I220, Autumn 2003: Exercise 2

1. From the book: 2.6-7.
2. Given the signature NN
```
sorts N
ops 0: }\quad->\quad
    s: N
    _+ _: N×N -> N
```

And algebras A and B, defined by

$$
\begin{aligned}
A(N) & =\mathbb{N}=\{0,1,2,3, \ldots\} \\
A(0) & =0 \\
A(s)(a) & =a+1 \\
A(+)(a, b) & =a+b
\end{aligned}
$$

and

$$
\begin{aligned}
B(N) & =\{\text { false, true }\} \\
B(0) & =\text { false, } \\
B(s)(a) & =\text { not } a, \\
B(+)(a, b) & =a \text { xor } b= \begin{cases}\text { false } & \text { if } a=b \\
\text { true } & \text { if } a \neq b\end{cases}
\end{aligned}
$$

Given variables X where $X_{N}=\{x, y\}$, terms

$$
\begin{align*}
s(s(x)) & =y \tag{1}\\
x+s(y) & =s(x+y) \tag{2}
\end{align*}
$$

and let $\alpha_{1}: X \rightarrow A$ and $\alpha_{2}: X \rightarrow A$ be assignments s.t.

$$
\begin{array}{ll}
\alpha_{1}(x)=0, & \alpha_{2}(x)=16 \\
\alpha_{1}(y)=2, & \alpha_{2}(y)=28
\end{array}
$$

(a) Show that the assignment $\alpha_{1}: X \rightarrow A$ makes the equations (1) and (2) hold, while $\alpha_{2}: X \rightarrow A$ invalidates (1) but holds for (2).
(b) Define two other assignements $\alpha_{3}: X \rightarrow A$ and $\alpha_{4}: X \rightarrow A$, such that α_{3} makes both equations (1) and (2) hold, while α_{4} invalidates (1).
(c) Define ground substitutions $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}: X \rightarrow T_{\mathrm{NN}}$ corresponding to the assignemts $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$. That is, $A\left(\sigma_{i, N}(x)\right)=\alpha_{i, N}(x)$ and $A\left(\sigma_{i, N}(y)\right)=\alpha_{i, N}(y)$ for $i=1,2,3,4$.
(d) Let Y be a collection of variables such that $Y_{N}=\{y\}$ and define the substitution $\sigma: X \rightarrow T_{\mathrm{NN}_{(Y)}}$ by

$$
\begin{aligned}
\sigma(x) & =y \\
\sigma(y) & =s(s(y))
\end{aligned}
$$

Show that any assignment $\alpha: Y \rightarrow A$ will make the equations (1) σ and (2) σ hold, i.e., apply the substitution σ to both terms in each equation, and prove that the new equations will hold for any assignment $\alpha: Y \rightarrow A$.
(e) Define a homomorphism $h: A \rightarrow B$.

Show that h is unique.
(f) Let the assignments $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}: X \rightarrow B$ be defined by $\beta_{i, N}=h_{N} \circ \alpha_{i, N}$ for $i=$ $1,2,3,4$.
Show that both equations (1) and (2) hold for $\beta_{1}, \beta_{2}, \beta_{3}$, and that (2) holds for β_{4}.
If (1) also holds for β_{4}, define an assignment alpha ${ }_{5}: X \rightarrow A$ such that the assignment $h \circ$ alpha $_{5}: X \rightarrow B$ invalidates equation (1). Show that $h \circ$ alpha $_{5}$ still makes (2) hold.
(g) Define the algebra F for the signature NN such that $F(N)=\{\#\}$.

Show that any assignment $\alpha: X \rightarrow F$ makes both equations (1) and (2) hold. Show that F is a final algebra for the class of all algebras for the signature NN.
(h) Define an algebra I for the signature NN by using expression trees as the carrier, i.e., let $0: \rightarrow N$ be the tree with just a root node (and no children), let $s: N \rightarrow N$ create a tree with the argument as a substree, and let $+_{-}: N \times N \rightarrow N$ form a tree with the two argument trees as left and right child, respectively.
Show that neither of the equations (1) and (2) will hold for any assignment $\alpha: X \rightarrow I$.
(i) Show that the equation (1) σ will hold in I for any assignment $\alpha: Y \rightarrow I$.

Show that there is no substitution $\sigma^{\prime}: X \rightarrow T_{\mathrm{NN}_{(Z)}}$ for any collection of variables Z that will make equation (2) σ^{\prime} hold for I.
(j) Show that there is a unique homomorphism from the algebra I to any algebra for the signature NN.
What is such an algebra called?

