I220, Autumn 2003: Exercise 1

1. Exercises from the book

- 2.2-1
- 2.4-1
- 2.3-2
- 2.4-2 (only the part for 2.3-2)
- 2.4-3 (except (i))
- 2.4-6

2. Given the signature BA

$$
\begin{array}{rlll}
\text { sorts } \mathrm{P} & & & \\
\text { ops } & \perp: & & \rightarrow \\
& \top: & & \rightarrow \\
& \cap: & P \times P & \rightarrow \\
& \cup: & P \times P & \rightarrow \\
& & P
\end{array}
$$

Let M be any non-empty set (for the sake of the example you may choose $M=\{1,2,3\}$), and let $\wp(M)$ be its power set, i.e., $\wp(M)=\{X: X \subseteq S\}$. In the example

$$
\wp(M)=\{\{ \},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} .
$$

(a) There is a very natural way of using the set $\wp(M)$ as the carrier for an algebra A for the signature BA, i.e., the algebra A is such that $A(P)=\wp(M)$. Give an interpretation of the operation declarations of BA in A.
(b) Check whether your interpretation makes the following equations hold in your algebra $(X, Y, Z$ are elements of the carrier set - the members of the power set $\wp(M)$, i.e., the subsets of M):

1. $X \cup Y=Y \cup X$
2. $(X \cup Y) \cup Z=X \cup(Y \cup Z)$
3. $X \cup \perp=X$
4. $X \cap Y=Y \cap X$
5. $(X \cap Y) \cap Z=X \cap(Y \cap Z)$
6. $X \cap \top=X$

If this is not the case, define another algebra with $\wp(M)$ as the carrier set, so that these equations hold.
(c) Extend BA to BB by adding a new operation ${ }^{-}: P \rightarrow P$. Find an interpretation for this operation in the algebra you have defined, so that the following equations hold:
7. $X \cup \bar{X}=\top$
8. $X \cap \bar{X}=\perp$
3. Let bool $=\{\mathbf{t t}, \mathbf{f f}\}$ be a two element set. Repeat the previous exercise with this set instead of $\wp(M)$, i.e., turn the set bool (not its power set!) into an algebra for the signature BA so that it satisfies the axioms 1-6 (notice that now the variables X, Y, Z of the equations will range over the only two possible elements of bool).
Then give an interpretation of the additional operation from BB so that axioms 7-8 are satisfied.

