as imported sorts and operations or, more precisely, as parameters.

Alternatively, one may define.. to stand for the loose atomic module specification
((S(par), S(par)),) and addTh (M (par)) to the parameterized specification obtained from
spwith the help of the construainport model.

The following approach is called thgushout approactbecause the parameter passing
mechanism is defined as a pushout in an appropriate category. The approadtsiies fi
scribed in [EL78]. It makes use of the notion of a specification morphistroduced in
Exercise 9.1-9). To simplify the description of the approach it isiaesl that all specifi-
cations are atomic ones or, alternatively, have been turned into atomidypries meaning
function V" of Section 9.9. A parameterized specification is now a specification morphism:

m : par — sp(par)

that is an inclusion. The specificatipar = (X,.-, ®,q-) constitutes the formal parameter;
the specificatiorsp(par) = (X,p(par), Psp(par)) CONStitutes the parameterized specification
proper. The notatiosp(par) is intended to suggest thpar is “part of” sp(par) according to
the inclusionr. Note thats,er C Z,p(par) and®;,,. € 7, becauser is a specification

morphism. Parameter passing is defined as a specification morphism:
o par — act

whereact = (X,.¢, Pact) is the specification constituting the actual parameter. Note again
that (u(®,.-))* C @:, ., becauseg: is a specification morphism; this enforces the actual pa-
rameteractto “respect” the requirements, .. imposed orpar. Finally, the effect of param-
eter passing is a specificatisp(act) that is characterized as the pushout object @ind

in the category of specifications and specification morphisms (see FigL8k This pushout
object is unique up to isomorphism and its existence is granted instlne category of speci-
fications and specification morphisms. Roughly speaking, the pusheudmd;. constitutes

the “minimal completion” to a commutative square. It yields the specificathorphism

'+ sp(par) — sp(act) describing the relationship between the specifications before and
after replacingpar by act, and the specification morphismi : act — sp(act) describing the
embedding of the actual parameter into the resulting specification.

The semantic counterpart of the pushout construction is given by talgamation lemma
([EM85], p. 217). The class\(sp(act)) consists of theX,, .., -algebrasC' for which
(C|n")y=Aand(C|p') = Bwith A € M(act), B € M(sp(par)) and(A | p) = (B| 7).
Informally, (A | #) = (B | 7) requires that the parameter partstoénd B coincide;C is the
algebraB with the par part of B replaced byA. A similar property holds for th&,, (4.~
homomorphisms.

It is not difficult to simulate the pushout approach in the specificatimguagee-PSL
when the parameter passipgs surjective. The renaming effect of parameter passing may

Exercises 211

par — T . sp(par)
I w
act — T o sp(act)

Figure 10.3.The specificatiorsp(act) is the pushout object of the specification morphisms
mandu

then be simulated by thienport rename construct together with the (surjective) signature
morphism:

r.
W ep(par) — Lsp(act)-

Essentially, this signature morphism performs the renaming dfitpert signature,,,. into

Y ..t and of the inherited sorts and operations in the export signﬁly,ggm.). The condition

that the different morphisms are specification morphisms may be takenftgrthe construct
import model — as in the case of the (simulation of therpproach. When the parameter
passing. is not surjective the sorts and operation&f; — ;i(X,4-) have to be added to the
result of theimport rename construct as inherited sorts and operations. This may require a
preliminary renaming to avoid “name clashes”. Clearly, one of the advant&ges pushout
approach with respect to its simulationgrPSLis that all renamings are performed implicitly.

Exercises

10.2-1: (i) Letmsp= ((X;,X.),®) be a loose module specification. Lét, Ay € Alg(Z;).
Show thatM(msp (A1) = M(msp(Az), if Ay ~ As.
(i) As (i) for an initial module specification.Hint: Exercise 9.2-1.)
10.2-2: (i) Define the notion of a constructive module speatfon and illustrate it by an example.
(i) Show that — in contrast with loose module specificatieagonstructive module spec-
ifications cannot be viewed as constructive specificatisre (he comment following
Example 10.4).
10.3-1: Prove Fact 10.9.
10.3-2: Prove Fact 10.10.
10.3-3: Add an environment to the specification langusig. (Hint: Follow closely the definitions
of Section 9.10.)
10.3-4: (i) The generalized notatiomsp, o msp introduced at the end of Section 10.3 was defined
as a shorthand. Define this notation “directly” by rephrgsiase (iii) of Definitions
10.7 and 10.8.

212

10.4-1:
10.4-2:

10.4-3:

10.4-4:

10.4-5:

10 Modularization and parameterization

(i) Show that the constructs” introduced in (i) preserves persistency.
Prove that Fact 10.9 also holds for parameterizedifspations.

(i) Prove that the construithport rename of the parameterized specification language
PSL preserves persistency; prove that it preserves consjstehen it is applied to a
persistent specification.

(i) Prove that the construdtport model preserves persistency but not consistency.

Design a parameterized specification for listssté lof elements containing an operation that
determines the maximal element occurring in such a lissté bf elements Hint: Instantiate
twice a parameterized specification of lists and performnameéng to avoid name clashes
between the results of these instantiations.)

(i) Design a parameterized specification of listeleiments with a sortl and a binary
operation. o _:el x el — el as parameters. The parameterized specification has to
specify an operatio : list — el with g((eh,..., ely)) = el o... o el for any
E>1.

(ii) Use the parameterized specification of (i) to obtain peration that computes the sum
of the elements of a list of natural numbers.

(iii) As (i) but with an operation that computes the sum dfradtural numbers occurring in
a list of lists of natural numbers.
(i) Design a parameterized specification with patensf:el; — el andg:el. — els
that specifies an operatidn el; — el; with h = g o f.
(i) The parameterized specification designed in (i) shdves it is possible to “simulate”

higher-order functions such as the composition of two fiamst What are the limits of
such “simulations™?

