I220, Autumn 2003: Exercise 2

1. From the book: 2.6-7.

2. Given the signature NN

sorts N ops 0: $\rightarrow N$ $s: N \rightarrow N$ $_+$: $N \times N \rightarrow N$

And algebras A and B, defined by

$$\begin{array}{rcl} A(N) &=& \mathbb{N} = \{0,1,2,3,\ldots\},\\ A(0) &=& 0,\\ A(s)(a) &=& a+1,\\ A(+)(a,b) &=& a+b, \end{array}$$

and

$$\begin{array}{rcl} B(N) &=& \{ {\rm false, true} \}, \\ B(0) &=& {\rm false,} \\ B(s)(a) &=& {\rm not} \ a, \\ B(+)(a,b) &=& a \ {\rm xor} \ b = \left\{ \begin{array}{ll} {\rm false} & {\rm if} \ a = b \\ {\rm true} & {\rm if} \ a \neq b \end{array} \right. \end{array}$$

Given variables X where $X_N = \{x, y\}$, terms

$$s(s(x)) = y, \tag{1}$$

$$x + s(y) = s(x + y), \tag{2}$$

and let $\alpha_1 : X \to A$ and $\alpha_2 : X \to A$ be assignments s.t.

$$\alpha_1(x) = 0, \qquad \alpha_2(x) = 16,
\alpha_1(y) = 2, \qquad \alpha_2(y) = 28.$$

- (a) Show that the assignment $\alpha_1 : X \to A$ makes the equations (1) and (2) hold, while $\alpha_2 : X \to A$ invalidates (1) but holds for (2).
- (b) Define two other assignments $\alpha_3 : X \to A$ and $\alpha_4 : X \to A$, such that α_3 makes both equations (1) and (2) hold, while α_4 invalidates (1).
- (c) Define ground substitutions $\sigma_1, \sigma_2, \sigma_3, \sigma_4 : X \to T_{NN}$ corresponding to the assignments $\alpha_1, \alpha_2, \alpha_3, \alpha_4$. That is, $A(\sigma_{i,N}(x)) = \alpha_{i,N}(x)$ and $A(\sigma_{i,N}(y)) = \alpha_{i,N}(y)$ for i = 1, 2, 3, 4.
- (d) Let Y be a collection of variables such that $Y_N = \{y\}$ and define the substitution $\sigma: X \to T_{\mathsf{NN}(Y)}$ by

$$\begin{array}{rcl} \sigma(x) &=& y, \\ \sigma(y) &=& s(s(y)) \end{array}$$

Show that any assignment $\alpha : Y \to A$ will make the equations $(1)\sigma$ and $(2)\sigma$ hold, i.e., apply the substitution σ to both terms in each equation, and prove that the new equations will hold for any assignment $\alpha : Y \to A$.

(e) Define a homomorphism $h: A \to B$. Show that h is unique. (f) Let the assignments $\beta_1, \beta_2, \beta_3, \beta_4 : X \to B$ be defined by $\beta_{i,N} = h_N \circ \alpha_{i,N}$ for i = 1, 2, 3, 4.

Show that both equations (1) and (2) hold for $\beta_1, \beta_2, \beta_3$, and that (2) holds for β_4 . If (1) also holds for β_4 , define an assignment $alpha_5 : X \to A$ such that the assignment $h \circ alpha_5 : X \to B$ invalidates equation (1). Show that $h \circ alpha_5$ still makes (2) hold.

- (g) Define the algebra F for the signature NN such that $F(N) = \{\#\}$. Show that any assignment $\alpha : X \to F$ makes both equations (1) and (2) hold. Show that F is a final algebra for the class of all algebras for the signature NN.
- (h) Define an algebra I for the signature NN by using expression trees as the carrier, i.e., let $0 :\to N$ be the tree with just a root node (and no children), let $s : N \to N$ create a tree with the argument as a substree, and let $_{-} + _{-} : N \times N \to N$ form a tree with the two argument trees as left and right child, respectively. Show that neither of the equations (1) and (2) will hold for any assignment $\alpha : X \to I$.
- (i) Show that the equation $(1)\sigma$ will hold in I for any assignment $\alpha: Y \to I$. Show that there is no substitution $\sigma': X \to T_{\mathsf{NN}(Z)}$ for any collection of variables Z that will make equation $(2)\sigma'$ hold for I.
- (j) Show that there is a unique homomorphism from the algebra I to any algebra for the signature NN. What is such an algebra called?