
New results on minimal

triangulations

Yngve Villanger

B

E
RGENSI

S

U
N

IV
ERSIT

A
S

Department of Informatics

University of Bergen

Norway

January 2006

ii

iii

Acknowledgements

First and foremost I would like to thank my supervisor Professor Pinar Heggernes,
for excellent guidance and motivation. After I graduated from the master program
as a Cand. Scient she encouraged me to apply for a PhD position, something that
I am very grateful for today. Since then Pinar has been generous with her time,
both when discussing my more or less vague ideas and when reading my drafts.
Thanks Pinar, you have taught me a lot about research and life in general. :-)

I would also like to thank my co-authors Anne Berry, Jean-Paul Bordat, Pinar
Heggernes, Dieter Kratsch, Genevieve Simonet, Karol Suchan, Jan Arne Telle,
and Ioan Todinca for interesting discussions and productive collaboration.

In the spring semester of 2005 I spent two periods of almost three months at
the LIFO (Laboratoire d’Informatique Fondamentale d’Orléans) of the University
of Orléans, France. Many thanks goes to the people at LIFO for making this
time interesting and productive. In particular I would like to thank Ioan and
Alice Todinca, and Karol Suchan for making these two periods rewarding and
memorable, both academically and socially. Especially when I, my wife and our
little daughter where living in Orléans as a family.

The people in the Algorithm group at the Department of Informatics in Bergen
deserves thanks for an open, friendly, and inspiring work environment. Special
thanks goes to Christian Sloper as a colleague and a friend.

This work has been financially supported by a research fellow position from
the University of Bergen. In addition to this L. Meltzers Høyskolefond and the
AURORA mobility programme for research collaboration between France and
Norway have contributed with travel founding.

I would also like to thank my parents Per Magne and Gerd who have always
showed interest in my work and been supportive.

Finally I wish to thank my marvellous wife Tone for proof reading the intro-
duction to this thesis. She also deserves thanks for being so understanding and
patient especially during my work on completing this thesis.

This thesis is dedicated to our wonderful daughter Kristin.

Bergen, January 2006
Yngve Villanger

iv

Introduction to the Thesis

Yngve Villanger

1 Background and motivation

Computing the treewidth and the minimum fill-in of a graph are two of the most
well studied problems in the field of graph algorithms. Treewidth can be seen as a
parameter that describes how close a graph is to a tree, while the minimum fill-in
can be seen to describe how close a graph is to a chordal graph. The solution of
each of these problems is equivalent to embedding a given graph into a chordal
supergraph with some special properties. Unfortunately both these problems are
NP-hard on general graphs [1, 47], thus no efficient polynomial time algorithms
are known.

During the work on their graph minor project, Robertson and Seymour [40]
introduced several new graph parameters as tools to prove their results, and
treewidth was one of them. Later, treewidth has proved useful in many areas,
where VLSI layout and evolution theory [11] are some examples. Even more
important, treewidth is now widely accepted as one of the most important graph
parameters, because a wide range of NP-hard problems on general graphs can
be solved in polynomial time when the treewidth is bounded by some constant.
(These algorithms are polynomial in the size of the input graph, but they are
exponential in the treewidth of the graph.)

The minimum fill-in problem is also known as the minimum triangulation

problem. An embedding of an input graph into a chordal graph can be obtained
by adding edges until the graph becomes chordal. The edges added to the graph
are called fill edges, and the resulting chordal graph is called a triangulation.
Minimum triangulation is the problem of obtaining a chordal graph by adding
the fewest possible number of fill edges, and the minimum fill-in is the number
of such edges. The problem of finding the minimum fill-in was first studied in
sparse matrix computations [42], but it has also applications in other areas, like
database management [2, 43] and computer vision [15].

A tree decomposition is a way of decomposing the input graph into a tree,
where each node of the tree corresponds to a vertex subset of the input graph.
The definition of treewidth is based on tree decompositions. However it is in-
teresting to notice that a tree decomposition describes a triangulation and every

2 Introduction to the Thesis

triangulation describes a tree decomposition, thus these two structures are equiv-
alent. The problem of computing the treewidth can be restated as the problem
of computing a triangulation where the size of the largest clique is minimized. A
consequence of this is that triangulations and tree decompositions can be used
interchangeably when working on one of the two NP-hard problems mentioned
above.

A minimal triangulation is a triangulation of the input graph such that no
subset of the added edges results in a triangulation of the graph. Unlike treewidth
and minimum triangulation, a minimal triangulation can be computed in polyno-
mial time, where the best known time bounds are O(nm) [6, 8, 36, 41] for sparse
graphs and O(n2.376) [26] for dense graphs, for an input graph with n vertices and
m edges. For a survey about chordal graphs and minimal triangulation see [24].

Minimum fill-in and treewidth require searching for triangulations with differ-
ent properties, but the optimal solution for both problems can be found among
the minimal triangulations. Thus, minimum fill-in and treewidth problems can
be solved by searching through the set of minimal triangulations of the input
graph, which might be exponentially large. Minimal triangulations can be char-
acterized in several different ways. Examples are characterizations through a tree
decomposition, an elimination ordering of the vertices [37], and a set of minimal

separators [38]. These and other characterizations will be explained in subsection
2.4.

Any ordering of the vertices in a graph defines a triangulation, which can
be obtained by an algorithm called the elimination game [39]. If no fill edges
are added by this algorithm, then the ordering is called a perfect elimination

ordering. Fulkerson and Gross [21] showed that a graph is chordal if and only if
it has a perfect elimination ordering. This was later used by Ohtsuki, Cheung, and
Fujisawa [37] to define a minimal triangulation through an elimination ordering.
Such an elimination ordering is called a minimal elimination ordering.

Vertex separators are structures that are central both in tree decompositions
and in triangulations, and these separators can easily be reduced to minimal sep-

arators without increasing the treewidth or fill-in of a triangulation. The minimal
separators of a graph are powerful enough to describe all interesting tree decom-
positions and triangulations [38], and thus the solution of treewidth, minimum
triangulation, and a minimal triangulation can be defined by a set of minimal
separators. It follows that each of these three problems can be reformulated as a
problem of finding a set of minimal separators with some given property.

In this thesis we study properties of tree decompositions, minimal separators,
and elimination orderings, and how these can be used as tools when constructing
new algorithms for problems like minimal triangulation. We will now give some
examples, where these structures are used. Besides from being a decomposition of
a graph, a tree decomposition can also be used as a data structure that stores ver-
tex separators. In contrast to a simple list structure, this tree structure contains

Introduction to the Thesis 3

information about the relation between the separators. By using this informa-
tion, it is possible to compute the union of a set of minimal separators in a more
efficient way, as we showed in [6]. In special cases the union of a set of minimal
separators can be found even faster by using an alternative representation of the
tree decomposition, and an example of this data structure is presented in [8].

Minimal separators do not only separate the graph into at least two con-
nected components, but they also separate the minimal triangulation problem
into independent subproblems [31]. Even though this characterization of mini-
mal triangulations has been implicit for some years, almost no algorithm took
advantage of this property until 2004. In [26] we use this in combination with
other techniques, to improve the running time for minimal triangulation of dense
graphs.

Not all minimal triangulation algorithms are able to produce every minimal
triangulation of an input graph. Even though two algorithms produce different
sets of minimal elimination orderings, it is possible that they produce the same set
of minimal triangulations, since many different elimination orderings can define
the same triangulated graph. In [29] we define a set of modifications that can
be done to an elimination ordering without changing the resulting triangulation.
Based on these observations it is shown in [45] that two algorithms, Lex M [41]
and MCS-M [4], that produce different sets of elimination orderings, actually
produce the same set of triangulations.

As mentioned above, the treewidth and minimum fill-in can be found by
searching through the set of minimal triangulations of the input graph. For each
minimal triangulation, there exists a tree decomposition of the input graph defin-
ing the same set of fill edges. Each of the tree nodes in this tree decomposition
is defined by and contains the information of a set of minimal separators in the
minimal triangulation. These tree nodes are called potential maximal cliques [12]
of the input graph, and can be used to define minimal triangulations [12], or to
improve the time bound of exponential time algorithms [20].

The purpose of this introduction is to emphasize a set of relations and links
between the papers that present the technical results of this thesis. The thesis
consists of this introduction and five attached research papers following it, where
the introduction is organized as follows. Section 2 provides definitions, and shows
how several different structures and definitions that are commonly used in trian-
gulation algorithms can be considered as separators in a graph. Section 3 presents
the history behind some of the attached papers, and a summary of the technical
results in each paper. The five papers that define the main body of this thesis
are listed below. The list of papers is sorted chronologically according to the date
each paper was submitted to a journal.

I. Anne Berry, Jean-Paul Bordat, Pinar Heggernes, Genevieve Simonet, and
Yngve Villanger. A wide-range algorithm for minimal triangulation from

4 Introduction to the Thesis

an arbitrary ordering. Journal of Algorithms. Volume 58, Issue 1, Pages
33-66, Year 2006. [6]

II. Anne Berry, Pinar Heggernes, and Yngve Villanger. A Vertex Incremental

Approach for Maintaining Chordality. Discrete Mathematics. To appear.
[8]

III. Yngve Villanger. Lex M versus MCS-M. Discrete Mathematics. To appear.
[45]

IV. Pinar Heggernes, Jan Arne Telle, and Yngve Villanger. Computing Minimal

Triangulations in Time O(nα log n) = o(n2.376). SIAM Journal on Discrete
Mathematics. Volume 19, Number 4, Pages 900-913, Year 2005. [26]

V. Fedor V. Fomin, Ioan Todinca, Dieter Kratsch, and Yngve Villanger. Exact

algorithms for treewidth and minimum fill-in. Submitted to SIAM Journal
on Computing. [20]

2 Viewing everything as separators

Chordal graphs and the process of creating chordal graphs by adding edges to
arbitrary graphs are two subjects that are common to all results presented in this
thesis. If a chordal graph is obtained by adding edges to a non chordal graph,
then this resulting graph is called a triangulation of the non chordal input graph.
Both chordal graphs and triangulations can be characterized in several different
ways, which will be discussed further, later in this introduction. These charac-
terizations are useful tools when designing new triangulation algorithms, since
each characterization defines a way to recognize or create a chordal graph. New
triangulation algorithms are usually obtained by finding a new characterization
and then combining this with already known characterizations, or by combining
several known characterizations in a new way. Thus, knowing and understanding
these characterizations are important when designing such algorithms. But before
we can define and discuss these characterizations, some definitions are required.
In order to give an alternative view of these problems and definitions, we will
redefine several known structures used in triangulation algorithms as different
types of separators.

2.1 Basic definitions

Graphs considered in this thesis are simple and undirected. A graph G = (V, E)
is a pair consisting of a set of vertices V and a set of edges E. The number of
vertices is denoted by n, and the number of edges is denoted by m. Two vertices
u, v are considered as neighbors if uv is an edge in E. The neighborhood of a

Introduction to the Thesis 5

vertex u is denoted by the vertex set N(u), where v ∈ N(u) if uv ∈ E, and the
closed neighborhood N(u)∪ {u} of u is denoted by N [u]. For a vertex set A ⊆ V
the edge set E(A) is given by {uv ∈ E | u, v ∈ A}. Let G[A] denote the subgraph
(A, E(A)) of G. We call G[A] the subgraph of G induced by A. For simplicity we
will write G \A for the induced subgraph G[V \A] of G. A vertex set A ⊆ V is a
clique if uv ∈ E for every pair u, v ∈ A, and A is a maximal clique if there exists
no clique A′ such that A ⊂ A′. The opposite of a clique is an independent set,
and the vertex set I ⊆ V is an independent set if uv 6∈ E for every pair u, v ∈ I.

An ordering of the vertices in a graph G is a function α : V ↔ {1, 2, ..., n}.
Let v0, v1, ..., vk denote a path from v0 to vk in G of length k, i.e., vi 6= vj for i 6= j
and vivi+1 ∈ E for 0 ≤ i < k. In the same way v0, v1, ..., vk, v0 denotes a cycle
of length k + 1. A vertex set C containing u induces a connected component of
G, if v ∈ C for every pair u, v, such that there exists a path from u to v in G.
A connected graph G is a tree, if G contains no cycles, and for every pair u, v of
vertices in V , there exists a path between u and v in G.

2.2 Separators

A vertex separator is a vertex set such that a connected component of a graph
becomes disconnected by removing this set. A vertex set S ⊂ V is a u, v-separator
in a connected graph G = (V, E) with u, v ∈ V if u and v are contained in different
connected components of G \ S. Given a graph G = (V, E), let S ⊂ V be a u, v-
separator of G, then S is a minimal u, v-separator of G if no proper subset of S
separates u and v. If S is a minimal u, v-separator of G = (V, E) for some pair
u, v ∈ V , then S is a minimal separator of G.

Lemma 2.1 (Folklore) Given a graph G = (V, E), let S ⊂ V , and let C1, C2,
..., Ck be the connected components of G\S. Then S is a minimal separator if and

only if there exists a pair i, j, with 1 ≤ i < j ≤ k, such that S = N(Ci) = N(Cj).

Proof. Let i and j be integers such that S = N(Ci) = N(Cj), where 1 ≤
i < j ≤ k, and let u and v be vertices such that u ∈ Ci and v ∈ Cj. Since
S = N(Ci) = N(Cj) then it follows that u and v are contained in the same
component of G \ (S \ {x}) for every vertex x ∈ S. Thus, S is a minimal u, v-
separator since no subset of S separates u and v.

If S is a minimal separator, then there exists a pair u, v such that no subset
of S separates u and v. Then u and v are contained in the same component C of
G \ (S \ {x}) for every vertex x ∈ S, and every path from u to v in C contains
the vertex x. Let Cu and Cv be the connected components of G \ S containing u
and v. Since both u and v have a path through vertices in V \ S to every vertex
x ∈ S, then it follows that S = N(Cu) = N(Cv).

A connected component C of G\S is called a full component of S if S = N(C).
Lemma 2.1 can now be restated as follows: A separator is minimal if and only if

6 Introduction to the Thesis

it has at least two full components. Actually the neighborhood of any component
of G \ S is a minimal separator if S is a minimal separator of G, see Lemma
2.2. Another property of minimal separators is that no pair u, v of non adjacent
vertices contained in a minimal separator S can be separated by a subset of
the vertices in S. Notice that this is only true if G \ S contains a connected
component C, such that u, v ∈ N(C). We can now use this component to restate
the property: For any non adjacent pair u, v contained in a minimal separator
S, there exists a component C of G \ S such that u, v ∈ N(C). Even though
this property is trivial for minimal separators since they have at least two full
components, it will be useful when we generalize the definition of separators
further later in this text.

Lemma 2.2 Given a graph G = (V, E), let S ⊂ V , and let C1, C2, ..., Ck be the

connected components of G \ S. Then S is a minimal separator if and only if

1. Cj is a full component of S, for some j satisfying 1 ≤ j ≤ k, and

2. N(Ci) is a minimal separator of G, for every i satisfying 1 ≤ i ≤ k, and

3. for any non adjacent pair u, v ∈ S, there exists an i such that u, v ∈ N(Ci),
where 1 ≤ i ≤ k. (This requirement follows from the first, since S = N(Cj)
and thus u, v ∈ N(Cj).)

Proof. Let Cj be a full component of G, where 1 ≤ j ≤ k, and let N(C1),
N(C2), ..., N(Ck) be minimal separators of G. Then S is a minimal separator
since S = N(Cj) and N(Cj) is a minimal separator of G.

Let S be a minimal separator of G. Then it follows from Lemma 2.1 that there
exist at least two full components Cp and Cq of S, where 1 ≤ p, q ≤ k and p 6= q.
The set N(Ci) is a minimal separator for 1 ≤ i ≤ k, since G \ (Ci ∪ S) contains
one of the two full components of S, and thus there exists a full component of
N(Ci) in G \N [Ci]. Finally for every non adjacent pair u, v ∈ S, the vertices u, v
are contained in N(Cp), since Cp is a full component, and thus u, v ∈ S = N(Cp).

A vertex separator is defined as a vertex set separating at least two vertices.
This can be restated as separating every pair of vertices in a vertex set I, where
|I| = 2. We can now generalize the definition of separators to separate every
pair of vertices in a vertex set I, where |I| ≥ 01. Obviously none of the vertices
contained in I can be adjacent.

It is tempting to define such a separator for a set in the following way. Let
I ⊂ V be an independent set in G = (V, E), let K ⊆ (V \I), and let C1, C2, ..., Ck

1For the purpose of generalization we allow that |I| < 2, even though this is a bit against
the intuition of separation since, no vertices are separated in this case.

Introduction to the Thesis 7

be the connected components of G \ K. Then K is a set separator separating I
if |I ∩ Ci| ≤ 1 for 1 ≤ i ≤ k.

Since a set separator is a generalization of a vertex separator, we want minimal
set separators to have similar properties as minimal separators. Unfortunately,
inclusion minimal set separators do not behave like minimal separators. For
instance, we want to maintain the property that no subset of a minimal set sep-
arator separates vertices contained in that minimal set separator. The following
example shows that this does not hold for the above definition of set separators.
Consider a simple cycle with eight vertices. Start from any vertex and number
the vertices 1 to 8 in a clockwise order. Let I be vertices with odd number, and
let K be vertices with even number. The set K is clearly a minimal set separator,
since every vertex in K has two vertices from I in its neighborhood. Notice that
no component of the graph where K is removed contains both the vertices num-
bered 2 and 6 or 4 and 8 in its neighborhood. Now we have a counterexample to
the property since set {4, 8} separates 2 and 6, and the set {2, 6} separates 4 and
8.

Another property that we would like to preserve is that the neighborhood
of the resulting connected components are minimal separators. The following
example shows that this is not the case for the above definition of set separators.
Consider a simple path with five vertices. Start in one end of the path and number
the vertices successively towards the second end, with the numbers 1 to 5. Let
I be the set of odd numbered vertices, and let K be the set of even numbered
vertices. The set K is clearly a minimal set separator, since every vertex in K
contains two vertices from I in its neighborhood. The vertex with number 3 is one
of the resulting connected components when K is removed from the graph. Let
us call this component C. This component does not satisfy the desired property,
since K = N(C), but K is not a minimal separator in the graph.

We will now define a separator for sets such that the following two properties
are preserved in the inclusion minimal version of the separator: No subset of a
minimal separator for a set separates vertices contained in the separator, and
the neighborhood of any remaining connected component when the separator is
removed is a minimal separator. Notice the similarities between Lemma 2.2 and
Definition 2.3.

Definition 2.3 Given a graph G = (V, E), let I ⊂ V be an independent set, let

K ⊆ (V \ I), and let C1, C2, ..., Ck be the connected components of G \ K. Then

K is a BT-separator separating I if

1. |Ci ∩ I| ≤ 1 for every i satisfying 1 ≤ i ≤ k, and

2. N(Ci) is a minimal separator of G, for every i satisfying 1 ≤ i ≤ k, and

3. for every non adjacent pair u, v ∈ K there exists an i, such that u, v ∈
N(Ci), where 1 ≤ i ≤ k.

8 Introduction to the Thesis

Definition 2.4 Given a graph G = (V, E), let I ⊂ V be an independent set,

and let K ⊆ (V \ I) be a BT-separator separating I. Then K is a minimal
BT-separator separating I if no subset of K is a BT-separator separating I.

If K is a BT-separator separating some independent set I in a graph G, then
we say that K is a BT-separator of G. We can now obtain the following result.

Lemma 2.5 Given a graph G = (V, E), let K ⊆ V , and let C1, C2, ..., Ck be the

connected components of G \ K. Then K is a BT-separator of G if and only if

1. N(Ci) is a minimal separator of G, for 1 ≤ i ≤ k, and

2. for every non adjacent pair u, v ∈ K there exists an i, such that u, v ∈
N(Ci), where 1 ≤ i ≤ k.

Proof. Let K be a vertex set such that N(C1), N(C2), ..., N(Ck) are minimal
separators of G, and such that for every pair u, v ∈ K, there exists an integer i
such that u, v ∈ N(Ci) and 1 ≤ i ≤ k. Let I be a vertex set obtained by selecting
one vertex from each of the connected components C1, C2, ..., Ck. The vertex set
K separates I and thus it follows from Definition 2.3 that K is a BT-separator
of G. The opposite direction of the proof follows directly, since the requirements
are a subset of the requirements in Definition 2.3.

Notice that if G\K has a full component for a BT-separator K of G, then K is
a minimal separator, and thus K has at least two full components. It follows that
a BT-separator has either zero or at least two full components. A BT-separator
which is not a minimal separator, and thus has no full components, is known as
a potential maximal clique [12]. This will be studied in detail in subsection 2.4.

Two vertex separators S and T of a graph G, are said to be crossing if S is a
u, v-separator for a pair of vertices u, v ∈ T , or if T is an x, y-separator for a pair
of vertices x, y ∈ S. This can be stated even stronger for minimal separators.
Two minimal separators are said to be crossing if S is a u, v-separator for a pair
of vertices u, v ∈ T , in which case T is an x, y-separator for a pair of vertices
x, y ∈ S [31, 38]. We will say that two BT-separators K and L of a graph G are
crossing if there exists a component CK of G \K and a component CL of G \ L,
such that N(CK) and N(CL) are crossing minimal separators.

Actually a BT-separator can be considered as a well chosen set of non-crossing
minimal separators [12]. Notice that this set can actually be the empty set, like
the BT-separator V in the complete graph G = (V, E). We will now generalize
the definition of separators further, such that a larger set of separators can be
represented in the same structure. Crossing separators can be considered as rivals
of each other, since at least one of them separates vertices in the other. If we
limit our selves to only consider sets of non-crossing separators, then this allows
us to represent several separators in a single structure.

Introduction to the Thesis 9

Definition 2.6 Given a graph G = (V, E), let S1, S2, ..., Sk be a set of non-

crossing separators in G. Then H = (V, F ′) is a tree separator representing the

separators S1, S2, ..., Sk if uv ∈ F ′ for every pair of vertices u, v such that u and

v are not separated by Si for 1 ≤ i ≤ k.

Tree separators can be considered as a generalization of separators and thus
also BT-separators, since every separator or BT-separator can be represented by
a tree separator, while the opposite is not true. Some properties can be noticed
about a tree separator H of G. Since no separator separates adjacent vertices in
G, then E ⊆ F ′, and since all the separators are non-crossing, then the vertex
sets S1, S2, ..., Sk are all cliques in H. Actually any BT-separator in H is a clique.

Lemma 2.7 Let H = (V, E ∪ F) be a tree separator representing a set of non-

crossing separators in G = (V, E). Then every BT-separator of H is a clique.

Proof. Let K be a BT-separator in H. If K is a clique, then there is nothing to
prove. If K is not a clique, then there exists a pair u, v of non adjacent vertices in
K. From the definition of H, we know that there exists a separator S represented
by H separating u and v. Let S ′ be an inclusion minimal subset of S separating
u and v. Since uv 6∈ E ∪ F and u, v ∈ K, then there exists a component C of
H \ K such that u, v ∈ N(C). Let T be the minimal separator N(C) in H. The
minimal separator S ′ is now separating u, v ∈ T . Thus, it follows from [31, 38]
that T separates two vertices x, y ∈ S ′. This is a contradiction since S ′ ⊆ S,
where S is a clique in H. We can now conclude that K is a clique in H, since
there exists an edge in H between every pair of vertices in K.

If a tree separator can be defined by a set of BT-separators, then we call this
tree separator a BT-tree separator. We have now defined several new types of
separators, and some of these contain others as special cases. By using these in-
clusion relations we can create a hierarchy between the definitions. The different
inclusion relations are displayed on the left side of Figure 1. Separator definitions
can also be partitioned into two groups, depending on whether they are defined
through a vertex set or an edge set. The partition is as follows: minimal sepa-
rators, minimal BT-separators, BT-separators, and vertex separators are defined
through a vertex set, while BT-tree separators and tree separators are defined
through an edge set. When first looking at Figure 1 it might seam like the tree
separator is the optimal structure, since it contains all the other definitions as
special cases. But notice that vertex set representation only requires O(n) space,
while an edge representation might require as much as O(n2) space. But a tree
separator can also be represented with a set of vertex separators, and thus it can
be represented with O(n) times the number of vertex separators of space. This
does not make a list of vertex separators an equal structure to a tree separator,
since tree separators only store sets of non-crossing separators, while a list can

10 Introduction to the Thesis

store any set of separators. In the next section we will see that finding sets of
non-crossing separators are of interest to us, so the fact that tree separators never
represent crossing separators will be a useful property.

a b c

i

g h

d f je

Minimal Separators

Minimal BT−separators

Tree Separators BT−separators

BT−Tree Separators

Tree Separators

Vertex Separators

Figure 1: The left part of the figure shows the inclusion relation between the
different types of separators defined in this section. We will use the graph on
the right part of the figure to prove that the equality relation only holds in one
direction. Let us start with the left branch of the inclusion relations to the
left. The vertex pair {b, d} in the graph to the right is a minimal separator,
since it has two full components, and {a, b, d, e} is a vertex separator since it
separates g and i, and the vertex separators {a, b, d, e} and {b, c, e, f} define a
tree separator, since they are non-crossing. The vertex separator {a, b, d, e} is
not a minimal separator, since it does not have a full component, and no vertex
separator can represent the tree separator defined by the two vertex separators
{a, b, d, e} and {b, c, e, f}, since they separate vertices contained in one of the
remaining connected components when the other vertex separator is removed.
Let us now consider the right branch of the inclusion relations. The vertex pair
{b, d} is a minimal separator, and the vertex pairs {a, g} and {b, d} are minimal
BT-separators, and {a, b, d} is a BT-separator. The BT-separators {a, b, d} and
{c, e, f} define a BT-tree separator, and finally the separators {a, b, c, d, e} and
{a, b, c, e, f} define a tree separator. The minimal BT-separator {a, g} is not a
minimal separator since there is no full component, and the BT-separator {a, b, d}
is not a minimal BT-separator, since {b, d} is a BT-separator separating the same
set of vertices. Using the same arguments as for the left branch, we can argue that
no single BT-separator can represent BT-tree separator defined by BT-separators
{a, b, d} and {c, e, f}, and the tree separator {a, b, c, d, e} and {a, b, c, e, f} can
not be defined by a set of BT-separators, since no single BT-separator contains
both a and c. It might also be noticed that the sets vertex separators 6= minimal
BT-separators, since {a, b, d, e} is a separator and not a minimal BT-separator,
and {a, g} is a minimal BT-separator and not a vertex separator.

Introduction to the Thesis 11

2.3 Chordal graphs

A graph is chordal if every cycle of length more than three has a chord. A
chord is an edge between two non consecutive vertices in a cycle. The class
of chordal graphs has been thoroughly studied since the early sixties, and has
several interesting properties that will be useful to us. One of the first published
results was that a chordal graph is either complete, or has two non adjacent
simplicial vertices [18]. A vertex u is simplicial if N [u] induces a clique in the
graph. If the empty graph can be obtained from a graph by repeatedly removing
simplicial vertices, then the order in which we remove the vertices is called a
perfect elimination ordering (PEO) [21].

The definitions of intersection graphs and tree decompositions are useful when
we talk about chordal graphs. A graph G = (V, E) is the intersection graph of
subtrees of a tree if there is a tree T = (I, F), and for each vertex u ∈ V a subtree
Tu of T , such that for every pair u, v ∈ V , uv ∈ E if and only if the trees Tu and
Tv have at least one vertex in common.

Definition 2.8 A tree decomposition of a graph G = (V, E), is a pair (X, T) in

which T = (VT , ET) is a tree and X = {Xi | i ∈ VT} is a family of subsets of V
such that:

1.
⋃

i∈VT
Xi = V , and

2. for each edge uv ∈ E there exists an i ∈ VT such that both u and v belong

to Xi, and

3. for all u ∈ V , the set of tree nodes {i ∈ VT | u ∈ Xi} induces a connected

subtree of T .

Tree decompositions were defined and used by Robertson and Seymour [40]
to define the treewidth of a graph. The width of a tree decomposition (X, T =
(VT , ET)) of a graph G is the maximum of |Xi| − 1 for every i ∈ VT , and the
treewidth of the graph G is the minimum width over all tree decompositions of
G. From now on we will simply refer to T when we mention a tree decomposition
(X, T = (VT , ET)). The vertex subsets contained in X will be referred to as tree

nodes of T , and the vertex set Xi ∩Xj for an edge ij ∈ ET will be referred to as
tree edges of T .

From the definition we know that chordal graphs do not contain chordless
cycles. One consequence of this that can be deduced from [18] is that a chordal
graph contains at most n maximal cliques. In [10] this property is used in a linear
algorithm that lists all the maximal cliques and creates a tree decomposition
of the chordal graph, where every tree node is a maximal clique. A result of
this is that treewidth and the clique number(the size of the largest clique) of a
chordal graph can be computed in linear time. But not all problems have efficient

12 Introduction to the Thesis

polynomial time algorithms for chordal graphs. Examples of the opposite are
graph isomorphism [35] and the problem of computing the pathwidth [23] for
chordal graphs. This property that some problems that are NP-hard for general
graphs have efficient algorithms for chordal graphs, while other problems remains
NP-hard is one of several reasons that makes chordal graphs interesting. The
number of different characterizations of chordal graphs gives an intuition of how
well studied this class is. Some characterizations, directly or indirectly related to
algorithms or proofs presented in this thesis, are listed below.

1. A graph is chordal if and only if every minimal separator is a clique. (1961
[18])

2. A graph is chordal if and only if every minimal separator contained in the
neighborhood of a vertex is a clique. (1962 [34])

3. A graph is chordal if and only if it has a perfect elimination ordering (PEO).
(1965 [21])

4. A graph is chordal if and only if it is the intersection graph of subtrees of
a tree. (1974 [22])

5. A graph G is chordal if and only if there exists a tree decomposition of G
such that every tree node is a maximal clique in G, and every tree edge is
a minimal separator of G. (1972-74 [14, 22, 46])

6. A graph G is chordal if and only if all minimal separators in G are pairwise
non-crossing. (1997 [38])

7. A graph G = (V, E) is chordal if and only if N(u) ∩ N(v) is a minimal
separator in (V, E \ {uv}), for every edge uv ∈ E. (2004 [8])

8. A graph G = (V, E) is chordal if and only if G is a tree separator represent-
ing every BT-separator of G. (2006 here)

The following corollary can now be obtained from Characterization 6.

Corollary 2.9 A graph G is chordal if and only if all BT-separators in G are

pairwise non-crossing.

Proof. Every minimal separator is also a BT-separator, so we know from Char-
acterization 6 that the graph is chordal if all BT-separators in G are pairwise
non-crossing. Now for the opposite direction of the proof. If two BT-separators
are crossing, then by the definition of crossing BT-separators, the graph contains
two crossing minimal separators. We can now conclude, also by Characterization
6 that the graph is not chordal.

We will now use this new corollary to prove Characterization 8 in the list of
characterizations.

Introduction to the Thesis 13

Characterization 2.10 A graph G = (V, E) is chordal if and only if G is a tree

separator representing every BT-separator of G.

Proof. Let H = (V, F ′) be a tree separator representing every BT-separator of
G. Since no BT-separator of G separates consecutive vertices in G, and since
all pairwise non consecutive vertices in G are separated by some BT-separator of
G, then F ′ = E and H = G. By Lemma 2.7 all BT-separators of H and G are
cliques, and as a result all pairs of BT-separators of H and G are non-crossing.
Thus, by Corollary 2.9 we can conclude that G is chordal.

Let G be chordal. Then we know from Corollary 2.9 that all BT-separators
in G are pairwise non-crossing. From the definition of tree separators it follows
that a tree separator H = (V, F ′) representing every BT-separator of G can be
constructed. For every pair of non adjacent vertices in G, there exists a BT-
separator in G separating these vertices, and no BT-separator of G separates
consecutive vertices in G. Thus, G = H, and the proof is complete.

Actually the technique used in the proof of Characterization 2.10 is not the
only way to relate tree separators to chordal graphs. The intersection graph of
subtrees of a tree can also be used to create such a relation. Let T be a tree
decomposition of a graph G = (V, E). For every u ∈ V , let Tu be the tree nodes
of T containing the vertex u, and by Definition 2.8 we know that Tu induces a
connected subtree of T . The tree T and the subtrees Tu for every u ∈ V define
an intersection graph H = (V, F ′) of subtrees of a tree. We will say that the
graph H is defined by the tree decomposition T . From Characterizations 4 and
8 we know that H is chordal and that H is a tree separator representing some
of the separators in G, and thus E ⊆ F ′. A final notice might be that G is not
necessarily a chordal graph, and in this case H is a chordal supergraph of G that
is obtained by adding edges to G.

2.4 Triangulation and minimal triangulation

As we have seen in the previous subsection, chordal graphs can be obtained from
non chordal graphs by adding edges. This is always possible, since a single tree
node containing every vertex of the input graph is a tree decomposition of the
input graph, and thus also defines a complete chordal supergraph of the input
graph. If H = (V, E∪F) is a chordal supergraph of G = (V, E), where E∩F = ∅
then H is called a triangulation of G, and edges in F are called fill edges. We
will say that the edge set F defines the triangulation H.

Some natural questions arise. What is the minimum number of fill edges that
defines some triangulation of a given graph? Finding such a set of edges is known
as the minimum fill-in or the minimum triangulation problem. This problem
was conjectured to be NP-hard [41] in 1976, a conjecture that was confirmed by
Yannakakis [47] five years later.

14 Introduction to the Thesis

A simplification and a polynomial time version of the problem is to find an
inclusion minimal set of fill edges, called a minimal triangulation. If H = (V,
E ∪ F) is a triangulation of G = (V, E), then H is a minimal triangulation of G
if H ′ = (V, E ∪ F ′) is not a triangulation of G, for any edge set F ′ ⊂ F . Such
triangulations can be obtained by a wide range of algorithms, where [9],[26],
and [41] are some examples. Notice that a minimum triangulation is also a
minimal triangulation, so the problem of finding a minimum triangulation can be
considered as a problem of finding the right minimal triangulation.

Trivially a triangulation can be obtained by adding fill edges one by one until
the graph becomes chordal. Even though checking if the obtained graph is chordal
can be done in linear time [41, 43], it can be time consuming if we do this check at
each step. In order to avoid this, triangulation algorithms introduce fill edges in
a way that ensures that the resulting graph is chordal. This certificate is usually
obtained by producing a perfect elimination ordering, or a tree decomposition
which defines the resulting graph.

Without being aware of it, Parter2 [39] presented the first triangulation algo-
rithm, known as the elimination game in 1961. A graph G = (V, E) and a vertex
ordering α of G define the input to the algorithm. The elimination game adds
edges to the input graph, such that the provided vertex ordering becomes a per-
fect elimination ordering of the resulting graph [21]. As a result, it follows that
any graph produced by the elimination game is chordal. Another nice property
of the algorithm is that it can be implemented to run in O(n + m′) time [43],
where m′ is the number of edges in the produced triangulation.

Using a tree decomposition is another way of defining a triangulation of the
input graph. A triangulation defined by a tree decomposition can simply be
created by completing every tree node in the tree decomposition into a clique.
Notice that any triangulation algorithm that is based on finding and completing
some separating vertex set into a clique, actually defines a tree separator or
equivalently a tree decomposition. These triangulations can also be obtained in
O(n + m′) time, by using a similar approach as the one used for the elimination
game. But there is one difference: it can be easily verified that all triangulations
can be defined by a tree decomposition, while this is not always possible by using
an elimination ordering. For example, a complete graph can not be generated
unless the input graph has a vertex adjacent to all other vertices. Despite this
limitation, any minimal triangulation can be defined by a minimal elimination
ordering [37]. This was proved by defining a minimal elimination ordering, which
is an elimination ordering, such that no other ordering defines a triangulation
using a strict subset of the fill edges.

Since a triangulation can be obtained in linear time and is defined by the
elimination ordering or the tree decomposition, then the problem of finding trian-

2His aim was to give an algorithm that simulates Gaussian elimination on sparse matrices.

Introduction to the Thesis 15

gulations with interesting properties is reduced to finding interesting elimination
orderings or tree decompositions. We will now discuss different ways minimal
triangulations can be defined.

In 2001 Bouchitté and Todinca [12] defined a potential maximal clique of a
graph G to be a maximal clique in some minimal triangulation of G. These
potential maximal cliques were key structures when Bouchitté and Todinca [13]
showed that treewidth is polynomially tractable for all classes of graphs with a
polynomial number of minimal separators. At first glance a potential maximal
clique does not seem to be a very interesting structure when we are searching
for minimal triangulations. Since a potential maximal clique is defined through a
minimal triangulation of the input graph, it may seem that a triangulation should
be computed before potential maximal cliques can be found. But this is not the
case, since a potential maximal clique can be recognized directly in the input
graph, and thus can be used to create the minimal triangulation it was defined
from.

Theorem 2.11 ([12]) Given a graph G = (V, E), let K ⊆ V , and let C1,
C2, ..., Ck be the connected components of G \ K. Then K is a potential max-

imal clique if and only if

1. there exists no i such that Ci is a full component of K, where 1 ≤ i ≤ k,

and

2. N(Ci) is a minimal separator of G, for 1 ≤ i ≤ k, and

3. for any non adjacent pair u, v ∈ K there exists an i such that u, v ∈ N(Ci),
where 1 ≤ i ≤ k.

The second requirement of Theorem 2.11 follows from the first and the third
[12], but we add it to make it more similar to a previously defined structure:
a BT-separator. It is interesting to notice that the only difference between the
definition of a potential maximal clique in Theorem 2.11, and the definition of a
minimal separator in Lemma 2.2, is the change in the first requirement from none

to some. When we discussed BT-separators, we pointed out that BT-separators
are either minimal separators, or have no full component. If a BT-separator has
no full component, then it follows from Theorem 2.11 that this BT-separator is a
potential maximal clique. Because of this strong similarity we have called these
separators Bouchitté,Todinca-separators, or BT-separators for short. Thus, the
set of BT-separators is the union of minimal separators and potential maximal
cliques. Minimal BT-separators contain the set of minimal separators, but not
the complete set of potential maximal cliques. An example of this is provided by
a chordless four cycle. Every triple of vertices is a potential maximal clique, and
only the two pairs of non adjacent vertices are minimal BT-separators.

16 Introduction to the Thesis

Some of the motivation for finding characterizations of chordal graphs orig-
inates from the desire for finding new algorithms for minimal triangulations.
Partly by the same motivation, the problem of finding minimal triangulations
has been intensively studied. As a result, several characterizations for minimal
triangulations have been published. We now give a list of characterizations of
minimal triangulations.

1. A triangulation is minimal if and only if every fill edge is the unique chord
of a 4-cycle in the triangulation. (1976 [41]) (Alternative formulation: A
triangulation is minimal if and only if the removal of any single fill edge
results in a non chordal graph.)

2. A triangulation is minimal if and only if it is defined by a minimal elimina-
tion ordering. (1976 [37])

3. Let S be a minimal separator of G = (V, E), and let G′ = (V, E ′) be
the graph obtained from G by completing S into a clique. Let further
C1, C2, ..., Ck be the connected components of G \ S. The graph H =
(V, E ′∪F) is a minimal triangulation of G if and only if F =

⋃k
i=1 Fi, where

Fi is the set of fill edges of a minimal triangulation of G′[S ∪ Ci]. (1997
[31])

4. A triangulation H = (V, E ∪ F) is a minimal triangulation of G = (V, E)
if and only if it can be obtained by completing a maximal set of pairwise
non-crossing minimal separators of G into cliques. (1997 [38])

5. Let K be a potential maximal clique of G = (V, E), and let G′ = (V, E ′)
be the graph obtained from G by completing K into a clique. Let further
C1, C2, ..., Ck be the connected components of G \ K, and Si = N(Ci) for
1 ≤ i ≤ k. The graph H = (V, E ′ ∪ F) is a minimal triangulation of G
if and only if F =

⋃k
i=1 Fi, where Fi is the set of fill edges of a minimal

triangulation of G′[S ∪ Ci]. (2001 [12])

6. A tree separator H = (V, E ∪ F) defines a minimal triangulation of G =
(V, E) if and only if u and v are contained in a BT-separator of G represented
by H, for every edge uv ∈ F \ E. (2006 here)

As mentioned earlier, the set of BT-separators is the union of minimal sep-
arators and potential maximal cliques. We can now merge Characterizations 3
and 5 into a single characterization in the following corollary.

Corollary 2.12 ([12, 31]) Let K be a BT-separator of G = (V, E), let G′ =
(V, E ′) be the graph obtained from G by completing K into a clique. Let further

C1, C2, ..., Ck be the connected components of G \ K, and Si = N(Ci) for 1 ≤

Introduction to the Thesis 17

i ≤ k. The graph H = (V, E ′ ∪ F) is a minimal triangulation of G if and only

if F =
⋃k

i=1 Fi, where Fi is the set of fill edges of a minimal triangulation of

G′[S ∪ Ci].

Characterization 4 can also be generalized to include BT-separators.

Characterization 2.13 A triangulation H = (V, E ∪ F) is a minimal triangu-

lation of G = (V, E) if and only if it can be obtained by completing a maximal set

of pairwise non-crossing BT-separators of G into cliques.

Proof. Let K be a maximal set of pairwise non-crossing BT-separators of G. We
will now use the set K to find a maximal set S of non-crossing minimal separators.
For every BT-separator K ∈ K, and for every connected component C of G \ K
add the minimal separator N(C) to S. Then all minimal separators in S are
pairwise non-crossing. We will prove this by contradiction, where we assume that
the minimal separators S and T in S are crossing. By [12] all minimal separators
in a BT-separator are pairwise non-crossing, so S and T are added to S using
two different BT-separators KS and KT . The BT-separators KS and KT are now
crossing, since S = N(CS) and T = N(CT) for a component CS of G \ KS and
a component CT of G \ KT . This is a contradiction since all BT-separators in K
are pairwise non-crossing, and KS and KT are contained in K. Now back to the
main proof. The set S is also a maximal set of minimal separators, since K is a
maximal set of BT-separators, and minimal separators are BT-separators. Thus,
any minimal separator that could be added to the set S could also be added to
K, which contradicts that K is a maximal set. By Characterization 4 it follows
that a minimal triangulation of G is obtained by completing every BT-separator
in K into a clique.

Let H be a minimal triangulation of G. By Characterization 4 we know that H
can be obtained by completing a maximal set S of pairwise non-crossing minimal
separators into cliques. Since minimal separators are also BT-separators, add
every separator of S to the set K, which contains BT-separators. Let us further
add BT-separators to K, such that K becomes a maximal set of pairwise non-
crossing BT-separators. Notice that for every BT-separator K ∈ K, and for every
connected component C of G \K the minimal separator N(C) is contained in S,
since K is not crossing any BT-separator in S, and S is a maximal set of non-
crossing minimal separators. Thus, there exists a maximal set K of non-crossing
BT-separators, such that H is obtained by completing every BT-separator in K
into a clique.

Let us finally prove Characterization 6 which is new here.

Characterization 2.14 A tree separator H = (V, E ∪ F) defines a minimal

triangulation of G = (V, E) if and only if u and v are contained in a BT-separator

of G represented by H, for every edge uv ∈ F where E ∩ F = ∅.

18 Introduction to the Thesis

Proof. Let H be a tree separator of G, such that for every edge uv ∈ F , the
vertices u and v are contained in a BT-separator of G represented by H. Let K be
the set of BT-separators of G, which is represented by H. Only non-crossing BT-
separators can be represented by a tree separator, so every pair of BT-separators
in K are non-crossing. Notice that every BT-separator K of G represented by H
is also a BT-separator of H, since every edge of G is contained in H, and every
pair of vertices separated by K in G, is non adjacent in H. By Lemma 2.7 and
Corollary 2.9 every BT-separator of H is a clique, and H is chordal. Thus, a
triangulation of G can be obtained by completing the BT-separators in K into
cliques, and by Characterization 2.13 H is a minimal triangulation of G.

Let H be a minimal triangulation of G. Then there exists a set K of pairwise
non-crossing BT-separators of G, such that H is obtained by completing these
BT-separators into cliques (Characterization 2.13). Thus, for every uv ∈ F there
exits a BT-separator in K, which contains both u and v.

As we have seen in this section, tree decompositions and potential maximal
cliques can be considered as, or defined by, a set of pairs of vertices which are not
adjacent. Most papers that discuss some kind of triangulation focus on finding
fill edges and not pairs of vertices to separate in the final triangulation. There are
at least two reasons for this. The first is that the triangulation problem is defined
through a set of fill edges and not pairs of vertices to separate, and secondly it is
harder to draw examples when the decision is to separate pairs of vertices and not
add fill edges. But these two approaches are not necessarily equal. If some subset
of the set of pairs of vertices we have decided to separate defines a BT-separator,
then we might as well complete the BT-separator into a clique. But if this set
of pairs of vertices only defines a separator and not a BT-separator, then this
can be considered as a subproblem of the general triangulation problem. The
reason why we can consider this as a subproblem is that some choices are made,
and thus there are fewer final triangulations to choose among. Some examples of
algorithms using this separating approach can be found in [6],[9], and [26].

3 History and relation to introduction

Apart from this introduction, this thesis consists of five papers, of which all
are submitted to journals, and four are accepted for publication3. With the
exception of Paper III, the main results of all of these papers are presented at
some conference. Each of papers II and IV is a final full version of a single
paper first presented at a conference. Each of papers I and V is a journal paper
based on two separate conference papers. Each of the journal papers I and V
was the result of merging a conference paper containing our results with another

3Some of the papers attached to this thesis have minor editing changes compared to the
submitted version.

Introduction to the Thesis 19

conference paper by different authors. Since a thesis should contain the most
recent, well written, and full version of each result, we attach the merged journal
papers in this thesis, and not the preliminarily conference versions.

This section contains five subsections, one for each paper. Each subsection has
two purposes. The first is to tell a bit of the history behind the result. By history
we mean to identify the conference papers (if any) the paper is based on, and
in some cases also how the project started. The second purpose is to emphasize
the relation to the introduction, by explaining how tree decompositions, minimal
separators, and elimination orderings are used to obtain the results.

3.1 (Paper I [6]) Tree decomposition as a tool to compute
minimal triangulations efficiently

Several different minimal triangulation algorithms have been presented since the
mid seventies, where the LB-Triang algorithm by Berry [3] is one of the more
recent. LB-Triang was first presented at ACM-SIAM Symposium on Discrete
Algorithms (SODA) in 1999 [3], and it is based on Lekkerkerker and Boland’s
[34] characterization of chordal graphs. This characterization states that a graph
is chordal if and only if every minimal separator contained in the neighborhood
of a vertex is a clique. The LB-Triang algorithm describes a procedure for adding
fill edges, such that this property is established. The time bound for LB-Triang
was claimed in [3] to be O(nm) without a proof, and the existence of such an
implementation remained unproved until our result in 2002. A straight forward
implementation of LB-Triang gives O(nm′) time complexity, where m′ is the
number of edges in the resulting minimal triangulation. Since O(nm) time algo-
rithms already existed [36, 41], the O(nm′) time complexity was not satisfactory,
although the LB-Triang algorithm has many other nice properties.

An O(nm) time implementation of LB-Triang was presented by Heggernes
and Villanger at European Symposium on Algorithms (ESA) [28] in 2002. The
implementation is based on a tree decomposition which preserves the information
about the set of minimal separators found so far by the algorithm. This tree
decomposition structure allows us to compute the information we need from the
new fill edges in O(m) time, and thus we obtain an O(nm) time algorithm.

Paper I is based on the two conference papers [3] and [28]. The use of minimal
separators in the algorithm, and the use of tree decompositions in the O(nm) im-
plementation, relate this paper to the structures mentioned in the introduction.
We will now discuss how, and a bit why, tree decompositions make the difference
in the time complexity. The LB-Triang algorithm processes each vertex of the
graph in some order. This order is part of the input in the O(nm) implementation,
but can be provided in an on-line fashion for the O(nm′) implementation. For
each vertex, LB-Triang completes the minimal separators contained in the neigh-
borhood of the current vertex into a clique, and then this procedure is repeated

20 Introduction to the Thesis

with the next vertex in the ordering. The final result is that every minimal sep-
arator contained in the neighborhood of some vertex is a clique. Thus, it follows
from [34] that the resulting graph is a triangulation.

Completing minimal separators into cliques is the operation that requires
O(m′) time for each separator in a naive implementation, and gives an O(n2m′)
algorithm. This can easily be improved to O(nm′) by recognizing duplicate sepa-
rators, and complete each minimal separator into a clique only once. To improve
the time bound further we need the observation that the added fill edges are
only required to compute N(u) if u is the next vertex to be processed. Thus,
an O(nm′) time algorithm can also be obtained by scanning every minimal sep-
arator containing u once from a list containing only unique minimal separators,
and in this way compute N(u). Another important observation is that each min-
imal separator separates the remaining set of separators into subsets. Unlike a
list structure, a tree decomposition can be used to store the minimal separators,
while preserving this information. This extra information enables us to compute
N(u) from a subset of the minimal separators containing u, and to bound the
sum of these to m. As a result we obtain an O(nm) time implementation.

3.2 (Paper II [8]) A vertex incremental approach to com-
pute minimal triangulations

An early version of the results of Paper II was presented at the International
Symposium on Algorithms and Computation (ISAAC) [7] in 2003. The project
resulting in Paper II started with the following question: Given a graph G =
(V, E), and a partition V1, V2 of V , such that G[V1] and G[V2] are chordal graphs,
does there always exist a minimal triangulation H of G, such that u ∈ V1 and
v ∈ V2, for every fill edge uv in H? As we can see in the example of Figure 2,
there might not even be such a triangulation. This negative result removes the
possibility of finding a minimal triangulation of a graph G, by triangulating G[V1]
and G[V2] and then adding fill edges between V1 and V2, for any partition V1, V2

of V .
Let us now try to reformulate the question, such that we can obtain a positive

result. By studying the graphs in Figure 2, we can observe that such a triangu-
lation can be obtained if either V1 or V2 induces a clique. Let V1 be the vertex
set that induces a clique, and let us fix the size of V1 to one. Fixing the size of V1

to one has two advantages, the first is that all new fill edges are incident to the
single vertex in V1. The second is a bit more complicated. Let V1 and V2 be a
partition of V for a graph G = (V, E), and let H2 be a minimal triangulation of
G[V2]. For a vertex u ∈ V1 let {u}, V2 be a partition of the vertices in G[V2∪{u}],
notice that H2 is still a minimal triangulation of G[V2]. A minimal triangulation
Hu of G[V2 ∪{u}] can now be obtained by supplying the fill edges of H2 by some
fill edges incident to u. In this way we obtain a new partition V1 \{u}, V2∪{u} of

Introduction to the Thesis 21

d

G

G

c

b

ab

a d

e

fc

1

2

Figure 2: Let the partition of V in G1 be as follows V1 = {a, b, c} and V2 =
{d, e, f}. No triangulation of G1 can be obtained by adding edges between V1

and V2, since all these edges are already presented, and a, d, c, f, a is a chordless
cycle of length four. If we allow G[V1] and G[V2] to be disconnected, then a smaller
example can be found. By using the partition V1 = {a, b} and V2 = {c, d} of V in
G2 we obtain a similar example as obtained by G1. Every edge between vertices
in V1 and V2 is already present and a, c, b, d, a is a chordless cycle of length four.
Unlike the example using G1, the vertex sets V1 and V2 are disconnected, and of
size two.

V , where Hu is a minimal triangulation of G[V2 ∪ {u}]. A minimal triangulation
of G can now be obtained by repeating this until V1 = ∅. The topic discussed in
Paper II, corresponds exactly to this procedure, where |V2| ≤ 1 before the first
iteration.

Paper II presents a single algorithm that can be used to compute both minimal
triangulations and maximal subtriangulations of an input graph. A graph H =
(V, D), is a maximal subtriangulation of G = (V, E) if D is an inclusion maximal
subset of E, such that H is a chordal graph. This algorithm is based on a
vertex incremental approach, a new technique in triangulation algorithms, but an
already used technique on other problems like different types of graph recognition
[17] and [32]. Since then the incremental approach has proved useful on other
minimal completion problems [25].

The algorithm in Paper II uses the minimal separators in the chordal subgraph
to find the new fill edges every time a new vertex u is introduced to the chordal
subgraph. The fill edges incident to u are obtained by adding to N(u) the union
of a set of minimal separators in the chordal subgraph. In order to compute
this set efficiently we need data structure that allows us to find and compute the
union of these minimal separators efficiently. This is obtained by representing a
tree decomposition in a new way.

The paper presents also a new way to implement tree decompositions. Unlike
a regular representation of a tree decomposition, which represents each tree node
as a vertex set, we only store the difference between tree nodes. This enables us
to manipulate the tree decomposition such that every tree edge between two tree
nodes are minimal u, v-separators for some vertex v, and to compute the union of

22 Introduction to the Thesis

these minimal separators in O(n) time, which is not possible in a standard vertex
set representation. When this is combined with an amortized time analysis an
O(nm) time algorithm for minimal triangulation and maximal subtriangulation
is obtained.

3.3 (Paper III [45]) Comparing minimal triangulation al-
gorithms

Lex M [41] is one of the first two minimal triangulation algorithms published in
1976, and is based on a lexicographic breadth-first search. Almost 30 years later
Berry, Blair, Heggernes, and Peyton presented a similar minimal triangulation
algorithm called MCS-M [4]. MCS-M combines the cardinality labeling of neigh-
bors used in MCS [43] (a linear time recognition algorithms for chordal graphs),
with the labeling along paths used in Lex M. Both algorithms find minimal trian-
gulations by producing a minimal elimination ordering. Some of the similarities
between these algorithms can be exemplified with a simple cycle of length six.
Both algorithms are capable of producing the same set of minimal triangulations,
and none of them are able to produce minimal triangulations that are the re-
sult of only adding fill edges incident to a single vertex, or to create a minimal
triangulation that is the result of adding three fill edges that define a cycle of
length three. The difference between Lex M and MCS-M can be exemplified by
two simple cycles of length five sharing a single vertex. If the vertex contained
in both cycles are chosen to be the last in the elimination ordering, then the
set of elimination orderings produced by Lex M and MCS-M are disjoint sets.
Despite this, the same set of minimal triangulations is obtained by these sets of
elimination orderings. A natural question emerges, which is also left as an open
question in [4]: Does Lex M and MCS-M produce the same set of triangulations?

Paper III attends this problem, and shows that the two algorithms actually
produce the same set of triangulations. The idea behind the proof is as follows.
Each minimal triangulation can be obtained by a set of minimal elimination
orderings, and any pair of orderings from this set are said to be equivalent. Paper
III proves that an ordering can be obtained by MCS-M if and only if Lex M can
produce an equivalent ordering from the same input graph.

3.4 (Paper IV [26]) Combining several new techniques
into a faster minimal triangulation algorithm

Until the spring of 2004 it was not known whether or not minimal triangula-
tions could be computed with better time bound than O(nm), which is O(n3)
for dense graphs. Attempts to improve the time complexity of known minimal
triangulation algorithms below O(n3) mainly meet two obstacles. The first is to
avoid searching the input graph O(n) times, and the second is to compute the

Introduction to the Thesis 23

set of new fill edges after each iteration. In most cases these fill edges can be
obtained by completing a set of vertex sets into cliques. This problem can be
restated as a binary multiplication problem, and thus solved in time O(n2.376)
[16]. Independently of each other, two research groups used this technique to find
new and faster minimal triangulation algorithms for dense graphs.

Kratsch and Spinrad [33] designed an O(n2.69) time algorithm, which is a
new implementation of Lex M. It executes several steps of Lex M at once, and
then uses binary matrix multiplication to update all the labels in one operation.
Heggernes, Telle, and Villanger [26] designed an o(n2.376) time algorithm, by using
minimal separators and potential maximal cliques to partition the triangulation
problem into subproblems, and used binary matrix multiplication to find the new
subproblems. The second result is presented as Paper IV. A preliminary version
of Paper IV appeared at ACM-SIAM Symposium on Discrete Algorithms (SODA)
[27] in 2005.

From [31] and [12] it is known that minimal separators and potential maximal
cliques can be used to separate the minimal triangulation problem into indepen-
dent subproblems. The problem with this approach is to bound the depth of the
recursion tree, since it might be O(n) in the worst case. In the algorithm pre-
sented in Paper IV, the height of this recursion tree is O(log n). This is obtained
by a partitioning algorithm that finds a set of non-crossing minimal separators,
such that no subproblem contains more than some fraction of the non edges in
the input graph. Let O(nα) be the time bound of multiplying two n × n ma-
trices. Currently the lowest value of α is 2.375 < α < 2.376 by the algorithm
of Coppersmith and Winograd [16]. An O(nα log n) time algorithm for minimal
triangulation can now be obtained by implementing the balanced partition algo-
rithm to run in O(n2 − |E|) time for an input graph G = (V, E), and then use
matrix multiplication to complete the minimal separators into cliques.

Even though tree decompositions are not used directly in this algorithm, the
algorithm can be considered as an algorithm that refines a tree decomposition,
until it defines a minimal triangulation. Unlike the algorithm, one of the proof
used to claim the time complexity heavily depends on tree decompositions. This
makes tree decompositions to one of the basic structures used to obtain this result.

3.5 (Paper V [20]) Computing treewidth in exponential
time using potential maximal cliques

Computing the treewidth of a graph is a problem that has received a lot of atten-
tion, but it is quite recent that exact exponential time algorithms for treewidth
have been published. The first was an exact algorithm for treewidth and min-
imum fill-in by Fomin, Kratsch, and Todinca [19], presented at International
Colloquium on Automata, Languages and Programming (ICALP) 2004. This
algorithm requires every potential maximal clique of G as part of the input, and

24 Introduction to the Thesis

computes the treewidth of G in time O(n3ΠG), where ΠG is the number of poten-
tial maximal cliques in G. Listing the potential maximal cliques of G is the most
time consuming operation in [19], and thus the time complexity of the algorithm
becomes O∗(1.9601n), which is the time required to list all potential maximal
cliques of the input graph. Improving the time required for listing the potential
maximal cliques would thus improve the time complexity of the algorithm, and
this was also left as an open question in [19].

The problem of finding a better upper bound for the number of potential
maximal cliques in a graph, and to list these more efficiently, is addressed in [44],
which will be presented at Latin American Theoretical Informatics Symposium
(LATIN) 2006. The O∗(1.9601n) time algorithm for listing all potential maxi-
mal cliques presented in [19], is improved to O∗(1.8899n), and we show that the
number of potential maximal cliques contained in a graph is O∗(1.8135n). The
second result will be the new running time if somebody manages to list all po-
tential maximal cliques of a graph, with a polynomial delay for each potential
maximal clique, i.e. listing all the potential maximal cliques in O∗(ΠG) time.
Such algorithms exist for listing minimal separators [5, 30], so it is an interesting
open question if this type of algorithms exists for potential maximal cliques.

Paper V is obtained by combining the results of [19] and [44]. The time bound
for algorithm in [19] is obtained by proving that every potential maximal clique
can be defined by a set of 2n/5 vertices. In [20] this is improved, such that any
potential maximal clique can be defined by at most n/3 vertices, which improves
the time bound for listing potential maximal cliques, and thus also for finding the
treewidth, to O∗(1.8899n). One of the results of [13] is that all potential maximal
cliques of a graph can be found by finding the nice potential maximal cliques,
and then use these to generate the potential maximal cliques that are not nice.
Another result in [13] is that any nice potential maximal clique can be defined
by two crossing minimal separators. These separators and other observations are
used in Paper V to partition the vertex set of the graph into three independent
sets, such that any of these can be used to define the potential maximal clique.

Introduction to the Thesis 25

References

[1] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8:277–284, 1987.

[2] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database systems. Journal of the Association for Computing Machinery, 30:479–
513, 1983.

[3] A. Berry. A wide-range efficient algorithm for minimal triangulation. In SODA:

Proceedings of the annual ACM-SIAM symposium on Discrete algorithms, pages
860–861. Society for Industrial and Applied Mathematics, 1999.

[4] A. Berry, J. Blair, P. Heggernes, and B. Peyton. Maximum cardinality search for
computing minimal triangulations of graphs. Algorithmica, 39(4):287–298, 2004.

[5] A. Berry, J.P. Bordat, and O. Cogis. Generating all the minimal separators of a
graph. International Journal of Foundations of Computer Science, 11(3):397–403,
2000.

[6] A. Berry, J.P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-
range algorithm for minimal triangulation from an arbitrary ordering. Journal of

Algorithms, 58(1):33–66, 2006.

[7] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach for
dynamically maintaining chordal graphs. In ISAAC, volume 2906 of Lecture Notes

in Computer Science, pages 47 – 57. Springer Verlag, 2003.

[8] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach for
maintaining chordality. Discrete Mathematics, 2006. To appear.

[9] J.R.S. Blair, P. Heggernes, and J.A. Telle. A practical algorithm for making filled
graphs minimal. Theoretical Computer Science, 250:125–141, 2001.

[10] J.R.S. Blair and B.W. Peyton. An introduction to chordal graphs and clique trees.
In J.A. George, J.R. Gilbert, and J.W.H. Liu, editors, Sparse Matrix Computa-

tions: Graph Theory Issues and Algorithms, pages 1–30. Springer Verlag, 1993.
IMA Volumes in Mathematics and its Applications, Vol. 56.

[11] H.L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–21,
1993.

[12] V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping the mini-
mal separators. SIAM Journal on Computing, 31:212–232, 2001.

[13] V. Bouchitté and I. Todinca. Listing all potential maximal cliques of a graph.
Theoretical Computer Science, 276(1-2):17–32, 2002.

[14] P. Buneman. A characterization of rigid circuit graphs. Discrete Mathematics,
9:205–212, 1974.

26 Introduction to the Thesis

[15] F.R.K. Chung and D. Mumford. Chordal completions of planar graphs. Journal

of Combinatorial Theory B, 62(1):96–106, 1994.

[16] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. Journal of Symbolic Computation, 9(3):251–280, 1990.

[17] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for
cographs. SIAM Journal on Computing, 14(4):926–934, 1985.

[18] G.A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71–76,
1961.

[19] F.V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for
treewidth and minimum fill-in. In ICALP, volume 3142 of Lecture Notes in Com-

puter Science, pages 568–580. Springer Verlag, 2004.

[20] F.V. Fomin, D. Kratsch, I. Todinca, and Y. Villanger. Exact (exponential) algo-
rithms for treewidth and minimum fill-in. Submitted to SIAM Journal on Com-

puting, 2005.

[21] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Pacific

Journal of Mathematics, 15:835–855, 1965.

[22] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory B, 16:47–56, 1974.

[23] J. Gustedt. On the pathwidth of chordal graphs. Discrete Applied Mathematics,
45(3):233–248, 1993.

[24] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics,
2006. To appear.

[25] P. Heggernes, K. Suchan, I. Todinca, and Y. Villanger. Minimal interval comple-
tions. In ESA, volume 3669 of Lecture Notes in Computer Science, pages 403–414.
Springer Verlag, 2005.

[26] P. Heggernes, J.A. Telle, and Y. Villanger. Computing minimal triangulations in
time O(nαlogn) = o(n2.376). SIAM Journal on Discrete Mathematics, 19(4):900–
913, 2005.

[27] P. Heggernes, J.A. Telle, and Y. Villanger. Computing minimal triangulations
in time O(nαlogn) = o(n2.376). In SODA: Proceedings of the annual ACM-SIAM

symposium on Discrete algorithms, pages 907–916. Society for Industrial and Ap-
plied Mathematics, 2005.

[28] P. Heggernes and Y. Villanger. Efficient implementation of a minimal triangulation
algorithm. In ESA, volume 2461 of Lecture Notes in Computer Science, pages 550–
561. Springer Verlag, 2002.

Introduction to the Thesis 27

[29] P. Heggernes and Y. Villanger. Simple and efficient modifications of elimination
orderings. In PARA, volume 3732 of Lecture Notes in Computer Science, pages
788–797. Springer Verlag, 2004.

[30] T. Kloks and D. Kratsch. Listing all minimal separators of a graph. SIAM Journal

on Computing, 27(3):605–613, 1998.

[31] T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in of aster-
oidal triple-free graphs. Theoretical Computer Science, 175:309–335, 1997.

[32] N. Korte and R.H. Möhring. An incremental linear-time algorithm for recognizing
interval graphs. SIAM Journal on Computing, 18(1):68–81, 1989.

[33] D. Kratsch and J. Spinrad. Minimal fill in o(n3) time. Discrete Mathematics, 2006.
To appear.

[34] C.G. Lekkerkerker and J.C. Boland. Representation of a finite graph by a set of
intervals on the real line. Fundamentals of Mathematics, 51:45–64, 1962.

[35] G.S. Lueker and K.S. Booth. A linear time algorithm for deciding interval graph
isomorphism. Journal of the Association for Computing Machinery, 26(2):183–195,
1979.

[36] T. Ohtsuki. A fast algorithm for finding an optimal ordering in the vertex elimi-
nation on a graph. SIAM Journal on Computing, 5:133–145, 1976.

[37] T. Ohtsuki, L.K. Cheung, and T. Fujisawa. Minimal triangulation of a graph and
optimal pivoting ordering in a sparse matrix. Journal of Mathematical Analysis

and Applications, 54:622–633, 1976.

[38] A. Parra and P. Scheffler. Characterizations and algorithmic applications of
chordal graph embeddings. Discrete Applied Mathematics, 79:171–188, 1997.

[39] S. Parter. The use of linear graphs in Gauss elimination. SIAM Review, 3:119–130,
1961.

[40] N. Robertson and P. Seymour. Graph minors II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7:309–322, 1986.

[41] D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM Journal on Computing, 5:146–160, 1976.

[42] D.J. Rose. A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In R.C. Read, editor, Graph Theory and

Computing, pages 183–217. Academic Press, New York, 1972.

[43] R.E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing, 13:566–579, 1984.

28 Introduction to the Thesis

[44] Y. Villanger. Improved exponential-time algorithms for treewidth and minimum
fill-in. In LATIN, Lecture Notes in Computer Science. Springer Verlag, 2006. To
appear.

[45] Y. Villanger. Lex M versus MCS-M. Discrete Mathematics, 2006. To appear.

[46] J. Walter. Representations of rigid cycle graphs. PhD thesis, Wayne State Uni-
versity, USA, 1972.

[47] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal

on Algebraic and Discrete Methods, 2:77–79, 1981.

Paper I

A wide-range algorithm for minimal
triangulation from an arbitrary ordering

Anne Berry∗ Jean-Paul Bordat† Pinar Heggernes‡

Geneviève Simonet† Yngve Villanger‡

Abstract

We present a new algorithm, called LB-Triang, which computes min-
imal triangulations. We give both a straightforward O(nm′) time imple-
mentation and a more involved O(nm) time implementation, thus matching
the best known algorithms for this problem.

Our algorithm is based on a process by Lekkerkerker and Boland for
recognizing chordal graphs which checks in an arbitrary order whether
the minimal separators contained in each vertex neighborhood are cliques.
LB-Triang checks each vertex for this property and adds edges whenever
necessary to make each vertex obey this property. As the vertices can
be processed in any order, LB-Triang is able to compute any minimal
triangulation of a given graph, which makes it significantly different from
other existing triangulation techniques.

We examine several interesting and useful properties of this algorithm,
and give some experimental results.

1 Background and motivation

Computing a triangulation consists in embedding a given graph into a triangu-
lated, or chordal, graph by adding a set of edges called a fill. If no proper subset
of the fill can generate a chordal graph when added to the given graph, then this
fill is said to be minimal, and the resulting chordal graph is called a minimal tri-
angulation. The fill is said to be minimum if its cardinality is the smallest over all
possible minimal fills, and the corresponding triangulation is called a minimum

∗LIMOS UMR CNRS 6158, Ensemble Scientifique des Cézeaux, Université Blaise Pascal,
F-63 170 Aubière, France. berry@isima.fr

†LIRMM, 161 Rue Ada, F-34392 Montpellier, France. bordat@lirmm.fr

simonet@lirmm.fr
‡Department of Informatics, University of Bergen, N-5020 Bergen, Norway.

pinar@ii.uib.no yngvev@ii.uib.no

2 A wide-range algorithm for minimal triangulation from an arbitrary ordering

triangulation. The motivation for finding a fill of small cardinality originates from
the solution of sparse symmetric systems [14, 27, 28], but the problem has appli-
cations in other areas of computer science [2, 9, 16, 20], and has been studied by
many researchers during the last decades.

Given a graph G and an ordering α on its vertices, hereafter denoted by (G, α),
one way of computing a triangulation [13] is the following Elimination Game by
Parter [24]: Repeatedly choose the next vertex x in order α, and add the edges
that are necessary to make the neighborhood of x into a clique in the remaining
graph (thus making vertex x simplicial in the resulting graph), before deleting
x. The edges that are added at each step altogether define the fill edges of this
process. The triangulated graph obtained by adding this fill to the original graph
G is denoted by G+

α . In this paper, we will refer to such graphs as simplicial
filled graphs. Different orderings of the input graph result in different simplicial
filled graphs. An ordering α on G is called a perfect elimination ordering (peo)
if G+

α = G. Consequently, α is a peo of G+
α . If G+

α is a minimal triangulation of
G, then α is called a minimal elimination ordering (meo) of G [22].

The elimination game was originally introduced [24] in order to describe the
fill added during symmetric factorization of the associated matrix M of G (i.e.,
the non-zero pattern of M is the adjacency matrix of G). Fulkerson and Gross [13]
showed later that triangulated graphs are exactly the class of graphs that have
perfect elimination orderings; hence all simplicial filled graphs are triangulated.
Simplicial filled graphs are in general neither minimal nor minimum triangulations
of the original graph, and the size of the introduced fill depends on the order in
which the vertices are processed by the elimination game. Computing an order
that will result in a minimum fill is NP-hard on general graphs [31]. Several
heuristics have been proposed for finding elimination orderings that produce small
fill, such as Minimum Degree [27] and Nested Dissection [14]. Although these
are widely used and produce good orderings in practice, they do not guarantee
minimum or minimal fill.

In 1976 Ohtsuki, Cheung, and Fujisawa [22], and Rose, Tarjan, and Lueker
[28] simultaneously and independently showed that a minimal triangulation can
be found in polynomial time, presenting two different algorithms of O(nm) time
for this purpose, where n is the number of vertices and m is the number of edges
of the input graph G. No minimal triangulation algorithm has achieved a better
time bound since these results. One of these algorithms, LEX M [28], has become
one of the classical algorithms for minimal triangulation. Despite its complexity
merits, LEX M yields only a restricted family of minimal triangulations, and the
size of the resulting fill is not small in general. Recently a new algorithm for
computing minimal triangulations, which can be regarded as a simplification of
LEX M, has been introduced [5]. This algorithm, called MCS-M, has the same
asymptotic time complexity and the same kind of properties regarding fill as LEX
M.

A wide-range algorithm for minimal triangulation from an arbitrary ordering 3

In order to combine the idea of small fill with minimal triangulations, Minimal
Triangulation Sandwich Problem was introduced by Blair, Heggernes, and Telle
[7]: Given (G, α), find a minimal triangulation H of G such that G ⊆ H ⊆
G+

α . This approach enables the user to affect the produced fill by supplying a
desired elimination ordering to the algorithm, while computing a triangulation
which is minimal. In [7] the authors present an algorithm that removes fill edges
from G+

α in order to solve this problem. The complexity of their algorithm is
O(f(m + f)), where f is the number of filled edges in the initial simplicial filled
graph G+

α , thus the algorithm works fast for elimination orderings resulting in low
fill. Dahlhaus [11] later presented an algorithm for solving the same problem with
a time complexity evaluated as O(nm), which uses a clique tree representation
of the graph as an intermediate structure. The most recent among algorithms
solving the Minimal Triangulation Sandwich Problem is presented by Peyton
[25]. This algorithm also removes unnecessary fill from a given triangulation,
and although it appears fast in practice, no theoretical bound for its runtime is
proven.

Using a totally different approach, Berry [4] introduced Algorithm LB-Triang,
which, given (G, α), produces a minimal triangulation directly, and also solves
the Minimal Triangulation Sandwich Problem. In fact, the ordering need not
be chosen beforehand, but can be generated dynamically, allowing an on-line
approach and a wide variety of strategies for finding special kinds of fills. LB-
Triang gives new insight about minimal triangulations as it is a characterizing
algorithm; any minimal triangulation of an input graph can be produced by LB-
Triang through some ordering of the vertices. It is the only minimal triangulation
algorithm so far that solves the Minimal Triangulation Sandwich Problem directly
from the input graph, without removing fill from a given triangulation.

In this paper, we study Algorithm LB-Triang extensively, prove its correct-
ness, and show several of its interesting properties. We prove that any minimal
triangulation can be obtained by LB-Triang, and that LB-Triang also directly
solves the sandwich problem mentioned above without computing G+

α . We dis-
cuss several variants and implementations of the algorithm, and compare it to
other algorithms, both in a theoretical fashion and by performance analysis.

This paper is organized as follows: In Section 2, we give the necessary graph
theoretical background and introduce the notations used throughout the paper.
Section 3 presents some recent research results on minimal triangulation that
will be the basis for our proofs. Section 4 introduces LB-Triang and proves
its correctness. In Section 5, we examine various properties of this minimal
triangulation process. Section 6 gives a complexity analysis of a straightforward
implementation, and in Section 7 we describe an implementation which improves
the complexity to O(nm). We give some experimental results in Section 8, and
conclude in Section 9.

4 A wide-range algorithm for minimal triangulation from an arbitrary ordering

2 Preliminaries

All graphs in this work are undirected and finite. A graph is denoted G = (V, E),
with n = |V |, and m = |E|. G(A) is the subgraph induced by a vertex set A ⊆ V ,
but we often denote it simply by A when there is no ambiguity. A clique is a set
of vertices that are all pairwise adjacent. An independent set of vertices is a set
of vertices that are pairwise non-adjacent.

For all the following definitions, we will omit subscript G when it is clear from
the context which graph we work on. The neighborhood of a vertex x in G is
NG(x) = {y 6= x | xy ∈ E}; NG[x] = NG(x) ∪ {x}. The neighborhood of a set of
vertices A is NG(A) = ∪x∈ANG(x) \A. A vertex is simplicial if its neighborhood
is a clique. We say that we saturate a set of vertices X in graph G if we add the
edges necessary to make G(X) into a clique.

For a connected graph G = (V, E) with X ⊆ V , CG(X) denotes the set of
connected components of G(V \X). S ⊂ V is called a separator if |C (S)| ≥ 2, an
ab-separator if a and b are in different connected components of C (S), a minimal
ab-separator if S is an ab-separator and no proper subset of S is an ab-separator,
and a minimal separator if there is some pair {a, b} such that S is a minimal
ab-separator. Equivalently, S is a minimal separator if there exist two distinct
components C1 and C2 in C (S) such that N(C1) = N(C2) = S (such components
are called full component). S (G) denotes the set of minimal separators of G. If
G is not connected, we call S a minimal separator iff it is a minimal separator of a
connected component of G. A minimal separator S of G is called a clique minimal
separator if G(S) is a clique.

A chord of a cycle is an edge connecting two non-consecutive vertices of the
cycle. A graph is triangulated, or chordal, if it contains no chordless cycle of
length ≥ 4.

3 Triangulated Graphs and Triangulations

3.1 Triangulated Graphs

Triangulated graphs were defined as extensions of a tree. The first significant
results on this class were obtained by two contemporary and independent works,
due to Dirac [12], and Lekkerkerker and Boland [21], which present similar results,
but with a different approach. Dirac defined the concept of minimal separator,
which extends the notion of articulation node in a tree, and used this to charac-
terize triangulated graphs:

Characterization 3.1 (Dirac [12]) A graph G is triangulated iff every minimal
separator in G is a clique.

A wide-range algorithm for minimal triangulation from an arbitrary ordering 5

Dirac also proved that every triangulated graph which is not a clique has at
least two nonadjacent simplicial vertices. Using this, Fulkerson and Gross [13] ob-
served that any simplicial vertex can be removed from a graph without destroying
chordality, yielding the following characterization for triangulated graphs:

Characterization 3.2 (Fulkerson and Gross [13]) A graph is triangulated iff it
has a peo.

Using this characterization for the recognition of triangulated graphs requires
computing a peo. This can be done in linear time [28, 29].

Lekkerkerker and Boland [21] used a quite different approach to character-
ize triangulated graphs. They introduced the notion of substars of a vertex x,
and they characterized triangulated graphs as graphs for which each substar is a
clique. A substar S of x is a subset of N(x) such that S = N(C) for a connected
component C of G(V \ N [x]). We now know that these substars are precisely
the minimal separators contained in the vertex neighborhoods. Since in a trian-
gulated graph, every minimal separator belongs to a vertex neighborhood, this
result is in fact closely related to Dirac’s characterization. We will restate the
characterization of Lekkerkerker and Boland using the following definition. (The
abbreviation LB stands for Lekkerkerker-Boland.)

Definition 3.3 A vertex x is LB-simplicial iff every minimal separator contained
in the neighborhood of x is a clique.

Characterization 3.4 (Lekkerkerker and Boland [21]) A graph is triangulated
iff every vertex is LB-simplicial.

It is interesting to note that Lekkerkerker and Boland used this characteriza-
tion both in a static and in a dynamic way, as they also proved that a triangulated
graph can be recognized by repeatedly choosing any vertex, checking it for LB-
simpliciality, and removing it, until no vertex is left. Thus they had established,
several years before Fulkerson and Gross, a characterizing elimination scheme for
triangulated graphs. They estimated the complexity as O(n4), but as it will be
obvious from the discussion in Section 6, this algorithm can be implemented in
O(nm), which would have solved their problem of recognizing interval graphs in
O(n3).

Although triangulated graphs can now be recognized in linear time using MCS,
Lekkerkerker and Boland’s algorithm has interesting aspects, one of which is that
it can process the vertices in an arbitrary order, meaning in particular that this
check can be done in parallel for all vertices simultaneously. All the vertices in
a triangulated graph are LB-simplicial, but not necessarily simplicial, and there-
fore finding a peo cannot be parallelized in the same way as the independent
check for LB-simpliciality of all vertices simultaneously. Recently, the algorithm

6 A wide-range algorithm for minimal triangulation from an arbitrary ordering

of Lekkerkerker and Boland has been extended to the characterization and recog-
nition of weakly triangulated graphs by Berry, Bordat and Heggernes [6]. In this
paper, we will use it to compute a minimal triangulation of an arbitrary graph.

3.2 Minimal Triangulation

Computing a minimal triangulation requires computing a fill F such that no
proper subset of F will give a triangulation. The classical triangulation techniques
force the graph into respecting Fulkerson and Gross’ characterization, but recent
approaches have been made in the direction of forcing the graph into respecting
Dirac’s characterization.

Recent research has shown that minimal triangulation is closely related to
minimal separation [3, 19, 23, 30]: the process of repeatedly choosing a minimal
separator and adding edges to make it into a clique until all the minimal sepa-
rators of the resulting graph are cliques, will compute a minimal triangulation.
Conversely, any minimal triangulation can be obtained by some instance of this
process. A graph has, in general, an exponential number of minimal separa-
tors, and a triangulated graph has less than n [26]. The process described above
chooses at most n− 1 minimal separators of the input graph and saturates them.
Whenever a saturation step is executed, this causes a number of initial minimal
separators to disappear from the graph. Thus, during the process, the set of
minimal separators shrinks until it reaches its terminal size of at most n−1. The
minimal separators that disappear are well defined. Kloks, Kratsch and Spinrad
[18] introduced the notion of crossing separators , and they showed that a mini-
mal triangulation corresponds to the saturation of a set of non-crossing minimal
separators. Parra and Scheffler [23] extended this result to characterize mini-
mal triangulations as graphs obtained by saturating a maximal set of pairwise
non-crossing minimal separators.

Definition 3.5 (Kloks, Kratsch, and Spinrad [19]) Let S and T be two minimal
separators of G. Then S crosses T if there exist two components C1, C2 ∈ C (T),
C1 6= C2, such that S ∩ C1 6= ∅ and S ∩ C2 6= ∅.

In [23] it is shown that the crossing relation is symmetric. This follows also
from Lemma 3.10 below. We compress the results obtained in [3], [19], and [23]
into the following:

Property 3.6 Let G be a graph and let G′ be the graph obtained from G by
saturating a set S of pairwise non-crossing minimal separators of G.

a) A clique minimal separator of G does not cross any minimal separator of
G.

b) S is a set of clique minimal separators of G′.

A wide-range algorithm for minimal triangulation from an arbitrary ordering 7

c) Any clique minimal separator of G is a minimal separator of G′.

d) Any minimal separator of G′ is a minimal separator of G.

e) Any set of pairwise non-crossing minimal separators of G′ is a set of pair-
wise non-crossing minimal separators of G.

f) If S is a maximal set of pairwise non-crossing minimal separators of G

then G′ is a minimal triangulation of G.

For our proofs, we will need the following extra results concerning the preser-
vation of the minimal separators and of the components of C (S) and of their
neighborhoods.

Observation 3.7 Let G = (V, E) be a graph and C, S ⊆ V . If C 6= ∅, C ⊆ V \S,
G(C) is connected and N(C) ⊆ S then C ∈ C (S).

Lemma 3.8 Let G = (V, E) and G′ = (V, E ′) be graphs such that E ⊆ E ′, and
let S ⊆ V . If ∀C ∈ CG(S), NG(C) = NG′(C) then CG(S) = CG′(S).

Proof. It is sufficient to show that CG(S) ⊆ CG′(S). Let C ∈ CG(S). C 6= ∅,
C ⊆ V \ S, G′(C) is connected (because G(C) is connected and E ⊆ E ′) and
NG′(C) = NG(C) ⊆ S then by Observation 3.7 C ∈ CG′(S).

Lemma 3.9 Let G = (V, E) and G′ = (V, E ′) be graphs such that E ⊆ E ′,
and x ∈ V . If ∀C ∈ CG(NG[x]), NG(C) = NG′(C) then NG(x) = NG′(x) and
CG(NG[x]) = CG′(NG[x]).

Proof. Let us assume that ∀C ∈ CG(NG[x]), NG(C) = NG′(C). By Lemma 3.8,
CG(NG[x]) = CG′(NG[x]). Suppose that NG(x) 6= NG′(x). Let y ∈ NG′(x)\NG(x)
and let C be the component of CG(NG[x]) containing y. Then x ∈ NG′(C) \
NG(C), then NG(C) 6= NG′(C), which contradicts the initial assumption.

Lemma 3.10 Let G = (V, E) be a graph, and let S and T be two minimal
separators of G. If T does not cross S in G, then there is a component C of
C (T) such that S ⊆ C ∪N(C).

Proof. T does not cross S in G and there are at least two full components in
C (S) then there is a full component C1 of C (S) that does not intersect T . Let
C be the component of C (T) containing C1. S = N(C1), so S \ T ⊆ C and
S ∩ T ⊆ N(C), thus S ⊆ C ∪N(C).

8 A wide-range algorithm for minimal triangulation from an arbitrary ordering

Lemma 3.11 Let G be a graph, let G′ be the graph obtained from G by saturating
a set S of minimal separators of G, and let T be a minimal separator of G. If T

does not cross any separator of S in G then CG(T) = CG′(T) and ∀C ∈ CG(T),
NG(C) = NG′(C) (thus T is also a minimal separator of G′).

Proof. Since T does not cross any separator of S in G then by Lemma 3.10, for
any separator S of S there is a component C of CG(T) such that S ⊆ C∪NG(C).
Then ∀C ∈ CG(T), NG(C) = NG′(C) and then by Lemma 3.8, CG(T) = CG′(T).
This implies that there are also at least two full components in CG′(T), so T is
also a minimal separator of G′.

Lemma 3.12 Let G be a graph, and let G′ be the graph obtained from G by
saturating a set S of pairwise non-crossing minimal separators of G. Then ∀S ∈
S , CG(S) = CG′(S) and ∀C ∈ CG(S), NG(C) = NG′(C) (thus S is also a
minimal separator of G′).

Proof. Lemma 3.12 immediately follows from Lemma 3.11.

Lemma 3.13 Let G be a graph, let G′ be the graph obtained from G by saturating
a set S of pairwise non-crossing minimal separators of G, and let T be a minimal
separator of G′. Then CG(T) = CG′(T) and ∀C ∈ CG(T), NG(C) = NG′(C) (thus
T is also a minimal separator of G).

Proof. By Property 3.6 b), for any S in S , S is a clique minimal separator of
G′, then by Property 3.6 a), S does not cross T in G′. Then T does not cross S

in G′, and since CG(S) = CG′(S) by Lemma 3.12, T does not cross S in G. We
conclude with Lemma 3.11.

Lemma 3.14 Let G be a graph and let G′ be the graph obtained from G by
saturating a set S of pairwise non-crossing minimal separators of G. If G′ is
triangulated then G′ is a minimal triangulation of G.

Proof. Let S ′ be a maximal set of pairwise non-crossing minimal separators
of G containing S and let H be the graph obtained from G by saturating the
separators of S ′. By Property 3.6 f), H if a minimal triangulation of G then,
as G ⊆ G′ ⊆ H and G′ is triangulated, G′ = H. Therefore G′ is a minimal
triangulation of G.

4 LB-Triangulation: Basic algorithmic process

We now use Characterization 3.4 to compute a minimal triangulation by forcing
each vertex into being LB-simplicial by a local addition of edges. We will prove
that the triangulation obtained is minimal by showing that the process chooses
and saturates a set of pairwise non-crossing minimal separators of the input graph.

A wide-range algorithm for minimal triangulation from an arbitrary ordering 9

4.1 The algorithm

Algorithm LB-Triang
input : A graph G = (V, E).
output : A minimal triangulation of G.

begin
foreach x ∈ V do

Make x LB-simplicial;
end

At the end of an execution, α = (x1, x2, ..., xn) is the order in which the vertices
have been processed, and GLB

α will denote the triangulated graph obtained. Note
that the algorithm processes the vertices in an arbitrary order. Thus any ordering
can be chosen by the user, and this ordering can be supplied in an on-line fashion
if desired.

Definition 4.1 The deficiency of a vertex x in a graph G, denoted DefG(x),
is the set of edges that has to be added to G to make x simplicial. We define
LB-deficiency of a vertex x in G, denoted LBDefG(x), to be the set of edges that
has to be added to G to make x LB-simplicial.

Clearly, for any graph G, LBDefG(x) ⊆ DefG(x) for every vertex x in G.
For the remaining discussion on Algorithm LB-Triang, we will use the following
notations. Gi denotes the graph at the beginning of step i, xi is the vertex
processed during step i, Fi denotes the set of fill edges added at step i to make xi

LB-simplicial in Gi, and finally, Si denotes the set of minimal separators included
in NGi

(xi). Thus Fi = LBDefGi
(xi) and Gi+1 is the graph obtained from Gi by

adding the set of edges Fi, or equivalently, by saturating the separators of Si.
Making a vertex xi LB-simplicial by Definition 3.3 requires computing the set Si

of minimal separators included in NGi
(xi). For this, we use the following from

[6].

Property 4.2 (Berry, Bordat, and Heggernes [6]) For a vertex x in a graph G,
the set of minimal separators of G included in N(x) is exactly {N(C) | C ∈
C (N [x])}.

Consequently, computing the edge set Fi whose addition to Gi will make xi

LB-simplicial in the resulting Gi+1 requires the following three steps:
• Computing NGi

[xi]
• Computing each connected component C in CGi

(NGi
[xi])

• Computing the neighborhood NGi
(C) for each C.

10 A wide-range algorithm for minimal triangulation from an arbitrary ordering

One of the interesting properties of Algorithm LB-Triang is that when xi is
LB-simplicial in Gi+1, it will remain LB-simplicial throughout the rest of the
process, and thus be LB-simplicial in GLB

α . This will become clear when we prove
Invariant 4.7.

αα

LB +

9

137

26

8

5

4

3 5

9426

8

G = G
3

7 1 17 3 5

9426

8

b)

c) d)

a)

1
G

2

17 3 5

9426

8
G

17 3 5

9426

8

G = G

Figure 1: An example of how Algorithm LB-Triang proceeds.

Example 4.3 In Figure 1 a), a graph G is given with an ordering α on its
vertices. Let us simulate how LB-Triang proceeds in an execution which processes
the vertices in the given order.
Step 1: NG1 [1] = {1, 2, 3, 4, 5}, and CG1(NG1 [1]) = {{6, 7}, {8, 9}}. NG1({6, 7}) =
{2, 3}, and NG1({8, 9}) = {2, 4, 5}. Thus F1 = {(2, 3), (2, 4), (2, 5), (4, 5)}. The
resulting G2 is given in Figure 1 b).
Step 2: NG2 [2] = {1, 2, 3, 4, 5, 6, 8}, and CG2(NG2 [2]) = {{7}, {9}}. NG2({7}) =
{3, 6}, and NG2({9}) = {5, 8}. Thus F2 = {(3, 6), (5, 8)}, and G3 is shown in
Figure 1 c).

No more fill edges are added at later steps since G3 = GLB
α is chordal. Figure

1 d) gives G+
α .

4.2 Proof of correctness

We will first show that we indeed obtain a triangulation. The following lemmas
are necessary in order to state and prove an invariant for the algorithm.

Lemma 4.4 Let G be a graph, and let x be a vertex of G. The minimal separators
included in N(x) are pairwise non-crossing in G.

A wide-range algorithm for minimal triangulation from an arbitrary ordering 11

Proof. Let S and S ′ be two minimal separators included in the neighborhood
of x in G. Let C be the component of C (S) containing x. Since S ′ ⊆ N(x) ⊆
C ∪N(C) ⊆ C ∪ S, S ′ does not cross S in G.

Lemma 4.5 Let G be a graph, let G′ be the graph obtained from G by saturating
a set of pairwise non-crossing minimal separators of G, and let x be an LB-
simplicial vertex of G. Then NG(x) = NG′(x)

Proof. By Lemma 3.9, it is sufficient to show that ∀C ∈ CG(NG[x]), NG(C) =
NG′(C). Let C be a connected component of CG(NG[x]). Let us show that
NG(C) = NG′(C). Vertex x is LB-simplicial in G, so by Property 4.2, NG(C) is a
clique minimal separator of G, and then by Property 3.6 c), NG(C) is a minimal
separator of G′. By Lemma 3.13 and the fact that C is a connected component of
CG(NG(C)), NG(C) = NG′(C).

Lemma 4.6 Let G be a graph, let G′ be the graph obtained from G by saturating
a set of pairwise non-crossing minimal separators of G, and let x be an LB-
simplicial vertex of G. Then x is LB-simplicial in G′.

Proof. Let us show that x is LB-simplicial in G′, i.e. that any minimal separator
of G′ included in NG′(x) is a clique in G′. Let S be a minimal separator of G′

included in NG′(x). By Property 3.6 d), S is a minimal separator of G and by
Lemma 4.5, S is included in NG(x). As x is LB-simplicial in G, S is a clique in
G, but also in G′, as G ⊆ G′.

We are now able to prove the following invariant, which is the basis for the
proof of correctness of the algorithm.

Invariant 4.7 During an execution of Algorithm LB-Triang, any vertex that is
LB-simplicial at a particular step remains LB-simplicial at all later steps.

Proof. For any i from 1 to n, by Lemma 4.4 Gi+1 is obtained from Gi by
saturating a set of pairwise non-crossing minimal separators of Gi; by Lemma 4.6,
any LB-simplicial vertex of Gi remains LB-simplicial in Gi+1.

Lemma 4.8 The graph GLB
α resulting from Algorithm LB-Triang is a triangula-

tion of G.

Proof. By Invariant 4.7, at the end of an execution, every vertex of GLB
α is

LB-simplicial. By Characterization 3.4, GLB
α is triangulated.

We will now prove that the triangulation obtained is minimal.

12 A wide-range algorithm for minimal triangulation from an arbitrary ordering

Invariant 4.9 For any i from 1 to n + 1, the set ∪1≤j<iSj of minimal separa-
tors already saturated at the beginning of step i is a set of pairwise non-crossing
minimal separators of G.

Proof. By induction on i. The property is trivially true at the beginning of step
1. Assume that it is true at the beginning of step i, and let us show that it is then
true at the beginning of step i + 1. ∪1≤j<iSj is a set of pairwise non-crossing
minimal separators of G, so by Property 3.6 b), it is a set of clique minimal
separators of Gi. By Property 3.6 a), no separator of ∪1≤j<iSj crosses in Gi any
minimal separator of Gi. Moreover, by Lemma 4.4, Si is a set of pairwise non-
crossing minimal separators of Gi, so ∪1≤j<i+1Sj is a set of pairwise non-crossing
minimal separators of Gi, and therefore a set of pairwise non-crossing minimal
separators of G by Property 3.6 e).

With these results, we are ready to state and prove the correctness of Algo-
rithm LB-Triang:

Theorem 4.10 Algorithm LB-Triang computes a minimal triangulation of the
input graph.

Proof. By Lemma 4.8, the obtained graph is triangulated, and by Invariant 4.9,
GLB

α is obtained from G by saturating a set of pairwise non-crossing minimal
separators of G. By Lemma 3.14, GLB

α is a minimal triangulation of G.

5 Some important properties of LB-Triang

In this section, we examine some central properties of GLB
α . First we show that

LB-Triang can be implemented as an elimination scheme. Then we give some
important connections between GLB

α and G+
α , showing in particular the relation

between the transitory graphs at each step in the constructions of GLB
α and G+

α .
We prove that LB-Triang solves the Minimal Triangulation Sandwich Problem
automatically, and we examine the case when α is a meo. Finally, we also show
that LB-Triang is a process that characterizes minimal triangulation.

5.1 LB-Triang as an elimination scheme

Lekkerkerker and Boland [21] used Characterization 3.4 as an elimination scheme,
meaning that each vertex was removed from the graph as its LB-simpliciality was
established. We show in this section that Algorithm LB-Triang can likewise
be implemented as an elimination scheme, removing each vertex after processing.
The following lemmas will lead us to the desired result which is stated in Theorem
5.3.

A wide-range algorithm for minimal triangulation from an arbitrary ordering 13

Lemma 5.1 Let G = (V, E) be a graph and a, b, y ∈ V . Edge ab belongs to
LBDef(y) iff there is a chordless cycle a, y, b, x1, ..., xk, a with k ≥ 1 in G.

Proof. We know that ab ∈ LBDef(y) iff ab ∈ N(y), a 6= b, ab 6∈ E and
there is a path in G from a to b, the intermediate vertices of which belong to
V \N [y]. Let a, x1, ..., xk, b, with k ≥ 1, be a shortest possible such path. Then
a, y, b, x1, ..., xk, a is the desired chordless cycle of length ≥ 4.

Lemma 5.2 Let G = (V, E) be a graph, X a set of LB-simplicial vertices of G,
and y an vertex belonging to V \X. Then LBDefG(y) = LBDefG(V \X)(y).

Proof. The inclusion LBDefG(V \X)(y) ⊆ LBDefG(y) follows immediately from
Lemma 5.1. Let us show that LBDefG(y) ⊆ LBDefG(V \X)(y). Let ab ∈
LBDefG(y). We will show that ab ∈ LBDefG(V \X)(y). By Lemma 5.1, there
is in G a chordless cycle µ = a, y, b, x1, ..., xk, a of length ≥ 4. Let us first show
that no vertex of µ is LB-simplicial in G. Let x be a vertex of µ and a′, b′ be its
neighbors in µ. By Lemma 5.1, a′b′ ∈ LBDefG(x), so x is not LB-simplicial in
G. Therefore µ is in G(V \X), and by Lemma 5.1, ab ∈ LBDefG(V \X)(y).

Theorem 5.3 LB-Triang computes the same fill regardless of whether or not
each LB-simplicial vertex is deleted at the end of each step of the algorithm.

Proof. We show by induction on the number of already processed vertices that
eliminating every vertex after processing it, does not affect the computed fill.
Remember that Gi is the graph at the beginning of step i and Fi the fill computed
at step i in the version of the algorithm without elimination. Let G′

i be the graph
at the beginning of step i and F ′

i the fill computed at step i in the version of
the algorithm with elimination. In particular, G1 = G′

1 = G. Let us show by
induction on i (1 ≤ i ≤ n) that Fi = F ′

i .
Induction hypothesis: Fk = F ′

k, for 1 ≤ k ≤ i− 1.
Clearly, F1 = F ′

1, since no vertices are removed before the end of the first
step. We now assume that the induction hypothesis is true, and we will show
that this implies that Fi = F ′

i for step i. Let us compare graphs Gi and G′
i at the

beginning of step i before we process vertex xi. Since Fk = F ′
k, for 1 ≤ k ≤ i− 1,

G′
i = Gi(V \ {x1, x2, ..., xi−1}). By Invariant 4.7, vertices x1, x2, ..., xi−1 are LB-

simplicial in Gi. By Lemma 5.2, LBDefGi
(xi) = LBDefG′

i
(xi). We can thus

conclude that Fi = LBDefGi
(xi) = LBDefG′

i
(xi) = F ′

i .

We have in fact proved a stronger statement, namely that any LB-simplicial
vertex can be eliminated in a preprocessing step without affecting the resulting
fill generated by the restriction of the ordering on the remaining graph; such a
preprocessing step would cost O(nm).

14 A wide-range algorithm for minimal triangulation from an arbitrary ordering

LB-Triang may thus be run as an elimination process. Chances are that
the removal of the LB-simplicial vertices during the course of the algorithm will
rapidly disconnect the graph, thus allowing the process to run on small subgraphs.
The fact that the graph searches must be run on the transitory graph instead of
the input graph as we will see in Section 6 is not necessarily a drawback, as the
transitory graph, although it grows by edges, shrinks by vertices because of the
removal of the LB-simplicial vertices.

Corollary 5.4 (of Theorem 5.3) LB-Triang elimination scheme computes a min-
imal triangulation of the input graph.

We will finish this subsection by remarking that instead of making the vertices
LB-simplicial one by one, it is possible to process and eliminate an independent
set of vertices at each step. We use the following Lemma, which is a stronger
version of Lemma 4.4:

Lemma 5.5 Let G be a graph, let X be an independent set of vertices of V . The
minimal separators included in the sets N(x), for x ∈ X are pairwise non-crossing
in G.

Proof. Let x, x′ ∈ X and S, S ′ be two minimal separators included in the
neighborhood of x and x′ respectively in G. Let C be the component of C (S)
containing x′ (x′ 6∈ S because S ⊆ N(x) and x′ 6∈ N(x)). S ′ ⊆ N(x′) ⊆ C ∪
N(C) ⊆ C ∪ S. Then S ′ does not cross S in G.

It is easy to prove (using Lemmas 3.11 and 3.9) that making the vertices of an
independent set X LB-simplicial in a graph G yields the same result whether the
corresponding connected components are computed globally in G or by processing
the vertices of X one by one.

Note that a recent result of Kratsch and Spinrad (see [17]) shows that it is
possible to compute the connected components defined by all the vertex neigh-
borhoods of a graph in a global O(n2.83) time. A parallel implementation which
repeatedly processes an independent set of vertices might prove interesting.

5.2 LB-Triang solves the Minimal Triangulation Sandwich
Problem

As mentioned in the introduction, it is of interest for some applications when an
ordering α is given as input, to find a minimal triangulation which is a subgraph
of G+

α . We now show that Algorithm LB-Triang computes such a triangulation.

Theorem 5.6 Given a graph G and any ordering α on the vertices of G, GLB
α

solves the Minimal Triangulation Sandwich Problem with G ⊆ GLB
α ⊆ G+

α .

A wide-range algorithm for minimal triangulation from an arbitrary ordering 15

Proof. The inclusion G ⊆ GLB
α is evident. Let us show that GLB

α ⊆ G+
α . Let

G′
i = (Vi, E

′
i), where Vi = V \ {x1, x2, ...xi−1}, be the graph at the beginning of

step i and F ′
i the fill computed at step i of the LB-Triang elimination scheme and

let Gi = (Vi, E
i) be the graph at the beginning of step i of the elimination game.

In particular, G′
1 = G1 = G and G′

n+1 = Gn+1 = the empty graph. Let us show
by induction on i (1 ≤ i ≤ n) that E ′

i ⊆ Ei and F ′
i ⊆ Ei+1.

As G′
1 = G1, we have E ′

1 ⊆ E1 and F ′
1 = LBDefG′

1
(x1) ⊆ DefG1(x1) ⊆ E2.

We now assume that E ′
i−1 ⊆ Ei−1 and F ′

i−1 ⊆ Ei. For any set X, Pairs(X)
denotes the set of all pairs of elements of X. Let us show that E ′

i ⊆ Ei. E ′
i =

(E ′
i−1 ∪ F ′

i−1) ∩ Pairs(Vi) ⊆ (Ei−1 ∪ Ei) ∩ Pairs(Vi) = Ei. Let us show that
F ′

i ⊆ Ei+1. F ′
i = LBDefG′

i
(xi) ⊆ Pairs(NG′

i
(xi)) ⊆ Pairs(NGi(xi)) ⊆ Ei+1. For

any i from 1 to n, any edge of F ′
i is an edge of Gi+1 and therefore an edge of G+

α .
We can conclude that GLB

α ⊆ G+
α .

Corollary 5.7 Given (G, α), α is a meo of G iff GLB
α = G+

α .

We will now give a connection to the elimination game. Ohtsuki, Cheung,
and Fujisawa [22] give the following characterization of a meo of a graph G:

Characterization 5.8 (Ohtsuki, Cheung, and Fujisawa [22]) An ordering α of
the vertices of a graph G is a meo of G iff at each step i of the elimination game,
for each pair {a, b} of non-adjacent vertices of NGi(xi), there is a path in Gi from
a to b with all intermediate vertices in V \ NGi [xi], where xi and Gi denote the
processed vertex and the transitory graph at step i.

We denote this property of vertex xi in Gi as follows:

Definition 5.9 We will call a vertex x of G an OCF-vertex if for each pair
{a, b} of non-adjacent vertices of N(x), there is a path in G from a to b with all
intermediate vertices in V \N [x].

The abbreviation OCF stands for Ohtsuki, Cheung, and Fujisawa. We connect
Characterization 5.8 to Algorithm LB-Triang in the following fashion:

Lemma 5.10 A vertex x in G is an OCF-vertex iff LBDef(x) = Def(x).

Proof. For any pair {a, b} of non-adjacent vertices of N(x), there is a path in G

from a to b with all intermediate vertices in V \N [x] iff there is a component C

of C (N [x]) such that N(C) contains a and b. Then a vertex x in G is an OCF-
vertex iff Def(x) ⊆ LBDef(x), i.e. iff LBDef(x) = Def(x), as the inclusion of
LBDef(x) in Def(x) is always true.

Thus the implication from right to left of Characterization 5.8 follows from
Corollary 5.7: if an OCF-vertex is chosen at each step, then by Lemma 5.10,
the fill added at each step of the elimination game is identical to the fill added
at each step of the LB-Triang elimination scheme. Hence, G+

α = GLB
α , and by

Corollary 5.7, α is a meo of G.

16 A wide-range algorithm for minimal triangulation from an arbitrary ordering

5.3 LB-Triang characterizes minimal triangulation

We now end this section by showing that LB-Triang characterizes minimal tri-
angulation, which is to say that not only does the algorithm compute a minimal
triangulation, but conversely any minimal triangulation of the input graph can
be obtained by some execution of LB-Triang. This is not the case with other
classical minimal triangulation algorithms such as LEX M.

Property 5.11 (Ohtsuki, Cheung, and Fujisawa [22]) H is a minimal triangu-
lation of G iff H = G+

α where α is a meo of G.

Theorem 5.12 Given a graph G and any minimal triangulation H of G, there
exists an ordering α of the vertices of G, such that GLB

α = H.

Proof. By Property 5.11, there exists a meo α of G such that G+
α = H. By

Corollary 5.7, GLB
α = G+

α = H.

The set of orderings of the vertices of an arbitrary graph G can thus be parti-
tioned into equivalence classes, each class defining the same minimal triangulation
of G by LB-Triang. The set of equivalence classes represents the set of minimal
triangulations of G.

We will now characterize the orderings for which LB-Triang will yield a given
minimal triangulation H of G.

Characterization 5.13 Let H = (V, E + F) be a minimal triangulation of G =
(V, E), and let α be an ordering of the vertices of G. The following are equivalent:

(a) H = GLB
α

(b) At each step i of LB-Triang, LBDefGi
(xi) ⊆ F .

(c) At each step i of LB-Triang, any minimal separator of Gi included in
NGi

(xi) is a minimal separator of H.

Proof. (a) ⇔ (b) : If H = GLB
α , then at each step i of the LB-Triang process,

LBDefGi
(xi) ⊆ F , as LBDefGi

(xi) is the set Fi of fill edges added at step i.
Conversely, if at each step i of the LB-Triang process, LBDefGi

(xi) ⊆ F then
GLB

α ⊆ H. As GLB
α is a triangulation of G by Lemma 4.8 and H is a minimal

triangulation of G, H = GLB
α . (a) ⇔ (c) : If H = GLB

α then at each step i

of the LB-Triang process, any minimal separator of Gi included in NGi
(xi) is an

element of the set Si of separators saturated at step i, and therefore is a minimal
separator of H by Invariant 4.9 and Property 3.6 b). Conversely, we suppose that
at each step i of the LB-Triang process, any minimal separator of Gi included in
NGi

(xi) is a minimal separator of H. Thus any fill edge has both endpoints in
some minimal separator of H. As H is triangulated, any minimal separator of H

is a clique by Characterization 3.1, so at each step i, LBDefGi
(xi) ⊆ F , and by

the previous equivalence, H = GLB
α .

A wide-range algorithm for minimal triangulation from an arbitrary ordering 17

6 Complexity of a straightforward implementa-

tion

In this section, we propose an implementation with an O(nm′) time bound, where
m′ is the number of edges of GLB

α .

Algorithm LB-TRIANG
input : A graph G = (V, E), with |V | = n and |E| = m.
output : A minimal fill F of G, with |E + F | = m′

the order α in which the vertices are processed,
a minimal triangulation GLB

α of G, GLB
α = (V, E + F).

begin
F ← ∅;
G1 ← G;
for i = 1 . . . n do

Pick any unprocessed vertex x, and number it as xi;
Compute edges Fi whose addition makes xi LB-simplicial in Gi;
F ← F + Fi;
Gi+1 ← (V, E + F);

α← [x1, x2, ..., xn];
GLB

α ← Gn+1;
return (F, α, GLB

α);
end

With this implementation, the only difficulty consists in computing the set
of edges Fi. As the same component may be encountered many times, thus
defining the same minimal separator many times, we aim to saturate each minimal
separator of the minimal triangulation under construction exactly once. We claim
that this will cost O(nm′).

Lemma 6.1 Let G = (V, E) be a graph, and let S ⊆ V . Then ΣC∈C (S)|N(C)| ≤
m.

Proof. For each C in C (S), let InOut(C) denote the set of edges xy of G

such that x ∈ C and y ∈ N(C). For each C in C (S), |InOut(C)| ≥ |N(C)|,
and for any distinct C and C ′ in C (S), InOut(C) ∩ InOut(C ′) = ∅. Then
ΣC∈C (S)|N(C)| ≤ ΣC∈C (S)|InOut(C)| = | ∪C∈C (S) InOut(C)| ≤ |E| = m.

Lemma 6.2 Let G be a graph, let x be a vertex of G and let G′ be the graph
obtained from G by saturating a set of pairwise non-crossing minimal separators
of G. Then CG′(NG′ [x]) = CG(NG′ [x]) and for each C in CG′(NG′ [x]), NG′(C) =
NG(C).

18 A wide-range algorithm for minimal triangulation from an arbitrary ordering

Proof. It is sufficient to show that for each C in CG′(NG′ [x]), C is in CG(NG′ [x])
and NG′(C) = NG(C). Let C be a connected component of CG′(NG′ [x]). We first
show that NG′(C) = NG(C). By Property 4.2, NG′(C) is a minimal separator
of G′, then by Lemma 3.13 and the fact that C is a connected component of
CG′(NG′(C)), C is in CG(NG′(C)) and NG′(C) = NG(C). We will now show that
C is in CG(NG′ [x]). C 6= ∅ and C ⊆ V \ NG′ [x] (because C ∈ CG′(NG′ [x])),
G(C) is connected (because C ∈ CG(NG′(C))) and NG(C) ⊆ NG′ [x] (because
NG(C) = NG′(C) and NG′(C) ⊆ NG′ [x] as C is a component of CG′(NG′ [x])). By
Observation 3.7, C is in CG(NG′ [x]).

Lemma 6.3 At each step i of the LB-Triang process, the neighborhoods of the
connected components of C (NGi

[xi]) may be computed in G instead of Gi.

Proof. This follows immediately from Invariant 4.9 and Lemma 6.2.

Lemma 6.4 The number of minimal separators of a triangulated graph is smaller
than n.

Proof. This is a direct consequence of Theorem 3 from [26].

Theorem 6.5 The time complexity of LB-Triang is in O(nm′).

Proof. At each step i of Algorithm LB-Triang, the elements of the set Si (i.e.
the minimal separators included in NGi

(xi)) have to be saturated. In order to
avoid saturating the same separator several times, we store the separators in a
data structure as we saturate them. Thus after a minimal separator is computed,
it is searched for in the data structure and if it is not found, it is inserted and
saturated. Consequently, we have to evaluate the complexity of the following
three actions at each step i: 1) computing Si, 2) searching/inserting the minimal
separators of Si in the data structure, 3) saturating the new minimal separators.

1) By Property 4.2, Si = {NGi
(C) | C ∈ CGi

(NGi
[xi])}, and by Lemma 6.3,

Si = {NG(C) | C ∈ CG(NGi
[xi])}. NGi

[xi] may be computed in O(n) and the
sets NG(C), C ∈ CG(NGi

[xi]) in O(m). Thus computing all the sets Si requires
O(nm).

2) We choose a data structure allowing to search/insert a separator S in O(|S|)
time. We represent the set of already inserted minimal separators by an n-ary
rooted tree, each successor of a node being numbered from 1 to n. Initially, the
tree is reduced to its root. We suppose that V = {1, 2, ..., n}. If for instance we
want to insert the separator {2, 3, 7} into the initial tree, we create the successor
number 2 of the root (representing the set {2}), then the successor number 3 of
this node (representing the set {2, 3}) and then the successor number 7 of this
node (representing the set {2, 3, 7}). Thus, if the separator {2}, {2, 3} or {2, 3, 7}

A wide-range algorithm for minimal triangulation from an arbitrary ordering 19

is computed afterwards, it will be found in the tree and will not be saturated
again. To avoid initializing the vector of pointers to the successors in each node
of the tree, we use the technique of back pointers suggested by A. V. Aho et
al. [1] and explained in more detail by A. Cournier [10]. Searching/inserting a
separator S requires O(|S|) time, so by Lemma 6.1 we obtain a complexity of
O(m) at each step. Note that the elements of each minimal separator have to be
inserted in increasing order. The following algorithm puts the elements of NG(C)
in increasing order into the variable Neighbor(C) for each C in CG(NGi

[xi]) in
O(m) time.

begin
foreach C in CG(NGi

[xi]) do
Neighbor(C)← ∅;

foreach y in NGi
(xi) in increasing order do

foreach z in NG(y) \NGi
[xi] do

let C ∈ CG(NGi
[xi]) containing z;

if y 6= last(Neighbor(C)) do
add y to Neighbor(C);

end

The search/insert operation thus globally requires O(nm) time.

3) By Lemma 4.8, GLB
α is triangulated and by Invariant 4.9 and Property 3.6

b), Si is a set of minimal separators of GLB
α then by Lemma 6.4, the total number

of new minimal separators saturated at all steps is smaller than n. Saturating a
separator S requires O(number of edges of GLB

α (S)), which is O(m′), so saturating
all the minimal separators requires O(nm′).
We obtain a global time complexity of O(nm′) for this straightforward implemen-
tation of Algorithm LB-Triang.

Note that the implementation presented in this section is extremely simple.
The only operation among those described above which requires more than O(nm)
time is the actual saturation of the minimal separators. In the next section, we
will describe an implementation that uses a new data structure based on a tree
decomposition, which enables representing the minimal triangulation obtained
without actually adding the saturating edges, and thus ensuring an O(nm)-time
complexity. However, numerical tests reported in Section 8 show that, even with
the already presented straightforward implementation, LB-Triang tends to run
faster than LEX M.

20 A wide-range algorithm for minimal triangulation from an arbitrary ordering

7 Improving the complexity to O(nm)

The purpose of this section is to provide an implementation of LB-Triang which
improves the complexity from O(nm′) to O(nm). A first version of this imple-
mentation was presented by Heggernes and Villanger in [15].

As mentioned before, the only operation in the straightforward implementa-
tion of LB-Triang which requires more than O(nm) time is the actual saturation
of the minimal separators. To achieve an O(nm) time implementation, we do not
actually add the edges necessary to saturate the minimal separators, but store
each minimal separator as a vertex list, with the understanding that it is a clique.
In this fashion, we save time in computing the cliques; however it becomes more
costly to compute the neighborhood of xi in the transitory graph Gi at each
step i. Recall that fill edges of Gi appear only within already computed minimal
separators, thus in order to compute NGi

[xi], we have to search for the already
computed minimal separators which include xi. The union of such minimal sep-
arators, together with the original neighborhood of xi in G, gives us NGi

[xi]. We
will explain and prove how this can be done within the time limit of O(nm).

In this implementation, we maintain a tree structure TS which we will prove
to be a tree decomposition of G. In the beginning, all vertices of G belong to the
same node of the tree TS. This corresponds to the situation where we do not
know anything about the minimal separators of G, so that parts of the graph
are not separated from each other. At each step of the algorithm, when new
minimal separators in the neighborhood of xi are computed, they are inserted as
edges of TS. Whenever a minimal separator S separating xi from a component
C ∈ C (NGi

[xi]) is computed, the node X of TS which contains S, xi, and at
least one vertex of C is split into two nodes X1 and X2. The vertices of S are
inserted as an edge X1X2 in TS, and X1 and X2 contain the parts of X that are
subsets of C ∪ S and V \ C respectively. This way, nodes of TS are split, and
edges added, whenever we compute new minimal separators.

Due to the properties of tree decompositions, and using subtrees and edges of
TS, we are able to compute the union of the minimal separators containing xi at
step i in O(m) time, giving a total time of O(nm) for the whole algorithm. In
the rest of this section, we give the details and formal proofs of this approach.

7.1 Tree decomposition

Definition 7.1 Let G = (V, E) be a graph. A tree structure on G is a structure
TS(T, (Xu)u∈UT

, (Suv)uv∈ET
), where T = (UT , ET) is a tree, Xu is a subset of V

for each u in UT and Suv is a subset of V for each uv in ET .

The vertices of G will be noted x, y, z, etc. and the nodes of T will be noted u,
v, w, etc. In this section, TS will implicitly denote a tree structure (T = (UT , ET),

A wide-range algorithm for minimal triangulation from an arbitrary ordering 21

(Xu)u∈UT
, (Suv)uv∈ET

) on a graph G = (V, E). Given a tree structure TS on G,
we define the sets Ux, UC and the graphs Tx, TC and Tuv as follows.

• ∀x ∈ V , Ux = {u ∈ UT | x ∈ Xu} and Tx = T (Ux) = (Ux, Ex),

• ∀C ⊆ V , TC = (∪x∈CUx,∪x∈CEx) = (UC , EC),

• ∀uv ∈ ET , Tuv and Tvu are the two connected components of T ′ = (UT , ET \
{uv}) respectively containing u and v.

Definition 7.2 A tree decomposition of G is a tree structure TS on G such that:

a) ∪u∈UT
Xu = V ,

b) ∀xy ∈ E, ∃u ∈ UT | x, y ∈ Xu (i.e. Ux ∩ Uy 6= ∅),

c) ∀x ∈ V, Tx is a subtree of T ,

d) ∀uv ∈ ET , Suv = Xu ∩Xv.

Tree decomposition is used to define the treewidth of a graph. For more
information on tree decompositions and their importance, the reader is referred
to [8]. We give some basic properties of a tree decomposition which will be used
in this section.

Property 7.3 Let TS be a tree decomposition of G. Then ∀x ∈ V, ∀uv ∈
ET , x ∈ Suv iff uv is an edge of Tx.

Proof. Vertex x ∈ Suv iff x ∈ Xu ∩ Xv, i.e. u, v ∈ Ux or uv is an edge of Tx

(because uv is an edge of T).

Property 7.4 Let TS be a tree decomposition of G, and C be a subset of V . If
G(C) is connected then TC is a subtree of T .

Proof. Let u, v ∈ UC . Let us show that there is a path in TC from u to v. Let
x, y ∈ C such that u ∈ Ux and v ∈ Uy, and let λ = (x = x0, x1, ..., xk = y) be a
path in G(C) from x to y. For i from 0 to k, Txi

is a subtree of T and if i < k

then xixi+1 ∈ E, which implies that Uxi
∩ Uxi+1

6= ∅. Then there is a path in TC

from u to v.

Property 7.5 Let TS be a tree decomposition of G. Then ∀uv ∈ ET , ∀C ∈
CG(Suv), TC ⊆ Tuv or TC ⊆ Tvu.

22 A wide-range algorithm for minimal triangulation from an arbitrary ordering

Proof. By Property 7.4, TC is a subtree of T and by Property 7.3 and the fact
that C ∩ Suv = ∅, uv is not an edge of TC , so TC ⊆ Tuv or TC ⊆ Tvu.

Thus, if in G Suv separates two components C1 and C2 of CG(Suv), then Suv

may separate C1 and C2 also in T , in the sense that one of the subtrees TC1

and TC2 is included in Tuv and the other is included in Tvu. We will call tree
decomposition of G by minimal separators any tree decomposition of G such that
for any edge uv of T , Suv is a minimal separator of G separating in T two full
components of CG(Suv).

Definition 7.6 A tree decomposition of G by minimal separators is a tree de-
composition TS of G satisfying the extra property:

e) ∀uv ∈ ET , ∃C1, C2 full components of CG(Suv) | TC1 ⊆ Tuv and TC2 ⊆ Tvu.

Our O(nm) time complexity follows from the fact that the tree structure
constructed in LB-Treedecomp process is a tree decomposition of G by minimal
separators at every step of this process.

We will denote by search in T any graph search in the tree T (for instance
breadth-first or depth-first search).

7.2 An O(nm) time implementation

Algorithm LB-Treedecomp
input : A graph G = (V, E), with |V | = n and |E| = m.
output : The order α in which the vertices are processed,

and the graph GLB
α .

begin
H ← (V, ∅);
T ← ({u0}, ∅);
Xu0 ← V ;
InitVariables();
for i = 1 . . . n do

Pick any unprocessed vertex x, and number it as xi;
NH [xi]← Neighbors(G, xi, TS);
foreach C ∈ CG(NH [xi]) do

S ← NG(C);
Search/Insert S in the S/I data structure;
if S has not been found in the S/I data structure do

Let c be a vertex of C;
Search in T from u(c) until a node w such that xi ∈ Xw is reached;
Split w into w1 and w2;

A wide-range algorithm for minimal triangulation from an arbitrary ordering 23

Xw1 ← Xw ∩ (C ∪ S);
Xw2 ← Xw \ C;
Replace each edge wv by w1v with Sw1v = Swv if Swv

⊆ C ∪ S and by w2v with Sw2v = Swv otherwise;
Add edge w1w2;
Sw1w2 ← S;
UpdateVariables();

α← [x1, x2, ..., xn];
return(α, H);

end

As in the straightforward implementation of LB-Triang, we use a Search/-
Insert data structure to avoid processing already saturated minimal separators
(see the proof of Theorem 6.5) that we denote by S/I data structure. In order
to compute at each step i the neighborhood of xi in the transitory graph Gi, we
use a tree structure TS on the input graph G (which we will prove to be a tree
decomposition of G by minimal separators). This computation is performed by
function Neighbors whose specifications are the following (the implementation
of this function will be given later).

Function Neighbors (G, x, TS)
input : A graph G = (V, E), a vertex x of G, a tree structure

TS = (T = (UT , ET), (Xu)u∈UT
, (Suv)uv∈ET

) on G.
precondition: TS is a tree decomposition of G.
output : the set NG′ [x], where G′ is the graph obtained from G by

saturating the elements of the sets Suv for each uv in ET ,
i.e. the set NG[x] ∪ (∪uv∈ET |x∈Suv

Suv).

Procedures InitVariables and UpdateVariables respectively initialize and
update some variables which are only used in function Neighbors, except for
the variables u(x) which are also used in the following algorithm: for any vertex
x of G, u(x) contains an arbitrary node of Ux. The implementation of these
procedures will be given later.

Example 7.7 In Figure 1 a), a graph G is given with an ordering α on its
vertices. Let us simulate how LB-Treedecomp proceeds in an execution which
processes the vertices in the given order. The successive states of tree T are
shown in Figure 2. Figure 2 a) shows the initial state of T .

Step 1: Neighbors(G, 1, TS) = NG[1] = {1, 2, 3, 4, 5}, and CG({1, 2, 3, 4, 5})
= {{6, 7}, {8, 9}}. NG({6, 7}) = {2, 3}, and NG({8, 9}) = {2, 4, 5}. In the process

24 A wide-range algorithm for minimal triangulation from an arbitrary ordering

u
0

u
1

u
0

u
4

u
2

u
0

u
1

u3

u3 u
1

u
0

u
1

u
0

u
2

u
5

u
4u

2

{1,2,3,4,5,6,7,8,9} {2,3,6,7} {1,2,3,4,5,8,9}a) b)

d)

e)

{2,3,6,7} {1,2,3,4,5}c) {2,4,5,8,9}

{2,4,5,8}

{2,4,5,8}
{2,4,5}

{5,8,9}{1,2,4,5}{1,2,3}
{5,8}

{5,8,9}
{5,8}

{2,3}

{2,3} {2,4,5}

{3,6}
{3,6,7} {2,3,6}

{2,3}
{1,2,3,4,5}

{2,4,5}

{3,6,7}
{3,6}

{2,3,6}
{2,3} {1,2}

Figure 2: The successive states of tree T in the execution of Algorithm LB-
Treedecomp on graph G of Figure 1 a)

of {6, 7}, u0 is split into u1 and u0 (Figure 2 b), and in the process of {8, 9}, u0

is split into u2 and u0 (Figure 2 c).

Step 2: Neighbors(G, 2, TS) = NG[2]∪ {2, 3} ∪ {2, 4, 5} = {1, 2, 3, 4, 5, 6, 8},
and
CG({1, 2, 3, 4, 5, 6, 8}) = {{7}, {9}}. NG({7}) = {3, 6}, and NG({9}) = {5, 8}. In
the process of {7}, u1 is split into u3 and u1, and in the process of {9}, u2 is split
into u4 and u2 (Figure 2 d).

Step 3: Neighbors(G, 3, TS) = NG[3] ∪ {2, 3} ∪ {3, 6} = {1, 2, 3, 6, 7}, and
CG({1, 2, 3, 6, 7}) = {{4, 5, 8, 9}}. NG({4, 5, 8, 9}) = {1, 2}. In the process of
{4, 5, 8, 9}, u0 is split into u5 and u0 (Figure 2 e).

No further split operation is performed in the tree T at later steps. We obtain
the graph GLB

α shown in Figure 1 c). Note that the sets Xu for node u of the final
tree T (Figure 2 e) are the maximal cliques of GLB

α , and T a clique tree of the
chordal graph GLB

α . This is not always the case because, according to Algorithm
LB-Treedecomp, a given minimal separator may only appear in one edge of T ,
whereas it may appear in several edges of a clique tree of a chordal graph.

7.3 Proof of correctness and complexity

7.3.1 Algorithm LB-Treedecomp

The implementation of LB-Treedecomp we present here is similar to the straight-
forward one presented in Section 6. Instead of being saturated, the minimal
separators that have not been found in the S/I data structure are inserted as
edges into the tree T of the tree structure TS and their saturation is simulated in

A wide-range algorithm for minimal triangulation from an arbitrary ordering 25

function Neighbors. Thus the correctness of LB-Treedecomp depends on that
of function Neighbors.

Let us recall that for each i from 1 to n + 1, Gi denotes the transitory graph
at the beginning of step i of the LB-Triang process, and Si denotes the set of
minimal separators saturated at step i, so that G1 = G and Gi+1 is obtained
from Gi by saturating the elements of Si. In the same way, let G′

i denote the
graph obtained from G by saturating the sets S processed so far at the beginning
of step i of the LB-Treedecomp process, and let S ′

i denote the set of the sets S

processed at step i, so that G′
1 = G and G′

i+1 is obtained from G′
i by saturating

the elements of S ′
i . Note that G′

i is also the graph obtained from G by saturating
the sets Suv for each uv in ET at the beginning of step i, as the only sets S that
are processed but not inserted as edges into T have been found in the S/I data
structure and therefore are included in already processed sets.

Invariant 7.8 For any i from 0 to n, if function Neighbors is correct and if TS

is a tree decomposition of G at the beginning of each step ≤ i of LB-Treedecomp
process, then the following property Pj holds for any j between 0 and i.

Pj: (if j > 0 then NH [xj] = NGj
[xj] and S ′

j = Sj) and Gj+1 = G′
j+1.

Proof. By induction on j. P0 holds, as G1 = G′
1 = G. Assume that Pj−1 holds

for some j, 1 ≤ j ≤ i. Let us show that Pj holds. TS is a tree decomposition of G

at the beginning of step j, so the precondition of function Neighbors is satisfied
so that, with the assumption that this function is correct, it will return the set
NG′

j
[xj] at step j. Therefore NH [xj] = NG′

j
[xj] and, by induction hypothesis,

Gj = G′
j,so NH [xj] = NGj

[xj]. S ′
j = {NG(C) | C ∈ CG(NH [xj])} = {NG(C) |

C ∈ CG(NGj
[xj])},so by Lemma 6.3, S ′

j = Sj. Hence the graph obtained from
Gj by saturating the elements of Sj is exactly the graph obtained from G′

j by
saturating the elements of S ′

j , i.e. Gj+1 = G′
j+1

The correctness of Algorithm LB-Treedecomp follows from the the fact that
Property Pi holds for any i from 1 to n (see Theorem 7.22 below). However, it
remains to give the implementation of function Neighbors and prove its correct-
ness and the satisfaction of its precondition at each step of the LB-Treedecomp
process.

7.3.2 Function Neighbors

Remember that, given a graph G, a vertex x of G and a tree decomposition
TS of G, function Neighbors returns the set NG[x] ∪ (∪uv∈ET |x∈Suv

Suv), i.e. by
Property 7.3 the set NG[x]∪{y ∈ V | Tx and Ty have at least one common edge}.
Let us give the following definitions:

Definition 7.9 Let TS be a tree decomposition of G and x be a vertex of G. We
define the following sets:

26 A wide-range algorithm for minimal triangulation from an arbitrary ordering

• OneEdge = {y ∈ V | Ty has at least one edge}
• Inner(x) = {y ∈ OneEdge | Ty is included in Tx}
• InnerOuter(x) = {y ∈ OneEdge | Ty has at least one edge in Tx and at least
one edge out of Tx}
• BorderOuter(x) = {y ∈ OneEdge | Tx and Ty have exactly one node in com-
mon }
• Outer(x) = {y ∈ OneEdge | Ty is disjoint from Tx}
• CommonEdge(x) = {y ∈ OneEdge | Tx and Ty have at least one edge in com-
mon }
• ThroughBorder(x) = {y ∈ OneEdge | some edge of Ty has exactly one of its
extremities in Tx}

Definition 7.10 Let T ′ = (UT ′ , ET ′) be a subtree of a tree T = (UT , ET).
BorderT (T ′) = {(u, v) ∈ UT ′ × (UT \ UT ′) | uv ∈ ET}.

Lemma 7.11 Let TS be a tree decomposition of G and x be a vertex of G.
a) OneEdge = Inner(x) + InnerOuter(x) + BorderOuter(x) + Outer(x),
b) CommonEdge(x) = Inner(x) + InnerOuter(x),
c) ThroughBorder(x) = InnerOuter(x) + BorderOuter(x),
d) OneEdge = ∪uv∈ET

Suv,
e) CommonEdge(x) = ∪uv∈ET |x∈Suv

Suv,
f) ThroughBorder(x) = ∪(u,v)∈BorderT (Tx)Suv.

Proof.
a), b) and c) are evident properties on the relative position of a subtree Ty

having at least one edge with respect to a subtree Tx in any tree T .
c), d) and e) follow from Property 7.3.

Our goal is to compute the set ∪uv∈ET |x∈Suv
Suv, i.e. by Lemma 7.11 b) and

e), the union of the sets Inner(x) and InnerOuter(x). Set OneEdge will be
computed in a global variable of LB-Treedecomp. BorderT (Tx) can be computed
by a search in T from an arbitrary node of Tx, which allows us to compute
set ThroughBorder(x). It remains to distinguish the vertices of InnerOuter(x)
from those of BorderOuter(x) in set ThroughBorder(x) and to distinguish the
vertices of Inner(x) from those of Outer(x) in set OneEdge\ThroughBorder(x).
For the first point, we introduce the notion of degree in T of a node u of T with
respect to a vertex y of Xu.

Definition 7.12 Let TS be a tree decomposition of G.
∀u ∈ UT , ∀y ∈ Xu, DegreeT (u, y) = |{v ∈ NT (u) | y ∈ Suv}|.

Lemma 7.13 Let TS be a tree decomposition of G and x be a vertex of G.
a) ∀y ∈ ThroughBorder(x), ∀(u, v) ∈ BorderT (Tx) | y ∈ Suv,

A wide-range algorithm for minimal triangulation from an arbitrary ordering 27

y ∈ InnerOuter(x) iff |{v′ ∈ NT (u) | y ∈ Suv′ and (u, v′) ∈ BorderT (Tx)}| <
DegreeT (u, y)
b) ∀y ∈ OneEdge \ ThroughBorder(x), if u(y) ∈ Uy then

y ∈ Inner(x) iff x ∈ Xu(y)

Proof.
a) Let us assume that y ∈ InnerOuter(x). u is a node both of Tx and of

Ty and y 6∈ BorderOuter(x) then there is another common node, say u′, of
Tx and Ty. Let (u, v′, ..., u′) be the unique path in T from u to u′. The edge
uv′ is an edge of Tx and Ty. Then y ∈ Suv′ (by Property 7.3) and (u, v′) 6∈
BorderT (Tx), therefore |{v′ ∈ NT (u) | y ∈ Suv′ and (u, v′) ∈ BorderT (Tx)}| <

DegreeT (u, y). Conversely, assume on the contrary that y 6∈ InnerOuter(x).
Then by Lemma 7.11 y ∈ BorderOuter(x), so it is clear that |{v′ ∈ NT (u) | y ∈
Suv′ and (u, v′) ∈ BorderT (Tx)}| = DegreeT (u, y).

c) By Lemma 7.11 OneEdge \ ThroughBorder(x) = Inner(x) ⊕ Outer(x).
If y ∈ Inner(x) then x ∈ Xu for any node u of Uy and if y ∈ Outer(x) then
x 6∈ Xu for any node u of Uy. Therefore it is sufficient to test whether belonging
x belongs to Xu for an arbitrary node u of Uy to decide whether y belongs to
Inner(x) or not.

We will now implement function Neighbors. For this purpose, we main-
tain in Algorithm LB-Treedecomp variables OneEd, u(y) and Deg(u, y) which
respectively contain the current values of OneEdge, an arbitrary node of Uy and
DegreeT (u, y), with the following initializations and updates.

Procedure InitVariables()

begin
OneEd← ∅;
foreach y ∈ V do

u(y)← u0;
Deg(u0, y)← 0;

end

Procedure UpdateVariables()

begin
OneEd← OneEd ∪ S;
for j = 1 . . . 2 do

foreach y ∈ Xwj
do

u(y)← wj;
Deg(wj, y)← 0;

28 A wide-range algorithm for minimal triangulation from an arbitrary ordering

foreach v ∈ NT (wj) do
foreach y ∈ Swjv do

Increment Deg(wj, y);
end

In function Neighbors, we use the local variables InnerOuter, Inner and
Count(u, y) which respectively contain the current values of InnerOuter(x),
Inner(x) and DegreeT (u, y)−|{v ∈ NT (u) |(y ∈ Suv and (u, v) ∈BorderT (Tx))}|.

Function Neighbors (G, x, TS)
input : A graph G = (V, E), a vertex x of G, a tree structure

TS = (T = (UT , ET), (Xu)u∈UT
, (Suv)uv∈ET

) on G.
precondition: TS is a tree decomposition of G.
output : the set NG′ [x], where G′ is the graph obtained from G by

saturating the elements of the sets Suv for each uv in ET ,
i.e. the set NG[x] ∪ (∪uv∈ET |x∈Suv

Suv).

begin
Compute BorderT (Tx) by search in T from u(x);
InnerOuter ← ∅;
Inner ← OneEd;
foreach (u, v) ∈ BorderT (Tx) do

foreach y ∈ Suv do
Add y to InnerOuter;
Remove y from Inner;
Count(u, y)← Deg(u, y);

foreach (u, v) ∈ BorderT (Tx) do
foreach y ∈ Suv do

Decrement Count(u, y);
if Count(u, y) = 0 do

Remove y from InnerOuter;
foreach y ∈ Inner do

if x 6∈ Xu(y) do
Remove y from Inner;

return (NG[x] ∪ Inner ∪ InnerOuter);
end

Theorem 7.14 Function Neighbors is correct (provided that TS is a tree de-
composition of G).

Proof. Let us assume that TS is a tree decomposition of G. It is clear from pro-
cedures InitVariables and UpdateVariables that variables OneEd, u(y) and

A wide-range algorithm for minimal triangulation from an arbitrary ordering 29

Deg(u, y) respectively contain the current values of ∪uv∈ET
Suv (and therefore of

OneEdge by Lemma 7.11 d)), an arbitrary node of Uy and DegreeT (u, y). By
Lemmas 7.11 and 7.13, the local variables InnerOuter, Inner and Count(u, y)
respectively contain the current values of InnerOuter(x), Inner(x) and De-
greeT (u, y)− |{v ∈ NT (u) | y ∈ Suv and (u, v) ∈ BorderT (Tx)}|. By Lemma 7.11
b) and e), the function returns NG[x] ∪ (∪uv∈ET |x∈Suv

Suv).

7.3.3 Complexity

The following lemma is the key of O(nm) time complexity of LB-Treedecomp.

Lemma 7.15 Let TS be a tree decomposition of G by minimal separators and
T ′ be a subtree of T . Then Σ(u,v)∈BorderT (T ′)|Suv| ≤ m.

Proof. For each (u, v) ∈ BorderT (T ′), let C(u,v) be a full component of CG(Suv)
such that TC(u,v)

⊆ Tvu, and let InOut(C(u,v)) denote the set of edges xy of G

such that x ∈ C(u,v) and y ∈ NG(C(u,v)) = Suv. For each (u, v) ∈ BorderT (T ′),
|InOut(C(u,v))| ≥ |NG(C(u,v))| = |Suv|. Let (u, v), (u′, v′) be distinct elements
of BorderT (T ′). Let us show that InOut(C(u,v)) ∩ InOut(C(u′,v′)) = ∅. It
is sufficient to show that no vertex of C(u,v) nor of Suv can be in C(u′,v′). If
x ∈ C(u,v), then Tx ⊆ Tvu, and if x ∈ Suv, then by Property 7.3 uv is an
edge of Tx. In neither case is Tx included in Tv′u′ , then x is not in C(u′,v′).
Therefore, InOut(C(u,v)) ∩ InOut(C(u′,v′)) = ∅. Hence Σ(u,v)∈BorderT (T ′)|Suv| ≤
Σ(u,v)∈BorderT (T ′)|InOut(C(u,v))| = | ∪(u,v)∈BorderT (T ′) InOut(C(u,v))| ≤ |E| = m.

Theorem 7.16 If TS is a tree decomposition of G by minimal separators at the
beginning of each process of a set S, then the time complexity of LB-Treedecomp
is O(nm).

Proof. All sets (in particular sets Xu and Suv) are implemented with the data
structure mentioned in the proof of Theorem 6.5, which was suggested by A.
V. Aho et al. [1] and explained in more detail by A. Cournier [10]. This data
structure allows us to initialize a set, add or remove an element, test for the
presence of an element, etc. in in O(1) time and to read the elements of a set S

in O(|S|). By the hypothesis on TS, Theorem 7.14 and Invariant 7.8, the sets
S processed at each step are the same as in Algorithm LB-Triang. Therefore,
as in the proof of the complexity of LB-Triang (Theorem 6.5), computing the
components of CG(NH [xi]) and their neighborhoods and searching/inserting the
minimal separators into the S/I data structure require O(nm), and the number
of new (i.e. not found in the S/I data structure) separators to be processed is
smaller than n, which implies that the tree T has at most n nodes. Initializations
only require O(n). It remains to show that computing NH [xi] and processing a
new separator S may be done in O(m).

30 A wide-range algorithm for minimal triangulation from an arbitrary ordering

Computing NH [xi]: T has at most n nodes, so computing BorderT (Tx)
by search in T costs O(n). Processing the elements of BorderT (Tx) requires
O(Σ(u,v)∈BorderT (Tx)|Suv|), which by Lemma 7.15 is in O(m). Computing NH [xi]
therefore requires O(m) time.

Processing a new separator S: Since T has at most n nodes, searching T

to reach w costs O(n). Splitting w into w1 and w2 costs O(n). Replacing edges
wv with w1v or w2v and updating Deg(u, y) require O(Σ(w,v)∈BorderT (T ′)|Swv|),
where T ′ is the subtree of T reduced to node w, w1 or w2, and therefore cost
O(m) by Lemmas 7.15. Adding edge w1w2, updating OneEd and u(y) cost O(n).
Processing a new separator S thus requires O(m).

7.3.4 Proof of the Invariant on TS

To complete the proof of correctness and complexity of Algorithm LB-Tree-
decomp, it remains to show that TS is a tree decomposition of G by minimal
separators at the beginning of each processing step of a set S. We first prove
two lemmas about tree decompositions (Lemmas 7.17 and 7.18) which we apply
to Algorithm LB-Treedecomp (Lemmas 7.19 and 7.20). These lemmas aim at
proving Lemma 7.20 which will be used in the proof of Invariant 7.21.

Lemma 7.17 Let TS be a tree decomposition of G, let G′ be the graph obtained
from G by saturating the elements of the sets Suv for each uv in ET , let x ∈ V

and C ∈ CG(NG′ [x]). Then |UC ∩ Ux| ≤ 1.

Proof. Assume by contradiction that |UC ∩Ux| > 1. By Property 7.4, TC and Tx

are subtrees of T , so the unique path in T connecting two given different nodes
of UC ∩ Ux is also a path in TC and Tx. TC and Tx have at least one edge in
common. Let uv be a common edge of TC and Tx and let y be a vertex of C such
that uv is an edge of Ty. By Property 7.3, x, y ∈ Suv, so y ∈ NG′ [x], whereas
y ∈ C and C ∈ CG(NG′ [x]), a contradiction.

Lemma 7.18 Under the hypothesis of Lemma 7.17, let S = NG(C) and λ be a
path in T of minimal length from a node of TC to a node of Tx. Then for any
node u of λ, S ⊆ Xu.

Proof. We have to show that for any vertex s of S, λ is a path in Ts. By
Lemma 7.17, |UC ∩ Ux| ≤ 1, so it is sufficient to show that for any vertex s of S,
UC ∩ Us 6= ∅ and Ux ∩ Us 6= ∅ (because in that case λ is a subpath of the unique
path in T from some node of UC ∩ Us to some node of Ux ∩ Us, which is also a
path in Ts). Let y ∈ C | ys ∈ E. Uy∩Us 6= ∅, so UC ∩Us 6= ∅. xs ∈ E ′, so xs ∈ E

or ∃uv ∈ ET | x, s ∈ Suv. If xs ∈ E then Ux ∩ Us 6= ∅ else, by Property 7.3, uv is
a common edge of Tx and Ts, which implies that Ux ∩ Us 6= ∅.

A wide-range algorithm for minimal triangulation from an arbitrary ordering 31

Lemma 7.19 Let S be a set processed at some step i of Algorithm LB-Tree-
decomp, with S = NG(C), C ∈ CG(NH [xi]). Let us assume that TS is a tree
decomposition of G at the beginning of the process of S ′ for each set S ′ processed
before S or equal to S. At the beginning of the processing of S, if S is not found
in the S/I data structure then there is a node u of T such that UC ∩ Uxi

= {u}
and S ⊆ Xu.

Proof. We will show that this property is true at the beginning of step i and
is preserved until the beginning of the processing of S. At the beginning of step
i, let λ be a path in T of minimal length from a node of TC to a node of Txi

.
C ∈ CG(NH [xi]) = CG(NG′

i
[xi]) then by Lemmas 7.17 and 7.18, |UC∩Uxi

| ≤ 1 and
for any node u of λ, S ⊆ Xu. To prove that the property is true at the beginning of
step i, it remains to show that UC ∩Uxi

6= ∅. Let us assume by contradiction that
UC∩Uxi

= ∅. In this case, λ has at least one edge uv, with S ⊆ Xu∩Xv = Suv, so
some set Suv containing S has been processed at some previous step j. Because
of the hypothesis on TS, Theorem 7.14 and Invariant 7.8, S ′

j = Sj for any j ≤ i.
Therefore S ∈ Si, so by Invariant 4.9 and Lemma 3.12, S is a minimal separator
of Gj. Hence, as S ⊆ Suv ⊆ NGj

(xj), S is a minimal separator of Gj included in
NGj

(xj), i.e. S ∈ Sj, so S ∈ S ′
j . As S is processed at step j, it will be found

in the S/I data structure at step i, a contradiction. Therefore, at the beginning
of step i, there is a node u of T such that UC ∩ Uxi

= {u} and S ⊆ Xu. Let
us show that this property is preserved when processing a set S ′ at step i before
processing S, with S ′ = NG(C ′), C ′ ∈ CG(NH [xi]). If S ′ is found in the S/I data
structure then TS is unchanged and the property is preserved. Otherwise, let
w′ be the node of T which is split when S ′ is processed. If w′ 6∈ UC then TC is
unchanged and the property is preserved. Otherwise w′ ∈ UC ∩Uxi

= {u}, so u is
split into nodes u1 and u2. As neither xi nor any vertex of C belongs to C ′ ∪ S ′,
the new trees TC and Txi

are obtained from the previous ones by replacing node
u by u2 with the same neighbors. Furthermore, no vertex of S belongs to C ′, so
that S ⊆ Xu2 . Hence UC ∩ Uxi

= {u2} and S ⊆ Xu2 . Therefore, the property is
preserved until the beginning of the processing of S.

Lemma 7.20 Under the hypothesis of Lemma 7.19, let w be the node of T which
is split when processing S. At the beginning of the processing of S, S ⊆ Xw and
Xw ∩ C 6= ∅.

Proof. By Lemma 7.19, at the beginning of the processing of S, there is a node
u of T such that UC ∩ Uxi

= {u} and S ⊆ Xu. w is the first node of Uxi
reached

during a search in T from node u(c) of UC , so w = u. Hence S ⊆ Xw and as
w ∈ UC , Xw ∩ C 6= ∅.

32 A wide-range algorithm for minimal triangulation from an arbitrary ordering

Invariant 7.21 TS is a tree decomposition of G by minimal separators at the
beginning of the processing of each set S in any execution of Algorithm LB-
Treedecomp.

Proof. This property is trivially true at the initialization. Let us show that
it is preserved during the processing of each set S. Let S be a set processed
at some step i of the execution of LB-Treedecomp, TS = (T = (UT , ET),
(Xu)u∈UT

, (Suv)uv∈ET
) before processing S and TS ′ = (T ′ = (UT ′ , ET ′), (X ′

u)u∈UT ′
,

(S ′
uv)uv∈ET ′

) after processing S. We suppose that the property holds until the
beginning of the processing of S (and so by Theorem 7.14 and Invariant 7.8,
S ′

j = Sj for any j ≤ i). Let us show that it still holds after processing S. If S

has been found in the S/I data structure then the property is trivially preserved.
Otherwise, w is split in T into the nodes w1 and w2.

a) Xw = X ′
w1
∪X ′

w2
, so a) is preserved.

b) Let xy ∈ E. Let us show that ∃u ∈ UT ′ | x, y ∈ X ′
u. By b) on TS,

∃u ∈ UT | x, y ∈ Xu. If u 6= w, then u ∈ UT ′ and x, y ∈ X ′
u. Otherwise, if at least

one of x and y belongs to C, then x, y ∈ C ∪NG(C) (because xy ∈ E) and then
x, y ∈ X ′

w1
, else x, y ∈ X ′

w2
, with w1, w2 ∈ UT ′ .

c) Let x ∈ V . Let us show that T ′
x is a subtree of T ′. If x 6∈ Xw then

T ′
x = Tx. If x ∈ S then T ′

x is obtained from Tx by splitting w into w1 and w2 and
reconnecting the neighbors of w in Tx either to w1 or to w2 in T ′

x. For j = 1, 2,
if x ∈ X ′

wj
\ S then T ′

x is obtained from Tx by replacing w by wj with the same
neighbors of w in Tx as of wj in T ′

x. In every case T ′
x is still a subtree of T ′.

d) Let uv ∈ ET ′ . Let us show that S ′
uv = X ′

u∩X ′
v. If uv = w1w2 then S ′

uv = S

and X ′
u ∩ X ′

v = Xw ∩ (C ∪ S) ∩ (Xw \ C) = Xw ∩ S = S (because S ⊆ Xw by
Lemma 7.20). In this case, S ′

uv = X ′
u ∩ X ′

v. Otherwise, we may assume that
v 6∈ {w1, w2}. If u 6∈ {w1, w2} then uv ∈ ET and S ′

uv = Suv = Xu∩Xv = X ′
u∩X ′

v.
If u = w1 then S ′

uv = Swv ⊆ C ∪ S and S ′
uv = Swv = Xw ∩ Xv = Xw ∩ X ′

v,
therefore S ′

uv = Xw ∩ (C ∪ S) ∩ X ′
v = X ′

w1
∩ X ′

v = X ′
u ∩ X ′

v. If u = w2, then
S ′

uv = Swv 6⊆ C ∪ S and S ′
uv = Swv = Xw ∩ Xv = Xw ∩ X ′

v. Let us show that
S ′

uv ∩ C = ∅. S, S ′
uv ∈ ∪1≤j≤iS

′
j = ∪1≤j≤iSj, so by Invariant 4.9 S ′

uv does not
cross S in G and, as S ′

uv 6⊆ C ∪S, S ′
uv ∩C = ∅; therefore, S ′

uv = (Xw \C)∩X ′
v =

X ′
w2
∩X ′

v = X ′
u ∩X ′

v.
e) Let uv ∈ ET ′ . Let us show that ∃C1, C2 full components of CG(S ′

uv) |
T ′

C1
⊆ T ′

uv and T ′
C2
⊆ T ′

vu. If uv 6= w1w2 then S ′
uv has not changed and one of

the subtrees T ′
uv and T ′

vu of T ′ has not changed, and therefore it still contains
exactly one of T ′

C1
and T ′

C2
. By Property 7.5, the other of T ′

uv and T ′
vu contains

the other of T ′
C1

and T ′
C2

. If uv = w1w2, so S ′
uv = S. S ∈ S ′

i = Si, then
xi 6∈ S. Let C1 = C and let C2 be the component of CG(S) containing xi. C1

and C2 are full components of CGi
(S), and hence also of CG(S) by Invariant 4.9

and Lemma 3.12. By Lemma 7.20, Xw ∩ C 6= ∅, so X ′
w1
∩ C 6= ∅, i.e. w1 is a

node of T ′
C1

. xi ∈ Xw \ C, so xi ∈ X ′
w2

, so w2 is a node of T ′
C2

. By Property 7.5,
T ′

C1
⊆ T ′

w1w2
= T ′

uv and T ′
C2
⊆ T ′

w2w1
= T ′

vu.

A wide-range algorithm for minimal triangulation from an arbitrary ordering 33

7.3.5 Correctness and O(nm) time complexity

Theorem 7.22 Given a graph G, Algorithm LB-Treedecomp computes an order-
ing α on the vertices of G and the graph GLB

α with a time complexity of O(nm).

Proof. Let H be the graph computed by the algorithm. For every i from 1 to
n, by Invariant 7.21, Theorem 7.14 and Invariant 7.8, NH [xi] = NGi

[xi] and by
Theorem 5.3, NGi

[xi] = NGLB
α

[xi]. Therefore NH(x) = NGLB
α

(x) for every vertex
x of G, which means that H = GLB

α . The O(nm) time complexity follows from
Invariant 7.21 and Theorem 7.16.

8 Experimental results

In this section we report results from practical implementations of LB-Triang,
and compare it to other minimal triangulation algorithms.

8.1 Comparing the run time of minimal triangulation al-
gorithms

In the first test, we compare an O(nm′) time implementation of LB-Triang to
LEX M from [28]. In this test we also include an O(nm) time implementation of
LB-Triang called LB-Treedec [15], a slightly different version of LB-Treedecomp
explained in Section 7. For this test, we randomly generated 100 connected input
graphs, all on 2000 vertices, and with increasing number of edges. LB-Triang
and LB-Treedec processed the vertices of each graph in the same random order,
and the last vertex in this order was the starting vertex of LEX M. The practical
implementation of all three algorithms is done in C++, and run on an Intel
Pentium 4 2.2GHz processor with 512MB RAM and 512MB level-2 cache. The
results from this test is shown in Figure 3.

From this we can see that LB-Triang, even with the O(nm′) time implemen-
tation, exhibits a run time pattern that is significantly superior to LEX M. We
would like to emphasize that the behavior that can be observed from the figure is
typical for all the tests that we have run, thus the tests indicate that the practical
run time of LB-Triang is mostly dependent on n. As can be seen from the figure,
we have run the test on also very dense graphs. For practical applications, it is
definitely most interesting to study the first half of this chart, with input graphs
containing up to 50 percent of the maximum number of potential edges. Only
on very sparse graphs is LEX M superior to LB-Triang, and it is never supe-
rior to LB-Treedec. As expected, the run times of the O(nm) and O(nm′) time
implementations meet for very dense graphs, since m′ = O(m) in these cases.
We can thus conclude that Algorithm LB-Triang is inherently fast regardless of
implementation.

34 A wide-range algorithm for minimal triangulation from an arbitrary ordering

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

Percentage of max. possible number of edges

Lb−Treedec
Lex−M
LB−Triang

Figure 3: Comparing the running times of LB-Triang, LB-Treedec, and LEX M.

In the second test, we tested the O(nm′) time implementation of LB-Triang
also against the previously mentioned Algorithm MinimalChordal (MC) from [7].
Since we did not have a C++ implementation of MC, we did a naive and straight-
forward implementation of MC, LB-Triang, and LEX M in Matlab. Since Matlab
is slower, we generated smaller input graphs for this test. The 12 randomly gener-
ated graphs have 200 vertices and an increasing number of edges up to 50 percent
of maximum potential number of edges. Since MC is practical only with orderings
that generate small fill, we computed a minimum degree (MD) ordering of each
graph first, and each graph was processed by MC and LB-Triang in this ordering.
This second test was done on an UltraSPARC-IIi 300MHz processor, and the run
time is measured in seconds. The results are shown in Figure 4.

0 2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

600

700

MinimalChordal

Number of edges of the input graph

Ru
n

tim
e

Lex−M

LB−Triang

Figure 4: Comparing the running times of MinimalChordal, LB-Triang and LEX
M.

Again, we observe the same kind of relationship between the runtimes of LEX
M and LB-Triang, even though the Matlab codes are simple and quite different

A wide-range algorithm for minimal triangulation from an arbitrary ordering 35

from the C++ codes of these algorithms. From this test, as expected in view
of the worst case time analysis, we can see that Algorithm Minimal Chordal
is practical only for very sparse input graphs. We should mention that we also
tested these three algorithms on graphs originating from real problems. However,
all such graphs that we have at hand are very sparse, and they demonstrate the
same behavior as can be observed from the already presented charts.

One might also be interested in knowing the fill generated by each of the
three algorithms. We can report that MC and LB-Triang have produced the
same fill on all of the tested graphs. This fill was only slightly less than the fill
produced by the MD algorithm. LEX M produced fills that were excessive, and
was significantly inferior to the other algorithms for this purpose. Note that the
given ordering has little effect on the fill that LEX M produces, whereas both
MC and LB-Triang produce minimal small fills given a good ordering.

8.2 Dynamically computing an ordering that results in
small fill

The third test that we present shows results from an implementation of LB-Triang
that attempts to compute a minimal triangulation with small fill by dynamically
choosing an appropriate vertex at each step, without having been given a partic-
ular ordering of the vertices initially. The MD algorithm chooses, at each step
i of the elimination game, a vertex of smallest degree in Gi. Using the same
approach, we have implemented a dynamic version of LB-Triang that chooses, at
each step i, an unprocessed vertex x with smallest |NGi

(x) \ {x1, ..., xi−1}|. In
this test, we compare the quality of the produced triangulation with respect to
the size of fill, to the triangulation produced by the MD algorithm, and also to
the regular LB-Triang processing the vertices in a given MD ordering. The test
results are shown in Table 1. We have again generated random graphs of various
density. The first two columns show the number of vertices and edges for each
graph G. In column 3, the fill generated by an MD ordering α is shown. The
standard LB-Triang algorithm is then run on (G, α), and the size of fill in GLB

α is
given in column 4. Finally in column 5, the fill generated by Dynamic LB-Triang
choosing a vertex of minimum transitory degree at each step as described above
is shown.

We see that Dynamic LB-Triang produces less fill than standard LB-Triang
processing the vertices in a given MD ordering on all of these examples. We have
actually not been able to create an example where Dynamic LB-Triang computes
a larger fill than standard LB-Triang or MD.

This test indicates that Dynamic LB-Triang produces slightly better trian-
gulations than MD. It should be noted that MD is an O(nm′) time algorithm,
whereas Dynamic LB-Triang can be implemented in O(nm) time using the same
approach as described in Section 7. We have not tested the practical run time of

36 A wide-range algorithm for minimal triangulation from an arbitrary ordering

n m MD Standard Dynamic

100 245 622 617 617
100 474 1460 1449 1449
100 1297 2404 2398 2391
200 587 3191 3182 3177
200 971 5695 5683 5681
200 1358 7436 7422 7422
300 452 1367 1358 1355
300 1325 11158 11147 11140
300 3863 24356 24351 24324

Table 1: Comparing the size of the fill generated by Minimum Degree, Standard
LB-Triang and Dynamic LB-Triang.

Dynamic LB-Triang against MD, since MD has been subject to extensive code
optimization through the last two decades, whereas we have merely a straight
forward implementation of Dynamic LB-Triang.

9 Conclusion

We would like to conclude this paper by summarizing the properties of LB-Triang
that were proven in the previous sections.

LB-Triang is a practical minimal triangulation algorithm which has the fol-
lowing properties: It can create any minimal triangulation of a given graph, thus
it is a characterizing process. It is in fact the fist O(nm) time process that can
yield any triangulation of a given graph. The vertices can be processed in any
order or in an on-line fashion. LB-Triang can be implemented as an elimination
scheme; in particular, all LB-simplicial vertices can be eliminated simultaneously
at the same step. LB-Triang solves the Minimal Triangulation Sandwich Prob-
lem directly from the input graph, without having to remove fill from the given
triangulation. In addition, several heuristics, like Minimum Degree, can be inte-
grated into LB-Triang in order to make it produce a minimal triangulation with
low fill or with other desired properties with promising experimental results. LB-
Triang has a very simple O(nm′) time implementation, and a more complicated
O(nm) time implementation, involving data structures which might prove useful
for solving other problems as well. LB-Triang is fast in practice even with a
straightforward O(nm′) time implementation.

A wide-range algorithm for minimal triangulation from an arbitrary ordering 37

References

[1] A. V. Aho, I. E. Hopcroft and J. D. Ullman. The design and analysis of
computer algorithms. Addison-Wesley, p. 71, ex. 2.12,1974.

[2] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of
acyclic database systems. J. Assoc. Comput. Mach., 30:479–513, 1983.

[3] A. Berry. Désarticulation d’un graphe. PhD Dissertation, LIRMM, Mont-
pellier, December 1998.

[4] A. Berry. A wide-range efficient algorithm for minimal triangulation. In
Proceedings of SODA’99, pages S860–S861, 1999.

[5] A. Berry, J. R. S. Blair, P. Heggernes, and B. Peyton. Maximum Cardinality
Search for Computing Minimal Triangulations of Graphs. Algorithmica, 39-
4:287 – 298, 2004.

[6] A. Berry, J.-P. Bordat, and P. Heggernes. Recognizing weakly triangulated
graphs by edge separability. Nordic Journal of Computing, 7:164–177,2000.

[7] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making
filled graphs minimal. Theoretical Computer Science, 250:124–141,2001.

[8] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica,
11:1–21,1993.

[9] F. R. K. Chung and D. Mumford. Chordal completions of planar graphs. J.
Comb. Theory, 31:96–106,1994.

[10] A. Cournier. Quelques Algorithmes de Décomposition de Graphes. PhD
Dissertation, LIRMM, Montpellier, France, February 1993.

[11] E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In
Graph Theoretical Concepts in Computer Science - Proceedings of WG ’97,
pages 132–143. Springer Verlag, 1997. Lecture Notes in Computer Science
1335.

[12] G.A. Dirac. On rigid circuit graphs. Anh. Math. Sem. Univ. Hamburg,
25:71–76, 1961.

[13] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs.
Pacific Journal of Math., 15:835–855, 1965.

[14] J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

38 A wide-range algorithm for minimal triangulation from an arbitrary ordering

[15] P. Heggernes and Y. Villanger. Efficient Implementation of a Minimal Trian-
gulation Algorithm. In Algorithms - Proceedings of ESA 2002, pages 550–561.
Springer Verlag, 2002. Lecture Notes in Computer Science 2461.

[16] D. Hudson, S. Nettles, and T. Warnow. Obtaining highly accurate topology
estimates of evolutionary trees from very short sequences. In Proceedings of
RECOMB’99, pages 198–207. 1999.

[17] D. Kratsch and J. Spinrad. Between O(nm) and O(nα). In Proceedings of
SODA 2003, pages 709–716, 2003.

[18] T. Kloks, D. Kratsch, and J. Spinrad. Treewidth and pathwidth of co-
comparability graphs of bounded dimension. Res. Rep. 93-46, Eindhoven
University of Technology, 1993.

[19] T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in
of asteroidal triple-free graphs. Theoretical Computer Science, 175:309–335,
1997.

[20] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with proba-
bilities on graphical structures and their applications to expert systems. J.
Royal Statist. Soc., ser B, 50:157–224, 1988.

[21] C. G. Lekkerkerker and J. Ch. Boland. Representation of a finite graph by
a set of intervals on the real line. Fund. Math., 51:45–64, 1962.

[22] T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Minimal triangulation of a graph
and optimal pivoting order in a sparse matrix. Journal of Math. Analysis
and Applications, 54:622–633, 1976.

[23] A. Parra and P. Scheffler. How to use the minimal separators of a graph for
its chordal triangulation. Proceedings of the 22nd International Colloquium
on Automata, Languages and Programming (ICALP ’95), Lecture Notes in
Computer Science, 944:123–134, 1995.

[24] S. Parter. The use of linear graphs in Gauss elimination. SIAM Review,
3:119–130, 1961.

[25] B. Peyton. Minimal orderings revisited. SIAM J. Matrix Anal. Appl., 23:271–
294, 2001.

[26] D. J. Rose. Triangulated graphs and the elimination process.
J. Math. Anal. Appl., 32:597–609, 1970.

[27] D. J. Rose. A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations. In R. C. Read, editor, Graph
Theory and Computing, pages 183–217. Academic Press, 1972.

A wide-range algorithm for minimal triangulation from an arbitrary ordering 39

[28] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM J. Comput., 5:266–283, 1976.

[29] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, est acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM J. Comput., 13:566–579, 1984.

[30] I. Todinca. Aspects algorithmiques des triangulations minimales des graphes.
PhD thesis, LIP, ENS Lyon, 1999.

[31] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J.
Alg. Disc. Meth., 2:77–79, 1981.

40 A wide-range algorithm for minimal triangulation from an arbitrary ordering

Paper II

A Vertex Incremental Approach for Maintaining

Chordality

Anne Berry∗ Pinar Heggernes† Yngve Villanger†

Abstract

For a chordal graph G = (V,E), we study the problem of whether a
new vertex u 6∈ V and a given set of edges between u and vertices in V can
be added to G so that the resulting graph remains chordal. We show how
to resolve this efficiently, and at the same time, if the answer is no, specify
a maximal subset of the proposed edges that can be added along with u,
or conversely, a minimal set of extra edges that can be added in addition
to the given set, so that the resulting graph is chordal. In order to do this,
we give a new characterization of chordal graphs and, for each potential
new edge uv, a characterization of the set of edges incident to u that also
must be added to G along with uv. We propose a data structure that
can compute and add each such set in O(n) time. Based on these results,
we present an algorithm that computes both a minimal triangulation and
a maximal chordal subgraph of an arbitrary input graph in O(nm) time,
using a totally new vertex incremental approach. In contrast to previous
algorithms, our process is on-line in that each new vertex is added without
reconsidering any choice made at previous steps, and without requiring any
knowledge of the vertices that might be added subsequently.

1 Introduction

Chordal graphs (also called triangulated graphs) are a well-studied class of graphs,
with applications in many fields. Some applications require that chordality be
maintained incrementally, that is, as edges and/or vertices are added or deleted
from the graph, they desire to maintain chordality. Ibarra [28] gives a dynamic
algorithm for adding or removing a given edge in O(n) time in a chordal graph
if this does not destroy chordality, where n is the number of vertices of the input

∗LIMOS, UMR CNRS 6158, Universite Clermont-Ferrand II, F-63177 Aubiere, France.
Email: berry@isima.fr

†Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Emails:
Pinar.Heggernes@ii.uib.no and yngvev@ii.uib.no

2 A Vertex Incremental Approach for Maintaining Chordality

graph. More recently, a 2-pair [10] has been defined as a pair of non-adjacent
vertices in a chordal graph, such that the graph remains chordal when the edge
between these vertices is added to the graph.

A chordal graph can be obtained from any non chordal graph by: adding edges
until the graph becomes chordal, a process called triangulation, or by remov-
ing edges until the graph becomes chordal, thus computing a chordal subgraph.
Adding or removing a minimum number of edges has been shown to be NP-hard
[30, 36]. However, adding or removing an inclusion minimal set of edges can be
accomplished in polynomial time. Given an arbitrary chordal subgraph, e.g., an
independent set on the vertices of the graph (resp. supergraph, e.g., a complete
graph on the same vertex set) of the input graph, edges can be added (resp. re-
moved) one by one after testing that the resulting graph remains chordal, until no
further candidate edge can be found. This ensures that maximality (resp. mini-
mality) is achieved, by the results of [32]. The problem of maintaining a chordal
graph by edge addition or deletion and the problem of computing a maximal
chordal subgraph or a minimal chordal supergraph are thus strongly related.

The problem of adding an inclusion minimal set of fill edges, called minimal
triangulation, has many applications in various fields such as sparse matrix com-
putation [31] and database management [3]. The problem has been well studied
since 1976, and several O(nm) time algorithms exist for solving it [4, 5, 6, 16, 32],
where m is the number of edges in the input graph. None of these algorithms
use an edge incremental approach as described above. However, the algorithm
proposed by Blair, Heggernes, and Telle [11], which requires even less time when
the fill is small, does use an edge deletion approach.

The reverse problem of computing a maximal chordal subgraph has also been
studied, with applications to sparse matrix computation, computing a large clique
or a large independent set, and improving phylogenetic data [2, 10, 15, 17, 20,
35]. There exist several algorithms that compute a maximal chordal subgraph in
O(∆m) time, where ∆ is the maximum degree in the graph [2, 17, 35].

In this paper, we present a new process for adding a vertex with a given
set of incident edges to a chordal graph while maintaining chordality, which we
are able to implement more efficiently than if we were to add the corresponding
edges one by one. Our process is based on two new characterizations. The first
is a characterization of a chordal graph by its edges, which can be regarded as a
specialization of the edge characterization for weakly chordal graphs introduced
by Berry, Bordat, and Heggernes [8]. The second is a characterization of a unique
set of edges R(G, u, v) incident to a vertex u that must be added to a chordal
graph G along with edge uv to ensure that chordality is preserved, given that
we are only allowed to add edges incident to u. We show that we can compute
this set R(G, u, v) of edges in O(n) time, by proposing a data structure that
corresponds to a clique tree of the current chordal subgraph. A similar data
structure was used by the authors to prove an O(nm) time bound for one of

A Vertex Incremental Approach for Maintaining Chordality 3

their minimal triangulation algorithms [4, 6, 26]; however, here we present a new
implementation of clique trees that allows a more efficient data structure for our
purposes.

We use our results to compute both a minimal triangulation and a maximal
chordal subgraph of a given arbitrary graph in O(nm) time. This is done by
an incremental process that repeatedly adds a new vertex u to the already con-
structed chordal graph H along with a maximal set of edges between u and H,
or a minimal set of extra edges between u and H in addition to the originally
specified edges.

Some of the existing algorithms that compute a maximal chordal subgraph or
a minimal triangulation also use a vertex incremental process [2, 5, 6, 17, 32, 35],
though none of them compute both chordal graphs at the same time. In addition,
all these previous algorithms require knowing the whole graph in advance, as
either vertices that are not yet processed are marked in some way to define the
next vertex in the process, or edges are added between pairs of vertices that
are not yet processed. Furthermore, these algorithms require the added vertex
to be a simplicial vertex of the transitory chordal graph. One exception from
this requirement is the algorithm of [6], but it does add edges between pairs of
neighbors of the added vertex that are not yet processed.

Our approach here is completely different from the previous ones, as it is
more general: at each vertex addition step, we do not require the added vertex to
be or to become simplicial, thereby enabling processing of vertices in any order.
Moreover, we add only edges incident to the new vertex, so that we never need
to reconsider or change the chordal graph that has been computed thus far.

As a result, our process can add any vertex with any proposed neighborhood,
and efficiently give a correction if the resulting graph fails to be chordal, either by
computing a maximal subset of the edges to be added, or a minimal set of extra
edges along with the proposed ones. In addition, the transitory chordal graph is
maintained in a dynamic fashion, as making the desired or necessary additions
to the graph does not require a recomputation.

This paper is organized as follows: in the next section we give the neces-
sary graph theoretic background and terminology. Section 3 contains our new
characterizations. The algorithms are presented and proved correct in Section
4, whereas the data structure details and time complexity analysis are given in
Section 5. We conclude in Section 6.

2 Graph theoretic background and notation

A graph is denoted G = (V, E), with n = |V |, and m = |E|. A vertex sequence
v1 − v2 − ...− vk describes a path if vivi+1 is an edge for 1 ≤ i < k. The length of
a path is the number of edges in it. A cycle is a path that starts and ends with

4 A Vertex Incremental Approach for Maintaining Chordality

the same vertex, and the length of the cycle is the number of vertices or edges
it contains. A chord of a cycle (path) is an edge connecting two non-consecutive
vertices of the cycle (path). A clique is a set of vertices that are pairwise adjacent.

For the following definitions, we will omit subscript G when the graph is
clear from the context. The neighborhood of a vertex v in G is NG(v) = {u 6=
v | uv ∈ E}, and for a set of vertices A, NG(A) = ∪x∈ANG(x) \ A. A simplicial
vertex is one whose neighborhood induces a clique. G(A) is the subgraph induced
by a vertex set A ⊆ V , but we often denote it simply by A when there is no
ambiguity. We would like to stress that we distinguish between subgraphs and
induced subgraphs.

For any vertex set S ⊆ V and any vertex x ∈ V \S, Cx
S denotes the connected

component of G(V \ S) containing x. A subset S of V is called a separator if
G(V \ S) is disconnected. S is a u, v-separator if vertices u and v are in different
connected components of G(V \ S), and a minimal u, v-separator if no subset of
S is a u, v-separator. S is a minimal separator of G if there is some pair {u, v} of
vertices in G such that S is a minimal u, v-separator. Equivalently, S is a minimal
separator if there exist two connected components C1 and C2 of G(V \ S) such
that NG(C1) = NG(C2) = S.

A pair of non-adjacent vertices {u, v} is a 2-pair in G if there is no chordless
path of length 3 or more between u and v [24]. If G is not connected, then
two vertices that belong to different connected components constitute a 2-pair by
definition. If G is connected, it has been shown that {u, v} is a 2-pair if and only
if N(u) ∩ N(v) is a minimal u, v-separator of G [1, 33].

A graph is chordal if it contains no chordless cycle of length ≥ 4. Consequently,
all induced subgraphs of a chordal graph are also chordal. G is chordal if and
only if every minimal separator of G is a clique [19]. Chordal graphs are the
intersection graphs of subtrees of a tree [14, 22, 34], and the following result gives
a very useful tool which we will use as a data structure in our algorithm.

Theorem 2.1 (Buneman [14], Gavril [22], Walter[34]) A graph G is chordal if
and only if there exists a tree T , whose vertex set is the set of maximal cliques
of G, that satisfies the following property: for every vertex v in G, the set of
maximal cliques containing v induces a connected subtree of T .

Such a tree is called a clique tree [12], and we will refer to the vertices of T

as tree nodes to distinguish them from the vertices of G, and sometimes also as
bags since these contain several graph vertices. Each tree node of T is thus a
vertex set of G corresponding to a maximal clique of G. We will not distinguish
between maximal cliques of G and their corresponding tree nodes. In addition,
it is customary to let each edge KiKj of T hold the vertices of Ki ∩Kj, where Ki

and Kj are maximal cliques of G. Thus, edges of T are also vertex sets. Although
a chordal graph can have many different clique trees, all chordal graphs share the

A Vertex Incremental Approach for Maintaining Chordality 5

following important properties that are related to an efficient implementation of
our algorithm.

Theorem 2.2 (Buneman [14], Ho and Lee[27], Lundquist [29]) Let T be a clique
tree of a chordal graph G. A set S is a minimal separator of G if and only if
S = Ki ∩Kj for an edge KiKj in T , and if S = Ki ∩Kj for an edge KiKj in T ,
then S is a minimal u, v-separator for any u ∈ Ki \ S and v ∈ Kj \ S.

Theorem 2.3 (Blair and Peyton [12]) T is a clique tree of G if and only if T is
a tree whose nodes are the maximal cliques of G, and for every pair of distinct
maximal cliques Ki and Kj in G the intersection Ki ∩ Kj is contained in every
node of T (maximal clique of G) appearing on the path between Ki and Kj in T .

Note that as a consequence, the intersection Ki∩Kj is also contained in every
edge of T (i.e., in every minimal separator of G) appearing on the path between
Ki and Kj in T . A chordal graph has at most n maximal cliques [19] and hence
the number of nodes and edges in a clique tree is O(n) [21].

From any given non-chordal graph, one can obtain a chordal graph on the
same vertex set by either adding (the added edges are called fill edges) or removing
edges. M = (V, F) is called a triangulation of an arbitrary graph G = (V, E) if
E ⊆ F and M is chordal. M is a minimal triangulation of G if no proper
subgraph of M is a triangulation of G. Similarly, H = (V, D) is called a chordal
subgraph, or equivalently a subtriangulation, of G if D ⊆ E and H is chordal. H

is a maximal chordal subgraph, or a maximal subtriangulation, if (V, D′) is non-
chordal for every set D′ that satisfies D ⊂ D′ ⊆ E. By the results of [32], a given
triangulation (subtriangulation) is minimal (maximal) if and only if no single
fill edge can be removed (no single removed edge can be added back) without
destroying chordality.

3 A new characterization of chordal graphs

In this section we present a new characterization of chordal graphs that will be
the basis of our algorithm.

Definition 3.1 An edge uv is mono-saturating in G = (V, E) if {u, v} is a 2-pair
in G′ = (V, E \ {uv}).

Theorem 3.2 A graph is chordal if and only if every edge is mono-saturating.

Proof. Let G = (V, E) be chordal, and assume on the contrary that there is an
edge uv ∈ E that is not mono-saturating. Then there is a chordless path P of
length more than 2 between u and v in G′ = (V, E\{uv}), and thus the following

6 A Vertex Incremental Approach for Maintaining Chordality

is a chordless cycle of length at least 4 in G: u − P − v − u, which contradicts
our assumption that G is chordal.

For the other direction, let every edge in G be mono-saturating, and assume
on the contrary that G is not chordal. Thus, there exists a chordless cycle C of
length at least 4 in G. No edge of C is mono-saturating, a contradiction.

As a corollary of Theorem 3.2, we can deduce the following characterization
by 2-pairs by [10], a result that was also observed with a different formulation in
[18].

Corollary 3.3 (Berry et al. [10]) Given a chordal graph G = (V, E), where uv 6∈
E, the graph H = (V, E ∪ {uv}) is chordal if and only if {u, v} is a 2-pair in G.

Proof. Let us on the contrary assume that H is not chordal, and that {u, v} is a
2-pair in G. The edge uv is mono-saturating in H since {u, v} is a 2-pair of G. By
Theorem 3.2 there exists an edge xy in G that is not mono-saturating in H, and
by Definition 3.1 there exists a chordless path P in H ′ = (V, (E \ {xy}) ∪ {uv})
preventing xy from being mono-saturated in H. One of the edges in P is uv, since
G is chordal and by Theorem 3.2 xy is mono-saturating in G, and by Definition
3.1 P do not exists in G′ = (V, E \ {xy}). By removing the edge uv from P

and inserting xy we obtain a chordless path P ′ in G, which prevents {u, v} from
being a 2-pair in G, and thus we have a contradiction.

For the other direction, we know that {u, v} is not a 2-pair in G, and thus the
edge uv in H is not mono-saturating, and by Theorem 3.2 H is not chordal.

As a consequence, while maintaining a chordal graph by adding edges, we
could check every edge of the input graph to see if the endpoints constitute a 2-
pair in the transitory chordal subgraph. However, this approach requires that we
check every edge several times, as pairs of vertices can become 2-pairs only after
the addition of some other edges. Our main result, to be presented as Theorem
3.8, gives a more powerful tool that allows examining each edge of the input graph
only once during such a process.

Assume the following scenario: given a chordal graph G, we want to add an
edge uv to G. Since we want the resulting graph to remain chordal, it may be
necessary to add other edges to achieve this. However, we allow addition of edges
only incident to u.1 Naturally, if we add every edge between u and the other
vertices of G, the resulting graph is chordal. Our main goal is to add as few
edges as possible.

Definition 3.4 Given a chordal graph G = (V, E) and any pair of non-adjacent
vertices u and v in G, R(G, u, v) = {ux | x belongs to a minimal u, v-separator
of G}. We will call R(G, u, v) the incident-to-u set of required edges for uv.

1Note that in the incremental approach described in the next section, vertex u is the most
recently added vertex.

A Vertex Incremental Approach for Maintaining Chordality 7

Lemma 3.5 Let G = (V, E) be a chordal graph and let u and v be non-adjacent
vertices of G. Then R(G, u, v) = {ux | x is an intermediate vertex of a chordless
path in G between u and v}.

Proof. Let ux ∈ R(G, u, v), S be a minimal u, v-separator of G containing x, P1

be a chordless path in G between u and x with all intermediate vertices belonging
to Cu

S , and P2 be a chordless path in G between x and v with all intermediate
vertices belonging to Cv

S. The path obtained by concatenating P1 and P2 is a
chordless path in G between u and v having x as an intermediate vertex.

Conversely, let x be an intermediate vertex of a chordless path P in G between
u and v. Vertex set S ′ obtained from V by removing all vertices of P except x

is a u, v-separator of G. Let S be a minimal u, v-separator of G included in S ′.
Vertex x belongs to S because otherwise P would be a path in G(V \S) between
u and v. Therefore ux ∈ R(G, u, v).

Lemma 3.6 Let G = (V, E) be a chordal graph, let u and v be non-adjacent
vertices of G, let S be a minimal u, v-separator of G, and let graph M = (V, E ∪
{uv}∪R(G, u, v)). Then any chordless cycle in M of length at least 4 containing
u contains at most one vertex of S.

Proof. Suppose on the contrary that some chordless cycle C in M of length at
least 4 contains u and distinct vertices x and x′ of S. As a minimal separator
of a chordal graph, S is a clique in G, so xx′ is an edge of M , and by defini-
tion of R(G, u, v), ux and ux′ are also edges of M . So C has a chord in M , a
contradiction.

Lemma 3.7 Let G = (V, E) be a chordal graph, let u and v be non-adjacent
vertices of G, and let S and S ′ be minimal u, v-separators of G. Then (S ′ ⊆ S∪Cu

S

and S ⊆ S ′ ∪ Cv
S′) or (S ′ ⊆ S ∪ Cv

S and S ⊆ S ′ ∪ Cu
S′).

Proof. We may assume without loss of generality that S and S ′ are distinct.
As minimal separators of a chordal graph, S and S ′ are cliques, and since S

and S ′ are distinct minimal u, v-separators of G, S \ S ′ 6= ∅. Let x ∈ S \ S ′.
Observe that S ′ ∩ (Cu

S ∪ Cv
S) 6= ∅, because otherwise Cu

S ∪ {x} ∪ Cv
S would be a

connected subset of V \ S ′, which would contradict S ′ being a u, v-separator of
G. Let x′ ∈ S ′ ∩ (Cu

S ∪ Cv
S). We first study the case when x′ ∈ Cu

S : Since S ′ is a
clique containing x′, S ′ ⊆ {x′} ∪ N(x′) ⊆ S ∪ Cu

S . It follows that {x} ∪ Cv
S is a

connected subset of V \ S ′, and therefore x ∈ Cv
S′ . Since S is a clique containing

x, S ⊆ {x} ∪ N(x) ⊆ S ′ ∪ Cv
S′ . For the case when x′ ∈ Cv

S, we prove in a similar
way that S ′ ⊆ S ∪ Cv

S and S ⊆ S ′ ∪ Cu
S′ .

8 A Vertex Incremental Approach for Maintaining Chordality

Theorem 3.8 Let G = (V, E) be a chordal graph, let u and v be non-adjacent
vertices of G, and let graph M = (V, E ∪ {uv} ∪R(G, u, v)). Then M is chordal
and M is a subgraph of any triangulation of G′ = (V, E ∪ {uv}) obtained from
G′ by adding edges incident to u only.

Proof. Let us first show that M is chordal. Assume on the contrary that M is not
chordal, and let C be a chordless cycle of length at least 4 in M . Since G is chordal,
C contains an edge ux ∈ {uv}∪R(G, u, v). Let C = u−x′−y1−y2−...−yk−x−u

with k ≥ 1, and P1 = x′ − y1 − y2 − ... − yk − x, which is a chordless path in G.
It is sufficient to show that P1 is a subpath of a chordless path P in G between
u and v, since then by Lemma 3.5 uy1 would belong to R(G, u, v) and therefore
would be a chord of C in M , giving a contradiction. In the following Q1 · Q2

denotes the path obtained by concatenating paths Q1 and Q2.

First case : x = v or x′ = v. Say, x = v. If ux′ ∈ E then we are done with
P = u − x′ · P1. Otherwise ux′ ∈ R(G, u, v), let S be a minimal u, v-separator
of G containing x′, and let P0 be a chordless path in G between u and x′ with
all intermediate vertices belonging to Cu

S . By Lemma 3.6, x′ is the only vertex
of S in P1, so all intermediate vertices of P1 belong to Cv

S. It follows that path
P = P0 · P1 is a chordless path in G between u and v.

Second case : x 6= v and x′ 6= v. In this case, ux ∈ R(G, u, v). Let S be
a minimal u, v-separator of G containing x and let P2 be a chordless path in
G between x and v with all intermediate vertices belonging to Cv

S. If ux′ ∈ E

then by Lemma 3.6, all intermediate vertices of u − x′ · P1 belong to Cu
S , so

path P = u − x′ · P1 · P2 is a chordless path in G between u and v. Otherwise
ux′ ∈ R(G, u, v). Let S ′ be a minimal u, v-separator of G containing x′ and let P0

be a chordless path in G between u and x′ with all intermediate vertices belonging
to Cu

S′ . By Lemma 3.7, (S ′ ⊆ S ∪ Cu
S and S ⊆ S ′ ∪ Cv

S′) or (S ′ ⊆ S ∪ Cv
S and

S ⊆ S ′ ∪ Cu
S′). We may assume without loss of generality that S ′ ⊆ S ∪ Cu

S and
S ⊆ S ′ ∪ Cv

S′ . By Lemma 3.6, x′ 6∈ S and x 6∈ S ′, so x′ ∈ Cu
S and x ∈ Cv

S′ . Hence
by Lemma 3.6, all intermediate vertices of P1 belong to Cv

S′ and Cu
S . Since P0 and

P1 are chordless and all vertices of P0 other than x′ belong to Cu
S′ , and those of

P1 other than x′ belong to Cv
S′ , path Q = P0 ·P1 is chordless. Since S ⊆ S ′ ∪Cv

S′ ,
Cu

S′ ⊆ Cu
S , so all vertices of P0 belong to Cu

S . Since Q and P2 are chordless and all
vertices of Q other than x belong to Cu

S , and those of P2 other than x belong to
Cv

S, path P = Q · P2 is a chordless path in G between u and v, which completes
the proof of chordality of M .

Let M ′ be a triangulation of G′ = (V, E ∪ {uv}) obtained from G′ by adding
edges incident to u only. Let us show that M is a subgraph of M ′, i.e., that
every edge of R(G, u, v) is an edge of M ′. Suppose on the contrary that there is
some edge ux ∈ R(G, u, v) which is not an edge of M ′. By Lemma 3.5, x is an
intermediate vertex of a chordless path u − y1 − y2 − ... − yi = x − ... − yk = v

in G. Thus C = u − y1 − y2 − ... − yk = v − u is a cycle in M ′ such that path

A Vertex Incremental Approach for Maintaining Chordality 9

y1−y2− ...−yk = v is chordless in M ′. Let r be the largest integer smaller than i

such that yr is adjacent to u in M ′ and s be the smallest integer larger than i such
that yr is adjacent to u in M ′. Then u−yr −yr+1− ...−yi = x− ...−ys−1−ys−u

is a chordless cycle in M ′ of length at least 4, which contradicts the chordality of
M ′.

The following corollary follows directly from Theorem 3.8.

Corollary 3.9 Let G = (V, E) be a chordal graph and let u and v be any pair of
non-adjacent vertices in G. Then M = (V, E ∪ {uv} ∪ R(G, u, v)) is the unique
minimal triangulation of G′ = (V, E ∪ {uv}) obtained from G′ by adding edges
incident to u only.

A significant consequence of our main theorem is that it is sufficient to deter-
mine R(G, u, v) and add it to the current graph G to obtain a new chordal graph.
This can be done efficiently, as will be explained in Section 5. This involves main-
taining the minimal separator structure of a chordal graph, a problem for which
we have a new and efficient data structure associated with a clique tree, which
we will describe in Section 5.

4 A vertex incremental algorithm for simulta-

neous maximal subtriangulation and minimal

triangulation

In this section we apply our results of Section 3 to the problem of computing a
maximal chordal subgraph H = (V, D) and a minimal triangulation M = (V, F)
of an arbitrary graph G = (V, E), where D ⊆ E ⊆ F .

Our algorithm is based on the following vertex incremental principle. Start
with an empty subset U of V , and a maximal chordal subgraph H of G(U) (re-
spectively a minimal triangulation M of G(U) if we want a minimal triangulation
algorithm). The incremental approach is to increase U with a vertex u from V \U

at each step. Observe that H (resp. M) is chordal and disconnected after the
introduction of u as long as |U | ≥ 1, since no edges are introduced along with
this vertex, and H (resp. M) was chordal before this step. Then for each edge of
G incident to u and some vertex v in U \ {u}, we do computations according to
Theorem 3.8 and obtain the set R(H, u, v) (resp. R(M, u, v)) of edges incident to
u that must be added along with uv in order to obtain a chordal supergraph of
H (resp. M).

In the case of the maximal subtriangulation algorithm, we will only add uv and
R(H, u, v) to E(H) if R(H, u, v) ⊂ E(G). In the case of the minimal triangulation
algorithm, the required edges R(M, u, v) and the edge uv are added to E(M). To

10 A Vertex Incremental Approach for Maintaining Chordality

prove that this approach actually produces a maximal chordal subgraph (resp.
minimal triangulation) we rely on the results in the following two lemmas.

Lemma 4.1 Given G = (V, E), let U ⊆ V , and let H and H ′ be graphs such that
H is a subgraph of H ′, H ′ is a chordal subgraph of G, and H(U) is a maximal
chordal subgraph of G(U). Then H(U) = H ′(U).

Proof. As an induced subgraph of a chordal graph H ′(U) is chordal, and there-
fore is a chordal subgraph of G(U) having H(U) as a subgraph. So, since H(U)
is a maximal chordal subgraph of G(U), H(U) = H ′(U).

For the computation of H, assume that H is a maximal chordal subgraph of
G(U) on vertex set U . At the first step, U contains a single vertex of G and
H = G(U). At each step, a vertex u ∈ V \ U is chosen and added to U and thus
to H. Now for each edge uv of G with v ∈ U , we add edge uv to H if and only if
every edge of R(H, u, v) is present in G. If uv is added to H, we also add every
edge of R(H, u, v) at the same time. After this, none of the edges that are added
need to be examined again for possible addition, since they already appear in
the transitory chordal subgraph. If some edge of R(H, u, v) is not an edge of G,
then we cannot add uv at this step by Theorem 3.8, since we only allow addition
of edges incident to u. When we prove the correctness of our algorithm, it will
be clear that uv never needs to be examined again for addition. 2 Thus, each
edge is examined for addition at most once, and in many cases several edges are
added at the same time and disappear from the list of edges that still need to be
examined, which is the strength of our algorithm with respect to time complexity.
In addition, our algorithm does not touch the unprocessed vertices. Thus, these
vertices need not be known in advance, and we can actually take a new vertex u

as input in an on-line fashion at each step.

Lemma 4.2 Given G = (V, E), let U ⊆ V , and let M and M ′ be graphs such
that M ′ is a subgraph of M , M ′ is a triangulation of G, and M(U) is a minimal
triangulation of G(U). Then M(U) = M ′(U).

Proof. As an induced subgraph of a chordal graph, M ′(U) is chordal, and
therefore is a triangulation of G(U) and a subgraph of M(U). So, since M(U) is
a minimal triangulation of G(U), M(U) = M ′(U).

For the computation of M , assume that M is a minimal triangulation of
G(U) on the vertex set U . The only difference from the discussion above in this
case is that, for each edge uv of G with v ∈ U , we add to M edge uv as well
as every edge belonging to R(M, u, v) regardless of whether or not these edges
belong to G. Thus, the difference between the two processes is merely a single if

2Note that considering R(H, v, u) does not help, since we have already concluded that adding
any edge between v and vertices in U \ {u} will create a chordless cycle.

A Vertex Incremental Approach for Maintaining Chordality 11

statement. Our algorithm can be changed by inserting or deleting this if line in
order to change between the processes of computing a minimal triangulation and
a maximal chordal subgraph, though of course both graphs can be computed by
a single algorithm within the same time bound.

With the data structure details given in the next section, we will show that
computing and adding the set R(H, u, v) can be done in O(n) time for each
examined edge uv. From our algorithm and its proof of correctness, it will be
clear that every edge needs to be examined at most once. We are now ready to
present our algorithm. We begin with the maximal chordal subgraph version.

Algorithm Incremental Maximal Subtriangulation (IMS)
Input: G = (V, E).
Output: A maximal chordal subgraph H = (V, D) of G.

01. Pick a vertex s of G;
02. U = {s};
03. D = ∅;
04. for i = 2 to n do
05. Pick a vertex u ∈ V \ U ;
06. U = U ∪ {u};
07. N = ∅;
08. for each vertex w ∈ NG(u)
09. if w ∈ U then
10. N = N ∪ {w};
11. end-if
12. end-for
13. while N is not empty do
14. Pick a vertex v ∈ N ;
15. N = N \ {v};
16. X = {x | x belongs to a minimal u, v-separator of H = (U,D)};
17. R = {ux | x ∈ X};
18. if R ⊆ E then
19. D = D ∪ {uv} ∪ R;
20. N = N \ X;
21. end-if
22. end-while
23. H = (U,D);
24. end-for

Let us call IMT (Incremental Minimal Triangulation) the algorithm that
results from removing lines 18 and 21 of Algorithm IMS. Thus, in IMT, edge
set {uv}∪R is always added to the transitory graph for every examined edge uv.

12 A Vertex Incremental Approach for Maintaining Chordality

5 76

4 1

23

5 76

4 1

23

5 76

4 1

23

6 5 7

4 1

23

5 76

4 1

23

5 76

4 1

23

5 76

4 1

23

5 76

4 1

23

(a)

(b)

Step 4 Step 5 Step 6 Step 7

Figure 1: The figure shows graph H in thick lines after steps 4, 5, 6, and 7 of (a)
Algorithm IMS when computing a maximal chordal subgraph and (b) Algorithm
IMT when computing a minimal triangulation.

In Example 4.3, executions of both of these algorithms are shown on the same
input graph. Figure 1 (a) shows IMS and (b) shows IMT.

Example 4.3 Consider Figure 1. The vertices of the input graph are processed
in the order shown by the numbers on the vertices. At step 1, only vertex 1 is
added to H. At step 2, vertex 2 and edge 21 are added, and similarly at steps
3 and 4, vertex 3 and edge 32, and vertex 4 and edge 41 are added, respectively.
The first column of the figure shows graph H with thick lines on the input graph
after these 4 steps. The chordal graph so far is the same for both the maximal
chordal subgraph (a), and the minimal triangulation (b). We will explain the rest
of the executions in more detail.

(a) At step 5, N = {3, 4}, and edge 53 is examined first. In this case, set X

is empty, and edge 53 is thus added. For the addition of edge 54, X = {1, 2, 3},
and since required edges 51 and 52 are not present in G, edge 54 is not added. At
step 6, N = {3, 4, 5}, and edge 63 is examined first and added since X is empty.
For the addition of edge 64, X = {1, 2, 3}, and since required edges 61 and 62 are
not present in G, edge 64 is not added. For the addition of edge 65, X = {3},
and 65 is added since edge 63 is present in G and in H.

(b) At step 5, edge 53 is added as in (a), and in addition, edge 54 is added
along with the required edges 51 and 52. At step 6, edge 63 is added as in (a).
For the addition of edge 64, X = {1, 2, 3, 5} since the minimal 6, 4-separators are
{1, 5}, {2, 5}, and {3}. Thus, edge 64 and required edges 61, 62, and 65 are added
to M .

Step 7 adds edges 71 and 72 in both (a) and (b) without requiring any addi-
tional edges in either case.

A Vertex Incremental Approach for Maintaining Chordality 13

Theorem 4.4 Algorithm IMT computes a minimal triangulation, and Algo-
rithm IMS computes a maximal chordal subgraph, of the input graph.

Proof. Let (u1, u2, ..., un) be the sequence of vertices of G successively added to
U in an execution of Algorithm IMT (resp. IMS), and let Ui = {u1, u2, ..., ui}
for any i from 1 to n.

Algorithm IMT : Let M = (V, F) be the output graph. We show by induction
that M is a minimal triangulation of G.

Induction hypothesis: M(Ui) is a minimal triangulation of G(Ui), for 1 ≤ i ≤ n.

The base case i = 1 trivially holds. Assume that M(Ui−1) is a minimal triangu-
lation of G(Ui−1) for some i between 2 and n, and we will show that this implies
that M(Ui) is chordal and is equal to any triangulation M ′ of G(Ui) that is a
subgraph of M(Ui).

Let M ′ be a triangulation of G(Ui) that is a subgraph of M(Ui). By Lemma
4.2, M(Ui−1) is chordal and M(Ui−1) = M ′(Ui−1). Let u = ui, U = Ui, and
(v1, v2, ..., vk) be the sequence of neighbors of u in G successively picked out of N

after adding u to U . Let Mj = (U, Fj) be the transitory graph after processing
edge uvj, for 0 ≤ j ≤ k (M0 is the transitory graph after adding u to U). Let
us prove by induction that Mj is chordal and is a subgraph of M ′ for 0 ≤ j ≤ k.
The base case j = 0 holds since M0 is obtained from M(Ui−1) by adding vertex u,
M(Ui−1) is chordal and M(Ui−1) = M ′(Ui−1). Assume that Mj−1 is chordal and is
a subgraph of M ′, for some j between 1 and k. Let us show that this implies that
the same is true for Mj, too. Mj = (U, Fj−1 ∪ {uvj} ∪ R(Mj−1, u, vj)). Thus M ′

is a triangulation of M ′′ = (U, Fj−1 ∪ {uvj}) obtained from M ′′ by adding edges
incident to u only, since M ′′(Ui−1) = M(Ui−1) = M ′(Ui−1). By Theorem 3.8, Mj

is chordal and is a subgraph of M ′, which completes this part of the proof by
induction on j.

As a consequence, M(Ui) = Mk is chordal and is a subgraph of M ′ and since
M ′ is a subgraph of M(Ui), M ′ = M(Ui). This completes the proof by induction
on i, and thus M is a minimal triangulation of G.

Algorithm IMS : Let H = (V, D) be the output graph. We show again by
induction that H is a maximal chordal subgraph of G.

Induction hypothesis: H(Ui) is a maximal chordal subgraph of G(Ui), for 1 ≤ i ≤
n.

The base case i = 1 trivially holds. Assume that H(Ui−1) is a maximal chordal
subgraph of G(Ui−1), for some i between 2 and n. Let us show that H(Ui) is
chordal and is equal to any chordal subgraph H ′ of G(Ui) having H(Ui) as a
subgraph.

Let H ′ be a chordal subgraph of G(Ui) having H(Ui) as a subgraph. By
Lemma 4.1, H(Ui−1) is chordal and H(Ui−1) = H ′(Ui−1). We define u, U ,
(v1, v2, ..., vk), and Hj = (U,Dj) for 0 ≤ j ≤ k as above. Let us prove by induction

14 A Vertex Incremental Approach for Maintaining Chordality

on j that Hj is chordal, and if j ≥ 1 and uvj is an edge of H ′, then uvj ∈ Dj. The
base case j = 0 holds since H0 is obtained from chordal graph H(Ui−1) by adding
vertex u. Suppose that Hj−1 is chordal, and if j−1 ≥ 1 and uvj−1 is an edge of H ′,
then uvj−1 ∈ Dj−1, for some j between 1 and k. We show that this implies that
the same is true for Hj, vj and Dj. Let K = (U, Dj−1 ∪ {uvj} ∪ R(Hj−1, u, vj)).
Hj is either equal to Hj−1 or to K, and since Hj−1 is chordal, by Theorem 3.8, Hj

is chordal. Now we assume that uvj is an edge of H ′. Let us show that uvj ∈ Dj.
H ′ is a triangulation of H ′′ = (U, Fj−1∪{uvj}) obtained from H ′′ by adding edges
incident to u only (since H ′′(Ui−1) = H(Ui−1) = H ′(Ui−1)). By Theorem 3.8, K

is a subgraph of H ′, and therefore of G(U). It follows that R(Hj−1, u, vj) ⊆ E,
which is the condition for adding edge uvj, so uvj ∈ Dj. Thus we have completed
the part of the proof by induction on j.

As a consequence, H(Ui) = Hk is chordal and every edge of H ′ incident to
u which has been processed is an edge of H(Ui). Since moreover H(Ui−1) =
H ′(Ui−1), unprocessed edges of G are edges of H and H(Ui) is a subgraph of
H ′, H ′ = H(Ui). This completes the proof by induction on i, and thus H is a
maximal chordal subgraph of G.

5 Data structure details and time complexity

The input graph G is represented by adjacency list data structure, and we use
a clique tree T of H as an additional data structure to store and work on the
transitory graph H. Thus, after the first step, T has only one tree node, which
contains start vertex s. As H grows, T will grow maintaining a correct clique
tree of H at all steps. Note that T will not always be connected at intermediate
steps, as H is not necessarily connected. In this case, each connected component
of T will be a correct clique tree of the corresponding connected component of
H.3

In what follows we describe an implementation of each of the following oper-
ations.

1. Compute the union X of all minimal u, v-separators in H, which gives the
required edge set R(H, u, v).

2. If R(H, u, v)∪{uv} is to be added to H, update T to reflect this modification
of H.

Each of these operations will be shown to require only O(n) time for each exam-
ined edge uv of G. We will devote a subsection to each of the above mentioned
operations. Subsection 5.1 describes how T is modified to obtain a path Pu,v

3We could have picked the new vertex u such that u ∈ NG(U), but this would result in less
general algorithms unnecessarily, and we want our algorithms to have on-line implementations.

A Vertex Incremental Approach for Maintaining Chordality 15

C6

C6

C1 C2 C3 C4 C5

C3 C4 C5

C2

C1

C6
C6

C6C3 C2

C1 C4 C5 (g)

C 1

u a(f)

C1 C4 C5
u a u a

q b
ubv(e)

bq v

ua

c
C

C

C

2
3

4 C5
4C’(h)

(a)

bq v

ua

c

C

C
C

C
C

1

2
3

4
5

C4

C’4
C 5

aq b

u a
b

u b
v

C4

C’4
C 5

aq b

u a
b

u b
v

(b) a a, c a b

a
a, c

a b(c)

a

a, c

a

(d) b

Figure 2: A chordal graph H is given in (a), and (b),(c), and (d) shows a clique
tree of H, where Cu = C1, Cv = C5, and Pu,v is the path between C1 and C5.
After steps (c) and (d), path Pu,v between C1 and C5 is in the desired form, and
only this portion of the tree is shown after step (d). In step (e), u is placed in
every tree node on Pu,v, and in step (f) C4 is separated from the path since edge
uq is not intended. C1 is removed in (g) since it becomes non-maximal. The new
corresponding graph H of which the modified tree is a clique tree is shown in (h).

such that every tree edge on Pu,v is a distinct minimal u, v-separator (Figure
2(b)-(d)), and how the union X of all these minimal separators is computed from
Pu,v. Subsection 5.2 describes how T is further modified to reflect the addition
of new edges to H (Figure 2(e)-(g)), and how to ensure that every tree node in
T is a unique maximal clique of H after the modifications.

Since we examine each edge at most once, and there are m edges, the desired
time bound will then follow. An illustration of what happens for each examined
edge uv is summarized in Figure 2; we will refer to parts of this figure as we
explain the details in the coming subsections. The main idea is to use a path
Pu,v of the current clique tree T between a tree node Cu that contains u and a
tree node Cv that contains v, and compute the union of tree edges on this path
that correspond to minimal u, v-separators. Unfortunately, the sum of the sizes
of these edges can be larger than O(n); in fact each edge can be of size O(n).
Thus, if the tree nodes and tree edges of T are implemented simply as vertex lists
containing vertices of each tree node and edge, then Operation 1 described above
cannot be accomplished in O(n) time. For this reason, we present a special kind
of implementation of the clique tree, as described below.

Every edge CC ′ of T is implemented as two lists that we will call difference
lists (difflists for short). One list contains vertices belonging to C \ C ′. This
list has two names; it is called both add(C ′, C) and remove(C, C ′). The other
list contains vertices belonging to C ′ \ C. This list is called add(C, C ′) and also

16 A Vertex Incremental Approach for Maintaining Chordality

C4C1 C3

C2

ad def ce

bf

C1

C2

C3C4

Cr

df

c

a

ef

ec øde b

C1

C2

C3
C4a

b

cd e

f
(a) (b) (c)

Figure 3: A chordal graph H and its maximal cliques are given in (a). A clique
tree of H is given in (b), where each tree node contains the vertices of a unique
maximal clique in H. The difference list representation of the same clique tree as
in (b) is presented in (c). Tree node Cr is an empty tree node, that is used when
we want to compute the set of vertices contained in a tree node. The arrows
represent the add and remove lists, and the vertices contained in each list are
given by the label attached to the arrow.

remove(C ′, C). Now, if every tree node C of T contains pointers to its add and
remove lists, add and remove lists are in edges of T and not in every clique C

of T then C actually does not need to store a list of vertices that it contains.
Vertices belonging to C can be computed by using the edges incident to C as
follows. For every edge CC ′, if we know the set of vertices belonging to C ′, then
we add add(C ′, C) to this set and remove remove(C ′, C) from this set to get the
set of vertices belonging to C. In order to have a starting tree node we need
to know the content of one tree node, this might be an empty tree node. Note
that the add and remove lists and the structure of the tree are the only stored
information in this data structure. In Figure 3 a chordal graph is given in (a),
while the regular clique tree of this graph is given in (b), and the clique tree
represented by difference lists is given in (c).

5.1 Finding the minimal u, v-separators and computing
X

Let Ku be any maximal clique of H that contains u, and let Kv be any maximal
clique that contains v. If Ku and Kv are contained in different connected com-
ponents of T , then X = ∅ and there is nothing to compute. Let us for the rest
of this subsection assume that Ku and Kv are contained in the same connected
component of T .

On the path from Ku to Kv in T , do a search from Ku to Kv and let Cu be
the tree node closest to Kv containing u. Do a similar search from Kv to Ku and
let Cv be the tree node closest to Ku containing v. Let Pu,v denote the path of T

between Cu and Cv. An example graph H and Pu,v are given in Figure 2 (a) and
(b), respectively.

A Vertex Incremental Approach for Maintaining Chordality 17

Claim 5.1 Every minimal u, v-separator appears as an edge of Pu,v, and every
edge on Pu,v separates u and v.

Proof. By Theorem 2.1 we know that every internal node of Pu,v contains neither
u nor v. Theorem 2.3 ensures that every minimal separator S appearing as an
edge of Pu,v separates u and v, since removing S will separate Cu from Cv in the
clique tree, thus also separate u and v in the graph. Conversely, for any minimal
u, v-separator S of the graph, S contains as a subset some edge S ′ of Pu,v, since
removing S will separate u and v in the graph, thus also separate Cu from Cv in
the clique tree. Now, since S is a minimal u, v-separator containing S ′ and by
the first part of this proof, the edge S ′ of Pu,v separates u and v, S is equal to S ′.
Thus S appears as an edge of Pu,v.

However, some of the tree edges on Pu,v might be non-minimal u, v-separators,
and some minimal u, v-separators might appear several times as edges of Pu,v. We
will first modify T in O(n) time so that path Pu,v between Cu and Cv contains
only distinct minimal u, v-separators as its edges.

Observe first that, since every vertex can appear only once in an add list
and once in a remove list on the path Pu,v, the sum of the lengths of the add

and remove lists on the path Pu,v is at most 2n. We obtain our time bound
by reading every add and remove list in Pu,v at most a constant number of
times. The maximal cliques (tree nodes) on Pu,v are named C1, C2, ..., Ck, where
Cu = C1 is the tree node containing vertex u, and Cv = Ck is the tree node
containing v, and edge Si = Si,i+1 = CiCi+1 is an edge of Pu,v, for 1 ≤ i ≤ k − 1.
We will describe how unnecessary maximal cliques can be removed from Pu,v,
and after each removal, we will assume that the remaining maximal cliques and
minimal separators are resorted as C1, C2, ...Ck, so that before we explain each
new modification, we have a consecutive numbering of the maximal cliques on
Pu,v. When we must remove edges of Pu,v and insert edges between two non-
consecutive tree nodes of Pu,v, we will need a more general way of naming the
intersections between two maximal cliques that are not necessarily adjacent in T .
We let Si,j = Ci ∩ Cj denote the intersection between Ci and Cj.

Claim 5.2 Assume that there is a tree edge Sj on Pu,v, such that either Sj is not a
minimal u, v-separator in H or Sj is equal to another minimal separator appearing
on Pu,v. Then there exists a tree edge Si such that Si ⊆ Si+1 or Si ⊆ Si−1.

Proof. Observe first that, by Claim 5.1, every minimal u, v-separator appears
as an edge of Pu,v, and every edge on this path separates u from v. Thus, Sj is
a (not necessarily minimal) u, v-separator. Consequently, there exists a minimal
u, v-separator Si such that Si ⊆ Sj and i 6= j. Let Si+1 or Si−1 be the edge
adjacent to Si in Pu,v in the direction of Sj. Note that i + 1 or i− 1 and j might
be equal. It follows from Theorem 2.3 that Si ⊆ Si+1 or Si ⊆ Si−1 since Si ⊆ Sj.

18 A Vertex Incremental Approach for Maintaining Chordality

From Claim 5.2, we can conclude that, if no two adjacent tree edges are
comparable by subset relation, then Pu,v contains only distinct minimal u, v-
separators. We will test adjacent tree edges on Pu,v, and remove the ones that
include their neighbors as a subset. In order to obtain our time bound we have
to do this test in the difflist data structure.

Claim 5.3 Let the following path Ci, Si, Cj, Sj, Cl be a subpath of Pu,v. Then
Si ⊆ Sj if and only if remove(Cj, Cl) ⊆ add(Ci, Cj).

Proof. Assume that remove(Cj, Cl) ⊆ add(Ci, Cj). Observe that Si ∪ add(
Ci, Cj) = Sj ∪ remove(Cj, Cl) = Cj, since Si = Ci ∩ Cj and Sj = Cj ∩ Cl.
Remember that add and remove lists only contain the new vertices, and thus
Si ∩ add(Ci, Cj) = Sj ∩ remove(Cj, Cl) = ∅. We can now conclude that Si ⊆ Sj,
since remove(Cj, Cl) ⊆ add(Ci, Cj) and Si ∪ add(Ci, Cj) = Sj ∪ remove(Cj, Cl)
and Si ∩ add(Ci, Cj) = Sj ∩ remove(Cj, Cl) = ∅. For the other direction, assume
that Si ⊆ Sj. By the same arguments as in the opposite direction it follows that
remove(Cj, Cl) ⊆ add(Ci, Cj), since Si ∪ add(Ci, Cj) = Sj ∪ remove(Cj, Cl) and
Si ∩ add(Ci, Cj) = Sj ∩ remove(Cj, Cl) = ∅.

Claim 5.4 Let Si,i+1 and Sj,j+1 be tree edges on the path Pu,v in the clique tree
T , such that Si,i+1 ⊆ Sj,j+1 and i < j. Let T ′ be a clique tree obtained from T , by
deleting the tree edge Si,i+1 and inserting the tree edge Si,j+1. Then T ′ is a clique
tree of the chordal graph H represented by T .

Proof. The maximal cliques in the clique tree T , are untouched by this operation,
so there exists a maximal clique in T ′ containing the vertex pair u, v if and only
if uv ∈ E(H), and every vertex of H is contained in some maximal clique of T ′.
Since Si,i+1 ⊂ Ci and Si,i+1 ⊆ Sj,j+1 ⊂ Cj+1 then Si,j+1 = Ci ∩ Cj+1 = Si,i+1,
thus it follows that the set of maximal cliques containing a vertex of H induces
a connected tree in T ′ since this is true for T .

Given two tree edges Si,i+1 and Sj,j+1 of Pu,v then Claim 5.4 can be used to
reduce the length of the path Pu,v Thus, after this modification, the subpath of
Pu,v between Ci and Cj+1 is reduced to Ci, Si,j+1, Cj+1. This situation corresponds
to the change from (b) to (c) in Figure 2. The new add and remove lists for the
tree edge Si,j+1 can be computed in the following way:

add(Ci, Cj+1) =
⋃

i≤q<j+1

add(Cq, Cq+1) \
⋃

i<q<j+1

remove(Cq, Cq+1) (1)

remove(Ci, Cj+1) =
⋃

i≤q<j+1

remove(Cq, Cq+1) \
⋃

i<q<j+1

add(Cq−1, Cq). (2)

A Vertex Incremental Approach for Maintaining Chordality 19

The list add(Ci, Cj+1) can be computed in time O(|
⋃

i≤q<j+1 add(Cq, Cq+1)|+
|
⋃

i<q<j+1 remove(Cq, Cq+1)|) in the following way. Let A be a characteristic
vector of size n, where every element is 0. For every vertex u ∈

⋃
i≤q<j+1 add(

Cq, Cq+1), set A[u] = 1, and then for every vertex u ∈
⋃

i<q<j+1 remove(Cq, Cq+1),
set A[u] = 0. Now add(Ci, Cj+1) can be computed as follows. For every vertex
u ∈

⋃
i≤q<j+1 add(Cq, Cq+1) where A[u] = 1, add u to add(Ci, Cj+1). In order to

reuse the vector, we clean up: for every vertex u ∈
⋃

i≤q<j+1 add(Cq, Cq+1), set
A[u] = 0. The list remove(Ci, Cj+1) is computed in the same way.

Claim 5.5 Let Si,i+1 and Sj,j+1 be tree edges on the path Pu,v in the clique tree
T , such that i < j. Then Si,i+1 ⊆ Sj,j+1 if and only if remove(Cq, Cq+1) ⊆
add(Ci, Cq) for i < q ≤ j.

Proof. Let us first show that Si,i+1 ⊆ Sj,j+1 if remove(Cq, Cq+1) ⊆ add(Ci, Cq)
for i < q ≤ j. This is proved by induction on j, i < j.for any given i, where Claim
5.3 corresponds to j = i + 1, which we will use as the base case. Now for the
induction hypothesis, let us assume that Si,i+1 ⊆ Sj,j+1 if remove(Cq, Cq+1) ⊆
add(Ci, Cq) for i < q ≤ j, and let us prove that Si,i+1 ⊆ Sj+1,j+2 if moreover
remove(Cj+1, Cj+2) ⊆ add(Ci, Cj+1). Since Si,i+1 ⊆ Sj,j+1 then by Claim 5.4,
the path from Ci to Cj+1 can be reduced to Ci, Si,j+1, Cj+1, and from the proof
of Claim 5.4 we know that Si,j+1 = Si,i+1. Finally it follows by Claim 5.3 that
Si,i+1 = Si,j+1 ⊆ Sj+1,j+2 since remove(Cj+1, Cj+2) ⊆ add(Ci, Cj+1) in the new
path from Ci to Cj+2.

For the other direction, we want to show that remove(Cq, Cq+1) ⊆ add(Ci, Cq)
for i < q ≤ j if Si,i+1 ⊆ Sj,j+1. Let q such that i < q ≤ j. From Theorem 2.3 it
follows that Si,i+1 ⊆ Sq−1,q and Si,i+1 ⊆ Sq,q+1. Since Si,i+1 ⊆ Sq−1,q, from Claim
5.4 the tree edge Si,i+1 can be replaced with Si,q, where Si,i+1 = Si,q. Since Si,q =
Si,i+1 ⊆ Sq,q+1, it follows by Claim 5.3 that remove(Cq, Cq+1) ⊆ add(Ci, Cq).

If we do this reduction for every pair Si, Si+1 and Si+1, Si of edges on the
path Pu,v, then it follows from Claim 5.2 that every tree edge on Pu,v is a distinct
minimal u, v-separator. Thus, we are done with the part that is illustrated in
Figure 2(b)-(d). However, it remains to explain how to examine adjacent tree
edges in such a way that the total time bound O(n) is maintained.

The idea is to do this in two scans. One from Cu to Cv, and one from Cv

to Cu. The same operation is done for both directions, so we will only explain
the scan from Cu to Cv. Consider the tree edges in the order given by Pu,v. For
a given tree edge Si (starting from S1) we will try to find the largest number t

such that the intersection Si,i+t = Ci ∩ Ci+t is equal to Si. Replace Si by Si,i+t

and continue by finding the next t using Si+t as the new Si, and repeat this until
Ci+t = Cv.

A consequence of Theorem 2.3 is that there exists no q > 0 such that Si =
Si,i+t ⊆ Si+t+q, since Si,i+t 6⊆ Si+t+1, which is the property we want for all tree
edges on Pu,v in both directions.

20 A Vertex Incremental Approach for Maintaining Chordality

Computing the add(Ci, Ci+t) and remove(Ci, Ci+t) lists can be done as pre-
viously described by only reading the add and remove lists on the path Pu,v

between Ci and Ci+t. The next search starts from Ci+t, and thus the total time
used to compute all such lists are O(n), since every add and remove list on the
path Pu,v is only used to compute the difflists for one new tree edge, and the new
tree edges are never used to create other tree edges.

It remains to efficiently compute the value t, given a path Pu,v and a tree edge
Si = Si,i+1. The basic idea is as follows. Start with t = 1. While Si,i+1 ⊆ Si,i+t+1,
increment t and repeat the test until Si+1 6⊆ Si,i+t+1 or i + t = k. From Claim
5.5 we know that this is equivalent to testing whether remove(Ci+q, Ci+q+1) ⊆
add(Ci, Ci+q), for 1 ≤ q ≤ t. It is important to notice that if Si+1 ⊆ Si,i+t, then
we can verify if Si+1 ⊆ Si,i+t+1 by testing if remove(Ci+t, Ci+t+1) ⊆ add(Ci, Ci+t),
since we already know that remove(Ci+q, Ci+q+1) ⊆ add(Ci, Ci+q), for 1 ≤ q < t.
The remove(Ci+t, Ci+t+1) is only read once for each time we increment t, and no-
tice that remove(Ci, Ci+1) is not used in this test. Let us now argue that we do not
read any of the remove lists over again when we continue to find the next t. Every
remove list we read is removed from the path Pu,v, except remove(Ci+t, Ci+t+1)
which we used to decide that Si,i+1 6⊆ Si,i+t+1. The remove(Ci+t, Ci+t+1) list
becomes the new remove(Ci, Ci+1) list since we use Ci+t as the new Ci when we
search for the next t. The newly created remove(Ci, Ci+t) will not be used to
find the next t since we use Ci+t as Ci. Thus it follows that every remove list on
the path Pu,v is only used once for testing.

So it remains to explain how the list add(Ci, Ci+t) is computed and checked
against remove(Ci+t, Ci+t+1) list within the time bound. This is done by using a
characteristic vector A of size n as an additional data structure. We will manipu-
late the vector A, such that A[u] = 1 if and only if u ∈ add(Ci, Ci+t), and then we
check in O(|remove(Ci+t, Ci+t+1)|) time if remove(Ci+t, Ci+t+1) ⊆ add(Ci, Ci+t).
These checks can be done within the time bound, given that the vector A con-
tains the add(Ci, Ci+t−1) list and that these add lists are provided in an increasing
order for the parameter t.

Equation 1 can be rewritten in the following way: add(Ci, Ci+t) = add(Ci,

Ci+t−1) ∪ add(Ci+t−1, Ci+t) \ remove(Ci+t−1, Ci+t). This enables us to obtain
add(Ci, Ci+t) by setting A[u] = 1 for every vertex u ∈ add(Ci+t−1, Ci+t), and
setting A[u] = 0 for every vertex u ∈ remove(Ci+t−1, Ci+t), given that A con-
tains add(Ci, Ci+t−1). Notice that add(Ci+t−1, Ci+t) and remove(Ci+t−1, Ci+t)
are not used to compute add(Ci, Ci+t−1). Therefore, by setting A[u] = 1 if
u ∈ add(Ci, Ci+1) when t = 1, then the sequence of lists add(Ci, Ci+q), for
q ≤ k + 1, can be created in A in increasing order by only reading the add

and remove lists on the path between Ci and Ci+t+1 once. We have to ensure
that every element of A is 0 before we start to compute the next t. This is done
within the time bound by reading the add lists between Ci and Ci+t+1 once more,
and setting A[u] = 0 for every vertex u contained in one of these add lists.

A Vertex Incremental Approach for Maintaining Chordality 21

We have now argued that every operation required to reduce the path Pu,v so
that every tree edge in Pu,v is a distinct minimal u, v-separator, can be executed by
only reading each add and remove list of Pu,v a constant number of times. Since
every vertex only can appear once in a add list of Pu,v and once in a remove list,
it follows that the reduction of Pu,v is an O(n) operation.

Now we will see how to compute X. A pair ux belongs to R(H, u, v) if there
exists a minimal u, v-separator containing x. Our goal is to compute the set X

of vertices, where x ∈ X if ux ∈ R(H, u, v). Observe that C1 ⊆ N(u) , and thus,
only the vertices not in S1 are of interest. The path Pu,v is already modified such
that every tree edge is a minimal u, v-separator, and every minimal u, v-separator
is a tree edge in this path. We can compute X in the following way: start in Cu

with an empty vertex set X. Then for 1 ≤ i < k−1 add the vertices contained in
add(Ci, Ci+1) \ remove(Ci+1, Ci+2) to X. There might be vertices that are only
contained in a single maximal clique Ci, and thus not contained in any tree edge.
These vertices will be contained in both add(Ci, Ci+1) and remove(Ci+1, Ci+2).
We obtain the desired set X using a characteristic vector A. For each vertex
u ∈ remove(Ci+1, Ci+2) set A[u] = 1, then for each vertex u ∈ add(Ci, Ci+1)
where A[u] = 0 add u to X. Finally for the clean up we set A[u] = 0 for each
vertex u ∈ remove(Ci+1, Ci+2). Thus, we obtain the desired set X in O(n) time
since the add and remove lists are read a constant number of times and the total
sum of these lists on the path Pu,v is O(n).

5.2 Modifying T to reflect the addition of uv and R(H, u, v)
to H

Let us now discuss how to the clique tree T of H is built and updated as we
decide to add edges and vertices to H. When a new vertex u is added to the set
U , then H gets a new vertex, and we update T by adding a new maximal clique
containing u.

Let H ′ denote the graph that results from adding uv and R(H, u, v) to H. We
will modify T to obtain a clique tree T ′ of H ′. If u and v are not contained in
the same connected component of H and T , then we update T in the following
way. Find a tree node Kv of T containing v, and a tree node Ku of T containing
u. If |Kv| > 1 and |Ku| > 1 then we create a new tree node Kuv containing the
vertices {u, v}, and insert the tree edges KvKuv and KuKuv. The add and remove
lists for KvKuv and KuvKu can be computed straightforwardly in O(n) time. If
|Kv| = 1 or |Ku| = 1, let us say |Ku| = 1, then Ku has no neighbor in T . The new
tree T ′ is created by adding vertex v to Ku to obtain tree node Kuv and either
deleting Kv (if |Kv| = 1) or inserting the tree edge KvKuv (otherwise). Adding
vertex v to Ku (resp. deleting Kv) is an O(n) operation since Ku (resp. Kv) has
no neighbors, and inserting the tree edge KvKuv takes O(n) time.

Let us assume that u and v are contained in the same connected component

22 A Vertex Incremental Approach for Maintaining Chordality

of T and H for the rest of this subsection. In order to update T to reflect that u

has now become a neighbor of v and of every vertex in X, we simply place u in
every tree edge and every tree node appearing on Pu,v in T . This is illustrated in
Figure 2(e). However, we must check the resulting tree T ′ after doing so, because
there might be a tree node C on this path containing a vertex q not appearing in
any minimal u, v-separator, and in this case u was not supposed to be a neighbor
of q. Detecting such a tree node C is easy because then q cannot appear in any
other tree node of the path, since X is already computed and q 6∈ X. For any
such C, we remove u from C, and we introduce a new tree node C ′ that contains
u and every vertex of C except the vertices that do not appear in any other tree
node of Pu,v. Tree edges incident to C on Pu,v are redirected to be incident to
C ′ instead, and tree edge C ′C is added to give a clique tree T ′ that reflects the
neighborhood relations of H ′ correctly. This is illustrated in Figure 2(f), where C4

corresponds to the mentioned C. If Cu has become a subset of another maximal
clique because of this operation, then we must correct T ′ accordingly. This is
shown in Figure 2(g).

Let us now discuss the practical implementation of this O(n) time. First
remove the vertex u from the remove(C1, C2) list. This ensures that u belongs
to every maximal clique (tree node) on Pu,v. Let us now consider each maximal
clique Ci, 2 ≤ i ≤ k, in the order given by Pu,v. The first step is to decide if
Ci contains any vertex q as described above. We know that no such vertex q

appears in a tree edge of Pu,v, and that X is the union of the tree edges in Pu,v.
Thus, Q = add(Ci−1, Ci) \ (X ∪ {v}) is exactly the set of such vertices q that are
only contained in Ci. If Q = ∅, then we add u to Ci. This is done by adding
u to every add(Cl, Ci) list, where l 6∈ {i − 1, i + 1} and Cl is a neighbor of Ci

outside of Pu,v. The value of i can now be incremented, such that the process
can continue from the next tree node. In the case where Q 6= ∅, we have to
create a new tree node Ci′ = Ci ∩ (X ∪ {v}) ∪ {u}, and a new tree edge Si′,i

between Ci′ and Ci. This is done by simply creating the new lists add(Ci, Ci′)
and remove(Ci, Ci′) as follows: add(Ci, Ci′) = {u}, since Ci′ \ Ci = {u}, and
remove(Ci, Ci′) = Q. The lists add(Ci−1, Ci′), remove(Ci−1, Ci′), add(Ci′ , Ci+1)
and remove(Ci′ , Ci+1) are not created, but obtained by altering add(Ci−1, Ci),
remove(Ci−1, Ci), add(Ci, Ci+1) and remove(Ci, Ci+1). This is done by moving
the pointers from Ci to Ci′ , and removing all the vertices in Q from these lists.

Let us show that the O(n) time bound is kept during the modifications ex-
plained above. The vertex set Q is computed by storing X in a characteristic
vector A of size n, such that A[u] = 1 if and only if u ∈ X. A vertex u is contained
in Q if u ∈ add(Ci−1, Ci) and A[u] = 0, thus it follows that Q can be computed
in O(|add(Ci−1, Ci)|) time.

Creating each new tree node Ci′ is a constant time operation. Every time
a new Ci′ is created, we also create a new tree edge Si,i′ . We first argue that
the sum of the sizes of all the add(Ci, Ci′) and remove(Ci, Ci′) lists for all such

A Vertex Incremental Approach for Maintaining Chordality 23

new tree edges is O(n). This immediately follows from the fact that Q ⊆
add(Ci−1, Ci), add(Ci−1, Ci) ∩ add(Cj−1, Cj) = ∅ for 1 ≤ i, j < k i 6= j, and∑

1≤i<k |add(Ci−1, Ci)| ≤ n. Thus, the total cost of creating all such new tree
edges Si,i′ is O(n). In order to move the tree edges Si−1,i and Si,i+1 to Si−1,i′

and Si′,i+1 we must change some pointers, and read through the lists to remove
vertices in Ci \ Ci′ = Q. The total cost of all such operations is less or equal
to the sum of all add and remove lists in Pu,v, given that Q also is stored in a
characteristic vector. It follows that this altogether is an O(n) time operation.

We will now, through the next three claims, prove that tree T ′ that results
from the modifications explained above is a clique tree of H ′ = (U,D ∪ {uv} ∪
R(H, u, v)).

Claim 5.6 Given a chordal graph H = (V, D), a clique tree T of H, an edge
uv, and the required set of edges R(H, u, v), let H ′ be the graph (V, D ∪ {uv} ∪
R(H, u, v)) and let T ′ be the resulting clique tree after updating T as explained
above. Then for each pair of vertices x and y, there is a tree node in T ′ that
contains both x and y if and only if xy ∈ D ∪ {uv} ∪ R(H, u, v).

Proof. Before any modifications to T at this step, there is a tree node C ∈ T ,
that contains both the vertices x and y if and only if xy ∈ D. A tree node Cd is
only deleted during the modification process if there exists a remaining tree node
C ′

d, such that Cd ⊆ C ′
d. Thus, for every edge xy ∈ D there exists a tree node in

T ′ that contains both x and y.
Before appropriate tree nodes of T are expanded to contain u, every newly

created tree node Ci′ is a subset of some other tree node Ci. At this point we
have the property that the vertex set of every tree node of T is either a maximal
clique in H or a subset of a maximal clique in H. Thus T has still the property
that there exists a tree node containing x and y if and only if xy ∈ D.

Then u is added to every tree node C of T on the modified path Pu,v, where
C ⊆ X ∪ {v}, and we obtain T ′. It follows that for every edge xy 6∈ E(H ′), there
is no tree node C of T ′ that contains both x and y, since u is only added to a
tree node C if C ⊆ X ∪ {v}.

For the other direction we have to show that for every edge ux ∈ R(H, u, v)∪
{uv} there exists a tree node C in T ′ containing u and x. By Claim 5.1 every
minimal u, v-separator is an edge of Pu,v, thus there exists a tree node C in T on
Pu,v containing x for every ux ∈ R(H, u, v). The tree node Cv in the end of Pu,v

contains v. If C 6⊆ X ∪ {v} for a tree node C in T on Pu,v, then a new tree node
C ′ = C ∩ (X ∪ {v}) is created and used in the path Pu,v. We can now conclude
that for every edge ux ∈ R(H, u, v) ∪ {uv} there exists a tree node of T ′ which
contains both u and x.

Claim 5.7 Subtree T ′
x induced by the tree nodes in T ′ that contain vertex x is

connected, for every vertex x ∈ U .

24 A Vertex Incremental Approach for Maintaining Chordality

Proof. We assume that all subtrees are connected in T before the last modifi-
cation. Let us now consider the operations one by one. First operation is when
Ci 6∈ (X ∪ {v}). A new tree node Ci′ is created, where Ci′ ⊂ Ci. A tree edge is
inserted between Ci and Ci′ , but all subtrees are connected since Ci′ ⊂ Ci. Next
step is to move the edges Si−1,i and Si,i+1 to become Si−1,i′ and Si′,i+1. This will
not create separated subtrees since Si−1,i ∪ Si,i+1 ⊆ Ci′ , thus Si−1,i′ = Si−1,i and
Si′,i+1 = Si,i+1. The second operation is adding the vertex u to Ci′ in the case
where a new tree node Ci′ is created, and to Ci if no new tree node is created.
This changes only the tree induced by the tree nodes containing the vertex u.
Since we consider the tree nodes in the order C2 to Cv, then it follows that the
tree Tu is always connected.

Claim 5.8 The tree nodes of T ′ are exactly the distinct maximal cliques of H ′,
except for Cu in case Cu ⊆ C2.

Proof. Let us first show that every maximal clique of H ′ is a tree node of T ′.
By Claims 5.6 and 5.7, T ′ defines what is called a tree decomposition of H ′. So,
by [13] every clique in H ′ is contained in some node of T ′. Since by Claim 5.6
every tree node of T ′ is a clique in H ′, a maximal clique in H ′ cannot be strictly
contained in some tree node of T ′ and therefore is equal to one of them.
Conversely, let us show that tree nodes of T ′ are distinct maximal cliques of H ′,
except for Cu in case Cu ⊆ C2. Suppose on the contrary that some tree node C

of T ′ is not a maximal clique of H ′ or is a maximal clique of H ′ equal to another
node of T ′. Since every maximal clique of H ′ is a tree node of T ′ and since by
Claim 5.6, C is a clique of H ′, there is a tree node C ′ different from C containing
C. Let C ′′ be the neighbor of C on the path in T ′ between C and C ′. By Claim
5.7, C = C ∩C ′ ⊆ C ′′. It follows that it is sufficient to show that no tree node of
T ′ is a subset of one of its neighbors, except for Cu in case Cu ⊆ C2.

We will now prove by induction that C 6⊆ C ′′ unless C = Cu and C ′′ = C2,
where C and C ′′ are tree nodes of T ′. This is clearly true in the base case, where
H ′ consist of only one vertex and T ′ consist of a single tree node. Let H = (V, D)
be the chordal graph such that H ′ = (V, D ∪ {uv} ∪R(H, u, v)) and let T be the
given maximal clique tree of H. There are two cases. The first is when the vertex
u is added to a tree node C. The expanded C cannot become a subset of another
tree node, but it can become a superset of a tree node Cj, if Cj \C = {u}. Since
Cu is the only tree node in the neighborhood of any tree node different from Cu

in Pu,v that contains u, then this can only happen to Cu. The second case is when
a new tree node Ci′ is created as a subset of Ci, where u 6∈ Ci and Ci \ Ci′ 6= ∅.
In this situation Ci′ is a tree node on the path Pu,v and Ci is not, u is added
to Ci′ and not to Ci, thus Ci and Ci′ are not subsets of each other. From the
construction of Ci′ we know that every neighbor of Ci′ different from Ci is on the
path Pu,v. Let us now on the contrary assume that Ci′ ⊆ Ci−1 or Ci′ ⊆ Ci+1. If

A Vertex Incremental Approach for Maintaining Chordality 25

Ci′ ⊆ Ci+1 then Si−1,i′ ⊆ Ci′ = Si′,i+1, which is a contradiction to the fact that
every edge of Pu,v is a unique minimal u, v-separator. If Ci′ ⊆ Ci−1 then i = k

since otherwise Si′,i+1 ⊆ Ci′ = Si−1,i′ which is a contradiction to the fact that
every edge of Pu,v is a unique minimal u, v-separator. The only remaining case is
that Ci′ = Cv on the path Pu,v with Ci′ ⊆ Ci−1. Then v ∈ Ci′ , so v ∈ Ci−1 6= Cv

which is a contradiction to the fact that only Cv in Pu,v contains v.

Let us re-sort the tree nodes of the modified path Pu,v of T ′ from Cu = C1 to
Ck = Cv. With the above three claims, if Cu 6⊆ C2, then we have proved that T ′

is a legal clique tree of H ′. If Cu ⊆ C2, then we will simply remove Cu, and again
we can conclude that T ′ with this final modification is a legal clique tree of H ′.

However, it remains to explain how this final update of removing Cu = C1 can
be done in O(n) time, which is challenging. It is easy to check if C1 ⊆ C2, since
remove(C1, C2) = ∅ in this case. Tree node C1 is deleted in the following way:
For every tree edge S1,j where Cj 6= C2, we delete the tree edge S1,j and insert
S2,j. Afterwards we delete tree edge S1,2 and tree node C1. In order to do this
efficiently we actually alter the add and remove lists and move the tree edges from
C1 to C2. Let us consider the new tree node Cj, and how to create the add and
remove lists from Cj to C2. From the previous described technique they can be
computed as follows: add(Cj, C2) = add(Cj, C1) ∪ add(C1, C2) \ remove(C1, C2)
and remove(Cj, C2) = remove(C1, C2)∪remove(Cj, C1)\add(Cj, C1). Remember
that remove(C1, C2) = ∅, since C1 ⊆ C2, and that remove(Cj, C1)∩add(Cj, C1) =
∅. Computing the lists can then be reduced to: add(Cj, C2) = add(Cj, C1) ∪
add(C1, C2) and remove(Cj, C2) = remove(Cj, C1). The obstacle regarding the
time complexity is that add(C1, C2) will be read once for each neighbor of C1.
Thus, we have to ensure that this work does not sum up to more than O(n). Let
us count the number of times this can happen.

Claim 5.9 Let Cu ⊆ C2 in T ′, and let H ′′ be the chordal graph right before the
first edge uv′ incident to u and the set R(H ′′, u, v′) was added to H ′′, and let T ′′

be the clique tree of H ′′. Then Cu \{u} is not a tree node of T ′′ or in other words
Cu \ {u} is not a maximal clique of H ′′.

Proof. The tree T ′ is obtained from T ′′ by adding new tree nodes which are
subsets of tree nodes in T ′′ and by adding u to tree nodes of this new tree, since
only edges incident to u are processed between T ′′ and T ′. Clearly Cu \{u} is not
a tree node in T ′′, since Cu \ {u} ⊆ C2 \ {u} and C2 \ {u} is contained in some
tree node of T ′′, and every tree node of T ′′ is a unique maximal clique in H ′′.

Claim 5.10 Reducing path Pu,v such that it contains only distinct minimal u, v-
separators, can increase the degree of Cu by at most 1.

Proof. Two different scans are done on Pu,v to reduce the number of tree nodes.
The first starts in Cu, and finds the maximal clique furthest from Cu that is a

26 A Vertex Incremental Approach for Maintaining Chordality

superset of Su,2. In this case one tree edge incident to Cu is deleted, and one
is created, and the degree of Cu remains the same. In the direction from Cv to
Cu, we may find a tree edge that is a subset of Su,2. In this case Cu gets a new
neighbor and the degree of Cu increases by 1.

Observe that the process of reducing the path Pu,v can increase the degree of
at most one tree node containing the vertex u. This follows from the fact that
Cu is the only tree node in Pu,v containing the vertex u.

Claim 5.11 Adding u to every tree node in Pu,v does not increase the degree of
Cu.

Proof. One of two things will happen. In one case vertex u is added to C2, which
is the neighbor of Cu in the path Pu,v. This will not change the degree of Cu in
the clique tree T . The second case is if C2 is not a subset of X ∪ {v}. Then a
new tree node C ′

2 is created, and the tree edge between Cu and C2 is removed,
and inserted between Cu and C ′

2. It follows that the degree of Cu is unchanged.

Claim 5.12 The degree of each newly created tree node Ci′ in T ′ is at most 3.

Proof. When a new tree node Ci′ is created, it is a subset of an existing tree
node Ci. Let d be the number of neighbors Ci has in Pu,v. Thus, d is either 1 or
2. A tree edge is introduced between Ci′ and Ci, and Ci′ replaces Ci in the path
Pu,v. The degree of Ci′ becomes d + 1, and thus the degree is at most 3.

Remember that the obstacle in obtaining the O(n) time bound was that
add(Cu, C2) is read once for each neighbor of Cu, when add(Cj, C2) = add(
Cj, Cu) ∪ add(Cu, C2) is computed. It remains to show that if Cu ⊆ C2 in T ′

then
∑

CjCu edge of T ′, j 6=2 |add(Cu, C2)| is O(n). We will use an amortized time
analysis. Let vertex u be given, and let d(u) denote the degree of u in G. For
any neighbor v of u in G such that edge uv is processed in the execution of the
algorithm, let T ′(v) denote the tree T ′ when processing edge uv, let Cu(v) denote
tree node Cu of this tree, and let Cj(v) denote tree node Cj of T ′(v). Let V1 be
the set of neighbors v of u in G such that edge uv is processed and Cu(v) ⊆ C2(v).
Let S =

∑
v∈V1

∑
Cj(v)Cu(v) edge of T ′(v) |add(Cu(v), C2(v))|. It is sufficient to show

that S is O(n · d(u)). For any v ∈ V1, let E(v) be the set of edges incident to
Cu(v) in T ′(v), and let E1(v), E2(v), E3(v), and E4(v) be the following subsets
of E(v):

• E1(v) is the set of edges of E(v) created at the same time as Cu(v);

• E2(v) is the set of edges of E(v) inserted when reducing path Pu,v′ , with
Cu(v

′) = Cu(v), for some edge uv′ processed before uv;

A Vertex Incremental Approach for Maintaining Chordality 27

• E3(v) is the set of edges of E(v) inserted when suppressing Cu(v
′) because

Cu(v
′) ⊆ C2(v

′), with C2(v
′) = Cu(v), for some edge uv′ processed before

uv;

• E4(v) is the set of edges of E(v) inserted as an edge KuKuv′ or KuKv′ with
Ku = Cu(v), when previously processing an edge uv′ such that u and v′ are
in different connected components of the current graph.

It follows from Claim 5.9 that Cu(v) is created when inserting some edge uv′

previous to uv. The set E2(v), contains the edge incident to Cu(v
′) that may

be inserted when reducing path Pu,v′ during the scan from Cv′(v′) to Cu(v
′), but

not the edge that may be inserted during the scan from Cu(v
′) to Cv′(v′) in

replacement of edge Cu(v
′)C2(v

′): these two edges (the replaced and replacing
ones) are identified in our counting process. In the same way, the edge of E(v)
that may be inserted in replacement of Cu(v

′)C2(v
′) when adding u to C2(v

′) is
identified with the replaced edge. So by Claim 5.11, no edge of E(v) has been
inserted when adding u to C2(v

′) for any edge uv′ processed before uv, and every
edge of E(v) belongs to one of the sets E1(v), E2(v), E3(v), and E4(v).

Let e = Cj(v)Cu(v) be an edge of E3(v), and let v′ be the previously processed
vertex such that e was inserted when suppressing Cu(v

′) because Cu(v
′) ⊆ C2(v

′),
with C2(v

′) = Cu(v). Then v′ ∈ V1 and e is obtained from some edge e′ =
Cj′(v

′)Cu(v
′) belonging to E1(v

′)∪E2(v
′)∪E3(v

′)∪E4(v
′). We say that e derives

from e′. If e′ ∈ E3(v
′) then e′ derives from some edge e′′. It follows that there

are sequences (v0, v1, ..., vp = v) of vertices of V1 and (e0, e1, ..., ep = e) of edges
such that e0 ∈ E1(v0) ∪ E2(v0) ∪ E4(v0) and for any i from 1 to p, ei ∈ E3(vi)
and ei derives from ei−1. Conversely, for any v ∈ V1 and e ∈ E1(v) ∪ E2(v) ∪
E4(v), there are unique such sequences seq(e) = (v = v0, v1, ..., vp) and (e =
e0, e1, ..., ep) such that no edge derives from ep. So S can be rewritten as follows:
S =

∑
v∈V1

∑
e∈E1(v)∪E2(v)∪E4(v)

∑
v′∈seq(e) |add(Cu(v

′), C2(v
′))|.

If seq(e) = (v = v0, v1, ..., vp), then since Cu(vi) ⊆ C2(vi) for any i from 0 to
p and C2(vi) = Cu(vi+1) for any i from 0 to p − 1, we have that

∑
v′∈seq(e) |add(

Cu(v
′), C2(v

′))| =
∑

0≤i<p(|Cu(vi+1)| − |Cu(vi)|) + (|C2(vp)| − |Cu(vp)|) = |C2(
vp)| − |Cu(v0)| ≤ n.

Moreover, for any v ∈ V1, if Cu(v) was created as a node {u, v′} (when
processing an edge uv′ such that u and v′ are in different connected compo-
nents of the current graph) then |E1(v)| ≤ 2, and otherwise, by Claims 5.9
and 5.12, |E1(v)| ≤ 3, and by Claim 5.10,

∑
v∈V1

|E2(v)| ≤ d(u), and finally∑
v∈V1

|E4(v)| ≤ d(u) since only one tree edge is added for each edge uv′ such
that u and v′ are contained in different connected components of T ′. Hence S ≤
n(

∑
v∈V1

(|E1(v)|+ |E2(v)|+ |E4(v)|) ≤ n(3|V1|+ 2d(u)) ≤ n · 5d(u) = O(n · d(u)).

28 A Vertex Incremental Approach for Maintaining Chordality

6 Concluding remarks

In this paper, we contribute new theoretical results on chordality as well as an
efficient handling of the corresponding data structures. Not only do we have
a new O(nm) time on-line algorithm for minimal triangulation of a graph G,
but we are able to compute at the same time a maximal chordal subgraph, thus
“minimally sandwiching” the graph between two chordal graphs: H1 ⊆ G ⊆ H2.

This special feature of our algorithm enables the user, at no extra cost, to
choose at each vertex addition step whether he wants to add or delete edges, or
even to do so at each edge addition step. This may be interesting for applications
such as updating databases or for sampling techniques in the context of artificial
intelligence when maintaining a chordal graph is required or desirable.

Recent work has shown that minimal separation plays an important role in
the process of minimal triangulation. Our new characterization of chordal graphs,
which uses minimal separation, leads us to believe that there is a corresponding
relationship when computing a maximal chordal subgraph.

A continuation of this work would be to compare the running time of our al-
gorithm to other minimal triangulation algorithms with experimental tests. Since
often several edges are found and inserted at the time cost of one edge, we conjec-
ture that our algorithm may be very fast in practice. Another important issue to
inquire about would be how well our algorithm performs when used as a heuristic
for hard problems, such as computing a minimum triangulation or a maximum
subtriangulation. Standard ideas from existing heuristics, like picking a vertex of
minimum degree at each step, could be integrated into our algorithm and possibly
result in higher probability of less fill in minimal triangulations and more edges
in maximal subtriangulations.

It appears that chordal graphs are in many ways similar to weakly chordal
graphs [23, 8, 7]. It would be interesting to extend our results to define a process
which maintains a weakly chordal graph, thus enabling efficient computation of
a weak minimal super or maximal sub triangulation, which is an important issue
for recent applications to formal concept analysis and data mining [9]. As we
pointed out in Section 3, the required set of edges can be seen as a succession of
2-pairs which is computed efficiently. In view of the important role that 2-pairs
play in weakly chordal graph recognition [24, 33, 25], our results could possibly
be extended to efficiently handle such a succession of 2-pairs in a weakly chordal
graph, with the hope of improving the current O(m2) [25] time complexity for
this problem.

Acknowledgments

The authors would like to thank the referees for useful comments, which have
improved the readability of the text in general, and of some of the proofs in

A Vertex Incremental Approach for Maintaining Chordality 29

particular.

References

[1] S. Arikati and P. Rangan. An efficient algorithm for finding a two-pair, and its
applications. Disc. Appl. Math., 31:71–74, 1991.

[2] E. Balas. A fast algorithm for finding an edge-maximal subgraph with a TR-
formative coloring. Disc. Appl. Math., 15:123–134, 1986.

[3] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database systems. J. Assoc. Comput. Mach., 30:479–513, 1983.

[4] A. Berry. A wide-range efficient algorithm for minimal triangulation. In Proceed-
ings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, 1999.

[5] A. Berry, J. Blair, P. Heggernes, and B Peyton. Maximum cardinality search for
computing minimal triangulations of graphs. Algorithmica, 39(4):287–298, 2004.

[6] A. Berry, J. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-range
algorithm for minimal triangulation from an arbitrary ordering. Journal of Algo-
rithms, 58(1):33–66, 2006.

[7] A. Berry and J-P. Bordat. Triangulated and weakly triangulated graphs: Sim-
pliciality in vertices and edges. 6th International Conference on Graph Theory
(ICGT 2000), 2000. Communication.

[8] A. Berry, J-P. Bordat, and P. Heggernes. Recognizing weakly triangulated graphs
by edge separability. Nordic Journal of Computing, 7:164–177, 2000.

[9] A. Berry and A. Sigayret. Obtaining and maintaining polynomial-size concept
lattices. In Proceedings of FCAKDD, (ECAI 2002), pages 3–6, 2002.

[10] A. Berry, A. Sigayret, and C. Sinoquet. Maximal sub-triangulation as improv-
ing phylogenetic data. Technical Report RR-02-02, LIMOS, Clermont-Ferrand,
France, 2002.

[11] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making
filled graphs minimal. Theoretical Computer Science, 250:125–141, 2001.

[12] J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique
trees. In J. A. George, J. R. Gilbert, and J. W. H. Liu, editors, Graph Theory and
Sparse Matrix Computations, pages 1–30. Springer Verlag, 1993. IMA Volumes in
Mathematics and its Applications, Vol. 56.

[13] Hans L. Bodlaender and Rolf H. Möhring. The pathwidth and treewidth of
cographs. SIAM J. Discrete Math., 6(2):181–188, 1993.

30 A Vertex Incremental Approach for Maintaining Chordality

[14] P. Buneman. A characterization of rigid circuit graphs. Discrete Math., 9:205–212,
1974.

[15] T. F. Coleman. A chordal preconditioner for large-scale optimization. Applied
Math., 40:265–287, 1988.

[16] E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In
R. H. Möhring, editor, Graph Theoretical Concepts in Computer Science - WG
’97, LNCS 1335, pages 132–143. Springer Verlag, 1997.

[17] P. M. Dearing, D. R. Shier, and D. D. Warner. Maximal chordal subgraphs. Disc.
Appl. Math., 20:181–190, 1988.

[18] A. Deshpande, M. Garofalakis, and M. I. Jordan. Efficient stepwise selection in
decomposable models. In Proceedings of UAI, pages 128–135, 2001.

[19] G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71–76,
1961.

[20] P. Erdös and R. Laskar. On maximum chordal subgraph. Cong. Numerantium,
39:367–373, 1983.

[21] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific
J. Math., 15:835–855, 1965.

[22] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Combin. Theory Ser. B, 16:47–56, 1974.

[23] R. Hayward. Generating weakly triangulated graphs. J. Graph Theory, 21:67–70,
1996.

[24] R. Hayward, C. Hoàng, and F. Maffray. Optimizing weakly triangulated graphs.
Graphs and Combinatorics, 5:339–349, 1989.

[25] R. Hayward, J. Spinrad, and R. Sritharan. Weakly chordal graph algorithms via
handles. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2000.

[26] P. Heggernes and Y. Villanger. Efficient implementation of a minimal triangulation
algorithm. In R. H. Möhring, editor, Algorithms - ESA 2002, LNCS 2461, pages
550–561. Springer Verlag, 2002.

[27] C-W. Ho and R. C. T. Lee. Counting clique trees and computing perfect elimina-
tion schemes in parallel. Inform. Process. Lett., 31:61–68, 1989.

[28] L. Ibarra. Fully dynamic algorithms for chordal graphs. In Proceedings of the 10th
Annual ACM-SIAM Symposium on Discrete Algorithms, 1999.

[29] M. Lundquist. Zero patterns chordal graphs and matrix completions. PhD thesis,
Clemson University, USA, 1990.

A Vertex Incremental Approach for Maintaining Chordality 31

[30] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge
modification problems. Disc. Appl. Math., 113:109–128, 2001.

[31] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In R. C. Read, editor, Graph Theory and
Computing, pages 183–217. Academic Press, 1972.

[32] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimi-
nation on graphs. SIAM J. Comput., 5:266–283, 1976.

[33] J. Spinrad and R. Sritharan. Algorithms for weakly triangulated graphs. Disc.
Appl. Math., 59:181–191, 1995.

[34] J. Walter. Representations of rigid cycle graphs. PhD thesis, Wayne State Uni-
versity, USA, 1972.

[35] J. Xue. Edge-maximal triangulated subgraphs and heuristics for the maximum
clique problem. Networks, 24:109–120, 1994.

[36] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg.
Disc. Meth., 2:77–79, 1981.

32 A Vertex Incremental Approach for Maintaining Chordality

Paper III

Lex M versus MCS-M

Yngve Villanger∗

Abstract

We study the problem of minimal triangulation of graphs. One of the

first algorithms to solve this problem was Lex M, which was presented in

1976. A new algorithm, and a simplification of Lex M called MCS-M, was

presented in 2002. In this paper we compare these two algorithms and

show that they produce the same set of triangulations, answering an open

question mentioned by the authors of MCS-M.

1 Introduction

Graph theory has several important problems that involve creating a chordal
supergraph from a given graph by adding a set of edges. The set of added edges
is called fill, and the chordal supergraph is called a triangulation of the given
graph. Different goals may be desired; one is to introduce as few new edges as
possible (called minimum fill), and another is to create a triangulation such that
the largest clique is as small as possible, which corresponds to the treewidth of
the graph. Both of these problems are NP-hard [1, 13].

Minimal fill, also called minimal triangulation, is the problem of adding an
inclusion minimal set of fill edges. There exist several practical algorithms that
solve this problem [2, 4, 5, 6, 7, 9, 11, 12]. Since minimum fill is hard to com-
pute, minimal fill may be used as an alternative, even though the difference in
the number of fill edges may be quite large. One of the algorithms that solve the
minimal triangulation problem is Lex M (Rose, Tarjan, and Lueker [12]), which
is a classical algorithm based on a special breadth first search and lexicographic
labeling of the vertices. Recently (Berry, Blair, Heggernes, and Peyton [3]) intro-
duced a new algorithm called MCS-M. This is a simplification of Lex M so that
cardinality weights are used instead of lexicographic labels.

A triangulation of a graph can also be obtained by using the elimination game
[10] algorithm. This algorithm takes a graph and an ordering of the vertices as
input. The ordering of the vertices given to the elimination game is also called

∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway.

yngvev@ii.uib.no

2 Lex M versus MCS-M

an elimination ordering. This ordering uniquely defines the set of fill edges for a
given graph, but there may be many different elimination orderings that introduce
the same set of fill edges. If an ordering produces a minimal triangulation, then
the ordering is called a minimal elimination ordering (meo).

Both Lex M and MCS-M produce an meo. The user of Lex M and MCS-M
can select the last vertex in the ordering, and may have some choices during the
execution of the algorithm. Because of these choices, both algorithms produce a
set of minimal orderings for a given graph. Some of the orderings may only occur
in one of the sets, and it follows that the number of orderings in each of these
sets can be quite different. However, in this paper we show that for every Lex
M ordering, there exists an MCS-M ordering that creates exactly the same fill
edges, and for every MCS-M ordering there exists a Lex M ordering that creates
exactly the same fill edges. It follows that Lex M and MCS-M create exactly the
same set of triangulations.

2 Elimination orderings, Lex M, and MCS-M

We consider finite, simple, undirected and connected graphs. Given a graph
G = (V, E), we denote the number of vertices as n = |V | and the number of
edges as m = |E|. The neighborhood of a vertex u ∈ V is denoted by NG(u) = {v
for (u, v) ∈ E}, and NG[u] = NG(u) ∪ {u}. In the same way we define the
neighborhood of a set A ⊆ V of vertices by NG(A) = ∪u∈ANG(u)\A. A sequence
v1 − v2 − ... − vk of distinct vertices describes a path if (vi, vi+1) is an edge for
1 ≤ i < k. The length of a path is the number of edges in the path. A cycle is
defined as a path except that it starts and ends with the same vertex. If there is
an edge between every pair of vertices in a set A ⊆ V , then the set A is called a
clique.

Chordal graphs are the family of graphs where every cycle of length greater
than three has a chord. A chord is an edge between two non-consecutive vertices of
a cycle. Chordal graphs can be computed from non-chordal graphs by introducing
new edges, called fill edges. This process is called triangulation of a graph. An
ordering of V is a function α : {1, 2, ..., n} ↔ V , and we use α = [v1, v2, ..., vn] to
denote that α(i) = vi for 1 ≤ i ≤ n. Given a graph G and an ordering α of the
vertices in G, the elimination game [10] can be used to obtain a triangulation G+

α

of the given graph G. The triangulation is obtained by picking the first vertex
from the ordering, making its neighborhood into a clique, and then removing the
vertex from the graph. This is repeated until no vertex remains. The ordering α

is called an elimination ordering. The vertex at position i is given by α(i), and
α−1(u) gives us the position of the vertex u in the ordering. Theorem 2.1 gives a
precise description of what edges exist in the resulting graph.

Lex M versus MCS-M 3

Theorem 2.1 (Rose, Tarjan, and Lueker [12]) Given a graph G = (V, E) and
an elimination ordering α of G, (y, z) is an edge in G+

α if and only if (y, z) ∈ E or
there exists a path y, x1, x2, ..., xk, z in G where α−1(xi) < min{α−1(y), α−1(z)},
for 1 ≤ i ≤ k.

The set of vertices monotonely adjacent to a vertex is the set of higher
numbered neighbors, and is defined as follows. Given a graph G = (V, E)
and an ordering α of the vertices, then madjG+

α
(z) = {w for which (z, w) ∈

E(G+
α), α−1(z) < α−1(w)}. Our first result, before we continue with minimal

triangulations, concerns changes that can be done to an elimination ordering
without altering the resulting triangulation. Our approach is to consider two
consecutive vertices in the ordering, and decide if they can switch places in the
ordering without altering the triangulation.

Lemma 2.2 Given a graph G = (V, E), and an ordering α = [x1, x2, ..., xk, u,

v, xk+3, ..., xn] of V (G), let β = [x1, x2, ..., xk, v, u, xk+3, ..., xn] (u and v are swap-
ped). If (u, v) 6∈ E(G+

α) then G+
α = G+

β .

Proof. We want to show that madjG+
α
(z) = madjG+

β
(z) for each z ∈ V , since

it then follows that G+
α = G+

β . Let z be any vertex in V \ {u, v}. The set of
vertices appearing prior to z in α and in β is exactly the same. It follows from
Theorem 2.1 that madjG+

α
(z) = madjG+

β
(z) for any z ∈ V \ {u, v}. Let us now

consider the vertices u and v. The edge (u, v) 6∈ E(G+
α), and due to Theorem

2.1, there exists no path from u to v in G that passes through only vertices from
among x1, x2, ..., xk. We show that madjG+

α
(u) = madjG+

β
(u). In order to do

this we will show that both madjG+
α
(u) \madjG+

β
(u) and madjG+

β
(u) \madjG+

α
(u)

are empty sets. Let us first on the contrary assume that there exists a vertex
z ∈ madjG+

β
(u) \madjG+

α
(u). Then there must exist a path from u to z in G that

passes through only vertices from x1, x2, ..., xk, v, and this path must contain v,
since there does not exist any path in G between u and z that uses only vertices
from x1, x2, ..., xk, because z 6∈ madjG+

α
(u). This gives a contradiction since there

exists no path in G from u to v that only uses vertices from among x1, x2, ..., xk,
and thus no such path between u and z through v can exist. Now let us on the
contrary assume that there exists a vertex z ∈ madjG+

α
(u) \madjG+

β
(u). This is a

contradiction since there must exist a path from u to z in G that passes through
only vertices from x1, x2, ..., xk, but no such path that passes through only vertices
from x1, x2, ..., xk, v. It follows that madjG+

α
(u) = madjG+

β
(u). It remains to show

that madjG+
α
(v) = madjG+

β
(v). The proof is the same as the one for u. Let us first

on the contrary assume that there exists a vertex z ∈ madjG+
α
(v) \ madjG+

β
(v).

Then there must exist a path from v to z in G that passes through only vertices
from x1, x2, ..., xk, u. This path must contain u because there does not exist

4 Lex M versus MCS-M

any path in G that passes through only vertices from x1, x2, ..., xk, since z ∈
madjG+

α
(v) \madjG+

β
(v). This is a contradiction since there does not exist a path

from u to v in G, that passes through only vertices from x1, x2, ..., xk. Let us on the
contrary assume that there exists a vertex z ∈ madjG+

β
(v) \madjG+

α
(v). This is a

contradiction because there must exist a path from v to z in G that passes through
only vertices from x1, x2, ..., xk, but there must not exist any path in G passes
through only vertices from x1, x2, ..., xk, u, since z ∈ madjG+

β
(v) \ madjG+

α
(v). It

follows that madjG+
α
(v) = madjG+

β
(v).

Lex M computes a minimal elimination ordering given a graph. The elimi-
nation order is produced in reverse order, and in some implementations of Lex
M, the highest-numbered vertex in the ordering can be selected arbitrarily by
the user. Each vertex in Lex M is assigned a label. This label is a sequence
of numbers ordered in decreasing order. Let L(u) be the label of vertex u, and
let Lk(u) be the number at position k in the sequence L(u). The labels can be
compared in the following way: L(u) = L(v) if |L(u)| = |L(v)| and Li(u) = Li(v)
for 1 ≤ i ≤ |L(u)|. Furthermore L(u) < L(v) if Lk(u) < Lk(v), where k is the
smallest number such that Lk(u) 6= Lk(v), or Li(u) = Li(v) for 1 ≤ i ≤ |L(u)|
and |L(u)| < |L(v)|.

Algorithm Lex M (Rose, Tarjan, and Lueker [12])
Input: G = (V, E).
Output: A minimal elimination ordering α and G+

α .

G+
α = G;

for all vertices u in G

L(u) = ∅;
for i = n to 1

let v be one of the unnumbered vertices with largest label;
α−1(v) = i;
for each unnumbered vertex u such that there exists a path
u = x0, x1, ..., xk = v in G, where xj is unnumbered and
L(xj) < L(u) for 0 < j < k

add i to L(u);
add fill edge (v, u) to G+

α ;

Just as Lex M does, MCS-M produces an elimination ordering in reverse order,
and like Lex M the highest-numbered vertex in the ordering can be selected arbi-
trarily by the user in some implementations of MCS-M. MCS-M differs from Lex
M by using cardinality weights instead of lexicographic labels. MCS-M basically
uses the same approach as Lex M to search the graph.

Lex M versus MCS-M 5

Algorithm MCS-M (Berry, Blair, Heggernes, and Peyton [3])
Input: G = (V, E).
Output: A minimal elimination ordering α and G+

α .

G+
α = G;

for all vertices u in G

w(u) = 0;
for i = n to 1

let v be one of the unnumbered vertices with largest weight;
α−1(v) = i;
for each unnumbered vertex u such that there exists a path
u = x0, x1, ..., xk = v in G, where xj is unnumbered and
w(xj) < w(u) for 0 < j < k

w(u) = w(u) + 1;
add fill edge (v, u) to G+

α ;

Both Lex M and MCS-M may provide the user with choices from the set of
unnumbered vertices with largest label or weight, respectively. These choices are
not necessarily the same for the two algorithms. In Figure 1, there is an example
where Lex M and MCS-M do not have the same choices.

1 2 3 4

Figure 1: Let 2 be the starting vertex in the given graph. In this situa-
tion Lex M is capable of creating the following set of elimination orderings
[{4, 3, 1, 2}, {4, 1, 3, 2}], while MCS-M is capable of creating the following set of
orderings [{4, 3, 1, 2}, {4, 1, 3, 2}, {1, 4, 3, 2}]. Observe that every one of these or-
derings is a perfect elimination ordering (peo) [8] for the given graph.

To make it easier to discuss Lex M and MCS-M we give an exact description of
the label and weight for each vertex at each step of the algorithm. Let Lz−(x) be
the label of vertex x in Lex M right before z has been assigned the number α−1(z),
and let Lz+(x) be the label of x right after z has been assigned the number α−1(z)
and Lex M has added this number to the labels described by Lex M. Lemma 2.3
describes how the relationship between labels changes as the algorithm proceeds.

Lemma 2.3 (Rose, Tarjan, and Lueker [12]) Let G = (V, E) be a graph, and let
u, v be vertices of G. If Lα(i)−(v) < Lα(i)−(u), then Lα(j)−(v) < Lα(j)−(u) for all
1 ≤ j ≤ i.

For MCS-M we do the same, let wz−(x) be the weight of vertex x in MCS-M
right before z has been assigned the number α−1(z), and let wz+(x) be the weight

6 Lex M versus MCS-M

of x right after z has been assigned the number α−1(z) and MCS-M has used z to
increase the weight of other vertices as described by MCS-M. Given a set A ⊆ V

of vertices, then hWz−(A) is the set of vertices in A with the highest weight
assigned by MCS-M right before z has been assigned a number, and hLz−(A) is
the set of vertices in A with the largest labels assigned by Lex M right before z

has been assigned a number.

3 Labeling in Lex M

Lex M and MCS-M do a quite similar search along paths of unnumbered vertices,
and use this to find the set of vertices of which they change the labels (resp.
weight). An easy observation is that the length of a label in Lex M increases by
exactly one every time Lex M changes it. We will now study the relation between
the length and value of a pair of labels in Lex M, when there is an unnumbered
path between the vertices containing the labels.

Lemma 3.1 Assume that there is an unnumbered path x0, x1, ..., xk in G right
before step α−1(z) of Lex M, where k ≥ 1, u = x0, and v = xk, and let Lz−(xi) ≤
Lz−(u) where 0 < i < k. Then |Lz−(u)| > |Lz−(v)| if and only if Lz−(u) >

Lz−(v).

Proof. (⇒) Let us first on the contrary assume that |Lz−(u)| > |Lz−(v)| and
Lz−(u) ≤ Lz−(v). Let u′ be a vertex such that α−1(u′) is a number in Lz−(u) \
Lz−(v), which does exist since |Lz−(u)| > |Lz−(v)|. It follows that α−1(u′) >

α−1(z) since α−1(u′) ∈ Lz−(u). Let p be the largest number such that 0 ≤ p < k

and α−1(u′) ∈ Lu′+(xp). We will show by contradiction that Lu′−(xp) ≥ Lu′−(xi)
for p < i ≤ k. Let q be the smallest number such that p < q ≤ k and Lu′−(xq) >

Lu′−(xp). Now we have a path xp, xp+1, ..., xp+l = xq, where Lu′−(xq) > Lu′−(xj)
for p ≤ j < p + l, and since α−1(u′) ∈ Lu′+(xp) there exists a path from xp to u′

where the labels of all intermediate vertices in the path are smaller than both the
labels of xp and u′. Thus we have a path from xq to u′, where every intermediate
vertex has a smaller label than xq and u′. This is a contradiction since α−1(u′) 6∈
Lu′+(xq). Now we return to our main proof. Since Lu′−(xp) ≥ Lu′−(xi) and
α−1(u′) 6∈ Lu′+(xi) for p < i ≤ k, while α−1(u′) ∈ Lu′+(xp), we have Lu′+(xp) >

Lu′+(xi) for p < i ≤ k. It follows from Lemma 2.3 that Lz−(xp) > Lz−(v), where
0 ≤ p < k, since Lu′+(xp) > Lu′+(v = xk). Now we have a contradiction since we
assumed that Lz−(xi) ≤ Lz−(u) where 0 < i < k and that Lz−(v) ≥ Lz−(u).
(⇐) Let us next on the contrary assume that |Lz−(u)| ≤ |Lz−(v)| and Lz−(u) >

Lz−(v). Let v′ be a vertex such that α−1(v′) is a number in Lz−(v)\Lz−(u); such
a vertex does exist since |Lz−(v)| ≥ |Lz−(u)| and Lz−(v) < Lz−(u). It follows
that α−1(v′) > α−1(z) since α−1(v′) ∈ Lz−(v). Let q be the smallest number
such that 0 < q ≤ k and α−1(v′) ∈ Lv′+(xq). We will show by contradiction

Lex M versus MCS-M 7

that Lv′−(xq) ≥ Lv′−(xi) for 0 ≤ i < q. Let p be the largest number such that
0 ≤ p < q and Lv′−(xp) > Lv′−(xq). Now we have a path xp, xp+1, ..., xp+l = xq,
where Lv′−(xp) > Lv′−(xj) for p < j ≤ p + l, and since α−1(v′) ∈ Lv′+(xq) there
exists a path from xq to v′ where the labels of all intermediate vertices in the
path are smaller than both the labels of xq and v′. Thus we have a path from xp

to v′, where every intermediate vertex has a smaller label than xp and v′. This
is a contradiction since α−1(v′) 6∈ Lv′+(xp). Now we return to our main proof.
Since Lv′−(xq) ≥ Lv′−(xi) and α−1(v′) 6∈ Lv′+(xi) for 0 ≤ i < q, while α−1(v′) ∈
Lv′+(xq), we have Lv′+(xq) > Lv′+(xi) for 0 ≤ i < q. It follows from Lemma 2.3
that Lz−(xq) > Lz−(u), where 0 < q ≤ k, since Lv′+(xq) > Lv′+(u = x0). Now we
have a contradiction since we assumed that Lz−(xi) ≤ Lz−(u) where 0 < i < k

and that Lz−(u) > Lz−(v).

Lemma 3.2 Assume that there is an unnumbered path x0, x1, ..., xk in G right
before step α−1(z) of Lex M, where k ≥ 1, u = x0, and v = xk, and let Lz−(xi) ≤
Lz−(u) where 0 < i < k. Then |Lz−(u)| < |Lz−(v)| if and only if Lz−(u) <

Lz−(v).

Proof. (⇐) Let us assume that Lz−(u) < Lz−(v) and then prove that |Lz−(u)| <

|Lz−(v)|. It follows that Lz−(xi) < Lz−(v) for 0 < i < k since Lz−(u) < Lz−(v).
Lemma 3.1 can now be used on the path xk, xk−1, ..., x0 for k ≥ 1 where u =
xk, v = x0; thus |Lz−(u)| < |Lz−(v)|.
(⇒) Let us on the contrary assume that |Lz−(u)| < |Lz−(v)| and Lz−(u) ≥
Lz−(v). Let v′ be a vertex such that α−1(v′) is a number in Lz−(v)\Lz−(u); such
a vertex does exist since |Lz−(v)| > |Lz−(u)|. It follows that α−1(v′) > α−1(z)
since α−1(v′) ∈ Lz−(v). Let q be the smallest number such that 0 < q ≤ k and
α−1(v′) ∈ Lv′+(xq). We will show by contradiction that Lv′−(xq) ≥ Lv′−(xi) for
0 ≤ i < q. Let p be the largest number such that 0 ≤ p < q and Lv′−(xp) >

Lv′−(xq). Now we have a path xp, xp+1, ..., xp+l = xq, where Lv′−(xp) > Lv′−(xj)
for p < j ≤ p + l, and since α−1(v′) ∈ Lv′+(xq) there exists a path from xq to v′

where the labels of all intermediate vertices in the path are smaller than both the
labels of xq and v′. Thus we have a path from xp to v′, where every intermediate
vertex has a smaller label than xp and v′. This is a contradiction since α−1(v′) 6∈
Lv′+(xp). Now we return to our main proof. Since Lv′−(xq) ≥ Lv′−(xi) and
α−1(v′) 6∈ Lv′+(xi) for 0 ≤ i < q, while α−1(v′) ∈ Lv′+(xq), we have Lv′+(xq) >

Lv′+(xi) for 0 ≤ i < q. It follows from Lemma 2.3 that Lz−(xq) > Lz−(u), where
0 < q ≤ k, since Lv′+(xq) > Lv′+(u = x0). Now we have a contradiction since we
assumed that Lz−(xi) ≤ Lz−(u) where 0 < i < k and that Lz−(u) ≥ Lz−(v).

The last case, where |Lz−(u)| = |Lz−(v)| if and only if Lz−(u) = Lz−(v) is
now easy to prove. We can sum up the two previous lemmas as follows.

8 Lex M versus MCS-M

Lemma 3.3 Assume that there is an unnumbered path x0, x1, ..., xk in G right
before step α−1(z) of Lex M, where k ≥ 1, u = x0, and v = xk, and let Lz−(xi) ≤
Lz−(u) where 0 < i < k. Then we have
1. |Lz−(u)| > |Lz−(v)| if and only if Lz−(u) > Lz−(v),
2. |Lz−(u)| < |Lz−(v)| if and only if Lz−(u) < Lz−(v),
3. |Lz−(u)| = |Lz−(v)| if and only if Lz−(u) = Lz−(v).

Proof. The first case is Lemma 3.1, while the second case is Lemma 3.2. The
third case follows, since no alternatives are left.

4 Lex M versus MCS-M

Lex M and MCS-M are not that different when it comes to altering labels and
weights. If a vertex z is selected as the next vertex to be numbered for both
algorithms, both Lex M and MCS-M do a search among unnumbered vertices
that can be reached from z. In order to better compare the algorithms, these
unnumbered vertices are partitioned into components.

Definition 4.1 Let S be the set of numbered vertices, at some step of Lex M or
MCS-M on G = (V, E). Then an unum component is a connected component of
G(V \ S).

Definition 4.2 For any vertex u of G, CCu− (resp. CCu+) denotes the set of
unum components of G right before (resp. after) numbering vertex u.

In the proof that Lex M and MCS-M create exactly the same set of tri-
angulations, we need some basic results regarding Lex M, MCS-M, and unum
components. First we show that when Lex M or MCS-M processes a vertex in
an unum component C they will only change the labels or weights of vertices
contained in C. We then prove that if the length of the label in Lex M and the
weight in MCS-M are the same for every vertex in an unum component C, then
Lex M can choose a vertex z in C as the first vertex to be numbered in C if and
only if MCS-M can choose z as the first vertex to be numbered in C. Then we
prove that, under the same conditions, the length and the weight are still equal
when a vertex in C is processed and the weight for MCS-M and labels for Lex M
are updated.

Lemma 4.3 In any execution of Lex M or MCS-M on a graph G, processing a
vertex z of G only affects the unum component of CCz− containing z (i.e. any
other unum component of CCz− is still an unum component of CCz+ with the
same labels or weights).

Lex M versus MCS-M 9

Proof. Let C be an unum component of CCz− not containing z. It is evident
that after removal of z, C is still an unum component of CCz+. No labels or
weights are changed in C, since for any vertex v whose label or weight is modified
when processing z, there is a path of unnumbered vertices between z and v, so
that v is in the same unum component of CCz− as z.

Lemma 4.4 We consider two executions of Lex M and MCS-M respectively on a
graph G. Let u and u′ be vertices of G, and let C be a set of vertices of G such that
C is an unum component of G right before processing u (resp. u′) in the execution
of Lex M (resp. MCS-M) and for every vertex v of C, |Lu−(v)| = wu′−(v). Then
hLu−(C) = hWu′−(C).

Proof. We want to show that hWu′−(C) ⊆ hLu−(C) and hLu−(C) ⊆ hWu′−(C)
and thus hWu′−(C) = hLu−(C). The first step is to prove that hWu′−(C) ⊆
hLu−(C). Let us on the contrary assume that there exists a vertex m ∈ hWu′−(C)\
hLu−(C), and let l be any vertex in hLu−(C). The unum component C is con-
nected, and every vertex in C is unnumbered. Thus there exists an unnumbered
path x0, x1, ..., xk for 0 < k ≤ |C| − 1, where l = x0, m = xk, and xi ∈ C

for 0 ≤ i ≤ k. Then Lu−(xi) ≤ Lu−(l) for 0 < i ≤ k since l ∈ hLu−(C).
We have Lu−(l) > Lu−(m) since l ∈ hLu−(C) and m 6∈ hLu−(C). We have
wu′−(l) ≤ wu′−(m) since m ∈ hWu′−(C). From the premises of the lemma, we
then have that |Lu−(l)| = wu′−(l) ≤ wu′−(m) = |Lu−(m)|. It follows that the
path x0, x1, ..., xk is a contradiction to Lemma 3.3.

Next we want to prove that hLu−(C) ⊆ hWu′−(C), and thus hLu−(C) =
hWu′−(C). Let us on the contrary assume that there exists a vertex l ∈ hLu−(C)\
hWu′−(C), and let m be any vertex in hWu′−(C). Then there exists a path
x0, x1, ..., xk for 0 < k ≤ |C| − 1, where l = x0, m = xk, and xi ∈ C for 0 ≤ i ≤ k.
We have Lu−(xi) ≤ Lu−(l) for 0 < i ≤ k since l ∈ hLu−(C). We have wu′−(l) <

wu′−(m) since l 6∈ hWu′−(C) and m ∈ hWu′−(C). Therefore the path x0, x1, ..., xk

is a contradiction to Lemma 3.3.

Lemma 4.5 We consider two executions of Lex M and MCS-M respectively on
a graph G. Let z be a vertex of G, and let C be a set of vertices of G such that
C is an unum component of G right before processing z in both executions and
for every vertex u of C, |Lz−(u)| = wz−(u). Then |Lz+(u)| = wz+(u) for every
vertex u of C \ {z}.

Proof. Let us on the contrary assume that |Lz+(u)| 6= wz+(u) for some u ∈
C \ {z}. From Lemma 4.3 we know that z ∈ C if |Lz+(u)| 6= wz+(u). Two
cases are possible. The first case is |Lz+(u)| = wz+(u) + 1. There exists at
least one path x0, x1, ..., xk for k ≥ 1, where u = x0, z = xk, xi ∈ C, and
Lz−(xi) < Lz−(u) for 0 < i < k, since |Lz+(u)| = |Lz−(u)| + 1 and C is an unum

10 Lex M versus MCS-M

component of G containing u right before processing z. Then for every such path
there exists a vertex xj where 0 < j < k such that wz−(xj) ≥ wz−(u), since
wz+(u) = wz−(u). The path x0, x1, ..., xj is a contradiction to Lemma 3.3 because
(1) Lz−(xi) < Lz−(u = x0) for 0 < i ≤ j, and specifically Lz−(u) > Lz−(xj), and
(2) wz−(u) ≤ wz−(xj) and hence, due to our assumption, |Lz−(u)| ≤ |Lz−(xj)|.
The second case is when |Lz+(u)|+1 = wz+(u) for some vertex u ∈ C \{z}. Then
there has to exist at least one path x0, x1, ..., xk for some k ≥ 1, where u = x0,
z = xk, xi ∈ C for 0 ≤ i ≤ k, and wz−(xi) < wz−(u) ≤ wz−(z) for 0 < i < k,
since wz+(u) = wz−(u) + 1. Then for every such path there exists a vertex xj

for 0 < j < k such that Lz−(xj) ≥ Lz−(u), since |Lz+(u)| = |Lz−(u)|. Let j

be the smallest number such that Lz−(xj) ≥ Lz−(u). The path x0, x1, ..., xj is a
contradiction to Lemma 3.3 because (1) Lz−(xi) < Lz−(u = x0) for 0 < i < j

and moreover Lz−(u) ≤ Lz−(xj), and (2) wz−(u) > wz−(xj) and hence, due to
our assumption, |Lz−(u)| > |Lz−(xj)|.

The three previous lemmas are local observations, and require that Lex-M
and MCS-M have an unum component consisting of the same vertices, where the
weight in MCS-M is equal to the length of the label in Lex M for every vertex
in the unum component. The following definition will be useful to formalize the
fact that both algorithms break ties in the same way in unum components.

Definition 4.6 Let G = (V, E) and φ be a mapping from the set of all subsets
of V to V , such that if φ(S) = u then u ∈ S, for each S ⊆ V . An execution of
Lex M (resp. MCS-M) on G is said to be compatible with φ if for any vertex u

of G, u = φ(hLu−(C)) (resp. φ(hWu−(C))), where C is the unum component of
CCu− containing u.

The idea behind φ is the following. If S is a set of vertices in Lex M with the
highest label belonging to an unum component, or a set of vertices in MCS-M
with the highest weight belonging to an unum component, then φ(S) is the vertex
that is chosen next among vertices of this unum component.

Note that two different executions of Lex M (resp. MCS-M) on G can be
compatible with the same mapping φ, since φ tells which vertex to choose next
to be numbered in a given unum component, but does not tell in which unum
component to choose the next vertex to be numbered in case some vertices with
largest label or weight lie in different unum components.

Lemma 4.7 We consider two executions of Lex M and MCS-M respectively on
a graph G = (V, E). If these executions are compatible with the same mapping
φ from the set of all subsets of V to V , then they produce the same minimal
triangulation of G.

Proof. We define the following property P (k).
P (k): for any vertices u and u′ of G and any set C of k vertices of G, if C is

Lex M versus MCS-M 11

an unum component of G right before processing u (resp. u′) in the execution
of Lex M (resp. MCS-M) and for every vertex v of C, |Lu−(v)| = wu′−(v) then,
the fill edges produced when processing the vertices of C are the same in both
executions.
It is sufficient to prove that P (k) holds for k = n, since in that case C = V ,
which is an unum component at the beginning of both executions with empty
labels and null weights, hence the sets of fill edges produced are the same in both
executions.
Let us prove that P (k) holds for k from 1 to n by induction on k.
P (1) is true since the unique vertex of C can produce no fill edge by Lemma 4.3.
We assume that P (k) holds. Let us show that P (k + 1) holds. Let u and u′ be
vertices of G, and let C be a set of k + 1 vertices of G such that C is an unum
component of G right before processing u (resp. u′) in the execution of Lex M
(resp. MCS-M) and for every vertex v of C, |Lu−(v)| = wu′−(v). By Lemma 4.3,
these conditions are maintained until a vertex z (resp. z′) of C is numbered for
the first time, from the moment when u (resp. u′) is about to be numbered in the
execution of Lex M (resp. MCS-M) (possibly z = u or z′ = u′, if u or u′ belongs to
C). By Lemma 4.4, hLz−(C) = hWz′−(C), and as both executions are compatible
with φ, z = φ(hLz−(C)) = φ(hWz′−(C)) = z′. By Lemma 4.5, |Lz+(v)| = wz+(v)
for every vertex v of C \{z}. So the processing of z modifies the labels or weights
of the same vertices of C in both executions, and since by Lemma 4.3 the labels
or weights of the vertices of G \ C are unchanged, the processing of z produces
the same fill edges in both executions. Moreover, the new unum components
obtained from C by removing z are the same in both executions. So, by the
induction hypothesis on these new unum components which contain at most k

vertices and for which the condition on labels and weights holds after processing
z, we have the fill edges produced when processing the vertices of C \ {z} are the
same in both executions, which completes the proof.

In order to complete the proof that Lex M and MCS-M produce the same set
of chordal graphs, two more arguments are required. The first is to show that
for any execution of Lex M (resp. MCS-M) there exists a mapping φ compatible
with this execution. The second is to show that for any mapping φ from the set
of all subsets of V to V such that for any subset S of V , φ(S) belongs to S, there
is an execution of MCS-M (resp. Lex M) compatible with φ. Then the rest will
follow from Lemma 4.7.

Theorem 4.8 Lex M and MCS-M produce the same minimal triangulations of a
given graph G = (V, E).

Proof. Observe that for any execution of Lex M on G producing the triangulated
graph H there exists a compatible mapping φ. This mapping φ can simply be
constructed as follows: For every vertex z ∈ V set φ(hLz−(C)) to z, where C is

12 Lex M versus MCS-M

the unum component in CCz− containing z. Any mapping φ which fulfills this
requirement will be compatible with the execution of Lex M producing H. Note
that during Lex M, hLz−(C) 6= hLz′−(C ′) for all vertices z 6= z′ with z ∈ C and
z′ ∈ C ′ where C ∈ CCz− and C ′ ∈ CCz′−, since the highest numbered of z and
z′ does not belong to both sets. Thus we never consult φ(S) for the same set S

of vertices more than once.
We now consider an execution of MCS-M on G compatible with φ. Such an

execution exists. At each step it is sufficient to choose an unum component C

containing a vertex with largest weight and to choose φ(hW (C)) as next vertex
to be numbered. By Lemma 4.7, this execution of MCS-M produces the graph
H.

The proof in the other direction is completely symmetric.

5 Conclusion

Even though MCS-M and Lex M can create different orderings, we prove that they
create the same set of triangulations, and thereby answer an open question given
in [3]. We show this by defining unum components, which are the connected
subgraphs when the numbered vertices are removed from the graph. Then we
show that two executions of Lex M and MCS-M breaking ties in the same way in
unum components compute the same minimal triangulation of the input graph,
so that Lex M and MCS-M compute the same set of minimal triangulations of
any graph.

We also observe that each of the unum components can be computed individ-
ually since they do not affect each other. This property could possibly be used
to improve the practical running time for both algorithms.

Acknowledgment:

The author wishes to thank Pinar Heggernes for her useful comments and sug-
gestions, and the two anonymous referees who assisted in the presentation of this
paper.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

[2] A. Berry. A wide-range efficient algorithm for minimal triangulation. In
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’99), pages S860–S861, 1999.

Lex M versus MCS-M 13

[3] A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton. Maximum cardi-
nality search for computing minimal triangulations of graphs. Algorithmica,
39:287–298, 2004.

[4] A. Berry, J.P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-
range algorithm for minimal triangulation from an arbitrary ordering. Jour-
nal of Algorithms, 58(1):33–66, 2006.

[5] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach for
dynamically maintaining chordal graphs. In Proceedings 14th International
Symposium on Algorithms and Computation - ISAAC 2003, pages 47 – 57.
Springer Verlag, 2003. LNCS 2906.

[6] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making
filled graphs minimal. Theor. Comput. Sci., 250:125–141, 2001.

[7] E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In
R. H. Möhring, editor, Graph Theoretical Concepts in Computer Science -
WG ’97, pages 132–143. Springer Verlag, 1997. Lecture Notes in Computer
Science 1335.

[8] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs.
Pacific Journal of Math., 15:835–855, 1965.

[9] T. Ohtsuki. A fast algorithm for finding an optimal ordering in the vertex
elimination on a graph. SICOMP, 5:133–145, 1976.

[10] S. Parter. The use of linear graphs in Gauss elimination. SIAM Review,
3:119–130, 1961.

[11] B. W. Peyton. Minimal orderings revisited. SIAM J. Matrix Anal. Appl.,
23(1):271–294, 2001.

[12] D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimi-
nation on graphs. SIAM J. Comput., 5:146–160, 1976.

[13] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J.
Alg. Disc. Meth., 2:77–79, 1981.

14 Lex M versus MCS-M

Paper IV

Computing Minimal Triangulations in Time
O(nα log n) = o(n2.376)

Pinar Heggernes Jan Arne Telle Yngve Villanger
pinar@ii.uib.no telle@ii.uib.no yngvev@ii.uib.no

Department of Informatics, University of Bergen, N-5020 Bergen, Norway

Abstract

The problem of computing minimal triangulations of graphs, also called
minimal fill, was introduced and solved in 1976 by Rose, Tarjan, and Lueker
[17] in time O(nm), thus O(n3) for dense graphs. Although the topic has
received increasing attention since then, and several new results on charac-
terizing and computing minimal triangulations have been presented, this
first time bound has remained the best. In this paper we introduce an
O(nα log n) time algorithm for computing minimal triangulations, where
O(nα) is the time required to multiply two n × n matrices. The current
best known α is less than 2.376, and thus our result breaks the long stand-
ing asymptotic time complexity bound for this problem. To achieve this
result, we introduce and combine several techniques that are new to mini-
mal triangulation algorithms, like working on the complement of the input
graph, graph search for a vertex set A that bounds the size of the connected
components when A is removed, and matrix multiplication.

1 Introduction and motivation

Any graph can be embedded in a chordal graph by adding a set of edges called
fill, and the resulting graph is called a triangulation of the input graph. When the
added set of fill edges is inclusion minimal, the resulting triangulation is called
a minimal triangulation. The first algorithms for computing minimal triangu-
lations were given in independent works of Rose, Tarjan, and Lueker [17], and
Ohtsuki, Cheung, and Fujisawa [13, 14] already in 1976. Among these, the algo-
rithms of [13] and [17] have a time bound of O(nm), where n is the number of
vertices and m is the number of edges of the input graph. These first algorithms
were motivated by the need to find good pivotal orderings for Gaussian elimina-
tion, and the mentioned papers gave characterizations of minimal triangulations

2 Computing Minimal Triangulations in Time O(nα log n) = o(n2.376)

through minimal elimination orderings. Since then, the problem has received in-
creasing attention, and several new characterizations of minimal triangulations
connected to minimal separators of the input graph have been given [5, 10, 15],
totally independent of the connection to Gaussian elimination. The connection
to minimal separators has increased the importance of minimal triangulations
from a graph theoretical point of view, and minimal triangulations have proved
useful in reconstructing evolutionary history through phylogenetic trees [9]. As
a result, algorithms based on the new characterizations have been given [3, 8],
while at the same time new algorithms based on elimination orderings also ap-
peared [4, 7, 16]. However, the best time bound remained unchanged, and trying
to break the asymptotic O(n3) bound of computing minimal triangulations, in
particular for dense graphs, became a major theoretical challenge concerning this
topic.

In this paper, we introduce an O(nα log n) time algorithm to compute minimal
triangulations of arbitrary graphs, where O(nα) is the time bound of multiplying
two n × n matrices. Currently the lowest value of α is 2.375 < α < 2.376
by the algorithm of Coppersmith and Winograd [6]. Hence the current time
bound for our algorithm is o(n2.376), since log n = o(nε) for all ε > 0. In order to
achieve this time bound, we use several different techniques, one of which is matrix
multiplication to make parts of the input graph into cliques. Our algorithm runs
for O(log n) iterations, and at each iteration the total work is bounded by the
time needed for matrix multiplication. In order to achieve O(log n) iterations,
we show how to recursively divide the problem into independent subproblems of
a constant factor smaller size using a specialized search technique. In order to
bound the amount of work at each iteration by O(nα), we store and work on the
complement graphs for each subproblem, in which case the subproblems do not
overlap in any (non)edges. In addition, we use both the minimal separators and
the potential maximal cliques of the input graph, combining the results of [5],
[10], and [15].

Independent of our work, a very recent and thus yet unpublished result of
Kratsch and Spinrad [12] uses matrix multiplication to give a new implementation
of the minimal triangulation algorithm Lex M from 1976 [17]. Based on the matrix
multiplication algorithm of [6] their presented time complexity is O(n2.688). Other
than the use of matrix multiplication, their approach is totally different from
ours. Kratsch and Spinrad used matrix multiplication for similar problems in
their SODA 2003 paper [11].

After the next section which contains some basic definitions, we give the main
structure of our algorithm in Section 3, followed by the important subroutine
for partitioning into balanced subproblems in Section 4, before tying these parts
together in the last section.

Computing Minimal Triangulations in Time O(nα log n) = o(n2.376) 3

2 Background and notation

We consider simple undirected and connected graphs G = (V, E) with n = |V |
and m = |E|. When G is given, denote the vertex and edge set of G by V (G) and
E(G), respectively. For a set A ⊆ V , G(A) denotes the subgraph of G induced
by the vertices in A. A is called a clique if G(A) is complete. The process of
adding edges to G between the vertices of A ⊆ V so that A becomes a clique in
the resulting graph is called saturating A. The neighborhood of a vertex v in G is
NG(v) = {u | uv ∈ E}, and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}.
Similarly, for a set A ⊆ V , NG(A) = ∪v∈ANG(v) \ A, and NG[A] = NG(A) ∪ A.
|NG(v)| is the degree of v. When graph G is clear from the context, we will omit
subscript G.

A vertex set S ⊂ V is a separator if G(V \ S) is disconnected. Given two
vertices u and v, S is a u, v-separator if u and v belong to different connected
components of G(V \S), and S is then said to separate u and v. Two separators S

and T are said to be crossing if S is a u, v-separator for a pair of vertices u, v ∈ T ,
in which case T is an x, y-separator for a pair of vertices x, y ∈ S [10, 15]. A
u, v-separator S is minimal if no proper subset of S separates u and v. In general,
S is a minimal separator of G if there exist two vertices u and v in G such that S

is a minimal u, v-separator. It can be easily verified that S is a minimal separator
if and only if G(V \ S) has two distinct connected components C1 and C2 such
that NG(C1) = NG(C2) = S. In this case, C1 and C2 are called full components,
and S is a minimal u, v-separator for every pair of vertices u ∈ C1 and v ∈ C2.

A chord of a cycle is an edge connecting two non-consecutive vertices of the
cycle. A graph is chordal, or equivalently triangulated, if it contains no chordless
cycle of length ≥ 4. A graph G′ = (V, E∪F) is called a triangulation of G = (V, E)
if G′ is chordal. The edges in F are called fill edges. G′ is a minimal triangulation
if (V, E ∪F ′) is non-chordal for every proper subset F ′ of F . It was shown in [17]
that a triangulation G′ is minimal if and only if every fill edge is the unique chord
of a 4-cycle in G′. Another characterization of minimal triangulations which is
central to our results is that G′ is a minimal triangulation of G if and only if G′ is
the result of saturating a maximal set of pairwise non-crossing minimal separators
of G [15].

By the results of Kloks, Kratsch, and Spinrad [10], and Parra and Scheffler
[15], it can be shown that the following recursive procedure creates a minimal
triangulation of G: Take any connected vertex subset K and let A = N [K],
compute the connected components C1, ..., Ck of G(V \ A), saturate each set
N(Ci) for 1 ≤ i ≤ k and call the resulting graph G′, then compute a minimal
triangulation of each subgraph G′(N [Ci]), 1 ≤ i ≤ k, and of G′(A) independently.
The key to understand this is to note that the saturated sets N(Ci) are non-
crossing minimal separators of G and G′. Thus the problem decomposes into
independent subproblems overlapping only at the saturated minimal separators,

4 Computing Minimal Triangulations in Time O(nα log n) = o(n2.376)

and we can continue recursively on each subproblem that is not complete. This
procedure is basic to the main structure of our algorithm.

An extension of the above mentioned results, which we also use in our algo-
rithm, was presented by Bouchitté and Todinca in [5]. There, a potential maximal
clique (pmc) of G is defined to be a maximal clique in some minimal triangulation
of G. If A is a pmc, then it is shown in [5] that whole A will automatically be
saturated in the above recursive procedure instead of appearing as a subproblem,
and that this modified procedure indeed characterizes minimal triangulations. In
this case A is not necessarily N [K] for a connected set K. The following theorem
from [5] characterizes a pmc, and it will be used to prove the correctness of our
balanced partition algorithm in Section 4.

Theorem 2.1 (Bouchitté and Todinca [5]) Given a graph G = (V, E), let P ⊆
V be any set of vertices, and let C1, C2, ..., Ck be the connected components of
G(V \ P). P is a pmc of G if and only if

1. G(V \ P) has no full component, and
2. P is a clique when every N(Ci) is saturated for 1 ≤ i ≤ k.

3 The new algorithm and the data structures

Observe that the total work for saturating all sets N(Ci), 1 ≤ i ≤ k, in the
recursive procedure described in the previous section requires O(n3) time if it
is done straightforwardly, as these sets might overlap heavily and contain O(n)
vertices each. With help of matrix multiplication, this total time can be reduced
to O(nα). We construct the following matrix M = MG,A: for each vertex v ∈
V (G) there is a row in M , for each connected component C of G(V \ A) there
is a column in M , and entry M(v, C) = 1 if v ∈ N(C). All other entries are
zero. Now we perform the multiplication MMT , and in the resulting symmetric
matrix, entry (u, v) = (v, u) is nonzero if and only if u and v both belong to a
common set N(C) for some C. Thus MMT is the adjacency matrix of a graph
in which each N(C) is a clique. The use of matrix multiplication for this purpose
was first mentioned in [11].

Once MMT is computed, the edges indicated by its nonzero entries can be
added to G, resulting in the partially filled graph G′, and the subproblems
G′(N [Ci]), 1 ≤ i ≤ k, and G′(A) can be extracted. Now for each subproblem
this process can be repeated recursively. However, it is important that we do
not perform a matrix multiplication for each subproblem in the further process,
but create only one matrix and perform a single matrix multiplication for all
subproblems of each level in the recursion tree. Thus in the resulting matrix
MMT , entry (u, v) is nonzero if and only if there is a connected component C

of one of the subproblems of this level such that u, v ∈ NG′(C). For this reason,
we cannot actually use recursion, and we have to keep track of all subproblems

Computing Minimal Triangulations in Time O(nα log n) = o(n2.376) 5

belonging to the same level. We do this by using two queues Q1 and Q2 which
will memorize all subproblems for the current and next level respectively. Only
those new subproblems that are not cliques in the partially filled graph should
survive to the next iteration. For a new subproblem on vertex set N [Ci] appear-
ing from a connected component Ci after removing A we check this before the
saturation, as we already know that the saturation will make N(Ci) into a clique
and not add any other edges to the graph induced by N [Ci]. However, for the
subproblem on vertex set A itself we must wait until after the saturation before
checking whether A now induces a clique, and for that reason we store the vertex
sets A temporarily in a third queue Q3.

Our algorithm, which we call FMT - Fast Minimal Triangulation - is given in
Figure 1. The process of computing a good vertex set A is the most complicated
part of this algorithm, and this part will be explained in the next section when
we give the details of Algorithm Partition that returns such a set A. For the time
being, and for the correctness of Algorithm FMT it is important and sufficient to
note that Algorithm Partition returns a set A, where either A = N [K] for some
connected vertex set K, or A is a pmc.

The following lemma proves the correctness of our algorithm, as well as the
correctness of the recursive procedure described in the previous section.

Lemma 3.1 Algorithm FMT computes a minimal triangulation of the input gra-
ph, as long as the Partition(H) subroutine returns a set A ⊂ V (H) where either
A = N [K] for some connected vertex set K or A is a pmc.

1Proof. Let G = (V, E) be the input graph and let K be a set of vertices such
that G(K) is connected. It is shown in [1] that the set of minimal separators of G

that are subsets of N(K) is exactly the set {N(C) | C is a connected component
of G(V \ N [K])}. In [5] it is shown that if P is a pmc then the set of minimal
separators that are contained in P is exactly the set {N(C) | C is a connected
component of G(V \ P)}.

Since A is always chosen so that either A = N [K] for a connected set K, or
A is a pmc (this will be proved in Section 4), then it follows that all sets that are
saturated at the first iteration of Algorithm FMT are minimal separators of G.
We will now argue that these minimal separators are non-crossing. Assume on the
contrary that two crossing separators S = N(C1) and T = N(C2) are saturated
at the first iteration, where C1 and C2 are two distinct connected components of
G(V \ A). Thus there are two vertices u, v ∈ T with u, v 6∈ S such that S is a
minimal u, v-separator in G. Since u, v ∈ T = N(C2), and S does not contain
any vertex of C2, the removal of S cannot separate u and v as there is a path

1What we want to do here is to take H(NH [C]), make NH(C) into a clique, and then insert
the resulting graph into Q2. However, we do not have time to even compute H(NH [C]). Thus
we start with a complete graph on vertex set NH [C] and remove only edges uv with an endpoint
in u that do not appear in D.

6 Computing Minimal Triangulations in Time O(nα log n) = o(n2.376)

Algorithm FMT - Fast Minimal Triangulation
Input: An arbitrary non-complete graph G = (V, E).
Output: A minimal triangulation G′ of G.

Let Q1, Q2 and Q3 be empty queues; Insert G into Q1; G′ = G;
repeat

Construct a zero matrix M with a row for each vertex in V ;
(columns are added later);
while Q1 is nonempty do

Pop a graph H = (U,D) from Q1;
Call Algorithm Partition(H) which returns a vertex subset A ⊂ U ;
Push vertex set A onto Q3;
for each connected component C of H(U \ A) do

Add a column in M such that M(v, C) = 1 for all vertices v ∈ NH(C);
if ∃ non-edge uv in H(NH [C]) with u ∈ C then

Push HC = (NH [C], DC) onto Q2, where uv 6∈ DC only if
u ∈ C and uv 6∈ D; 1

end-for
end-while
Compute MMT ;
Add to G′ the edges indicated by the nonzero elements of MMT ;
while Q3 is nonempty do

Pop a vertex set A from Q3;
if G′(A) is not complete then Push G′(A) onto Q2;

end-while
Swap names of Q1 and Q2;

until Q1 is empty

Figure 1: Algorithm FMT : Fast Minimal Triangulation.

between u and v through vertices of C2. This contradicts the assumption that S is
a u, v-separator, and thus we can conclude that the minimal separators saturated
at the first step are all pairwise non-crossing. It is important to observe that
once these separators are saturated, all minimal separators of G that cross any of
these will disappear, as the saturated sets do not contain pairs of vertices that are
separable. At each iteration, any minimal separator of G′ is a minimal separator
of G [15]. Thus the minimal separators that we discover at each iteration will not
cross the minimal separators discovered and saturated at previous iterations.

At each new iteration, the above argument can be applied to each subgraph H,
and thus we compute a set of non-crossing minimal separators of each subgraph
H at each iteration. We have already argued that these cannot cross any of the

Computing Minimal Triangulations in Time O(nα log n) = o(n2.376) 7

saturated minimal separators of previous iterations. We must also argue that
no minimal separator of a subgraph of an iteration crosses a minimal separator
of another subgraph of the same iteration. But this is straightforward as these
subgraphs only intersect at cliques, and thus their sets of minimal separators are
disjoint.

So, our algorithm computes and saturates a set of non-crossing minimal sep-
arators at each iteration. Since we continue this process until all minimal sep-
arators of G′ are saturated, by the results of [10] and [15], we create a minimal
triangulation.

If we consider merely correctness, any set A that fulfills the requirements can
be chosen arbitrarily; for example A = N [u] for a single vertex u, as in [2]. In
order to achieve the desired time complexity, we will devote the next section to
describing how to carefully choose a vertex subset A in each subproblem so that
the number of iterations of the repeat-loop becomes O(log n).

In this section, we will argue that each iteration of the algorithm can be
carried out in O(nα) time. We start with the following lemma, which will give us
the desired bound for the matrix multiplication step.

Lemma 3.2 At each iteration of Algorithm FMT, the number of columns in
matrix M is less than n.

Proof. The sequence of iterations of the algorithm gives rise to an iterative
refinement of a tree-decomposition of the graph G′, a property first shown for the
LB-treedec algorithm discussed in [8]. Simplifying the standard notation, we say
that a tree-decomposition Ti of a graph G is a collection of bags, subsets of the
vertex set of G, arranged as nodes of a tree such that the bags containing any given
vertex induce a connected subtree, and such that every pair of adjacent vertices of
G is contained in some bag (see e.g. page 549 of [19] for the standard definition.)
At the first iteration we have the trivial tree-decomposition T1 with all vertices of
G′ in a single bag, until the last iteration p where the tree-decomposition Tp is in
fact a clique tree of the now chordal graph G′, with each bag inducing a unique
maximal clique. We prove this by showing the following:

Loop invariant: At the start of iteration s we have a tree-decomposition Ts

of the current partially filled graph G′ whose bags consist of some vertex subsets
inducing cliques, which are the vertices of subproblems inducing cliques as dis-
covered so far by our algorithm, and where remaining bags are the vertex sets of
subproblems in Q1. The intersection of two neighboring bags in Ts is a saturated
minimal separator of G′ and thus induces a clique. Ts is non-redundant, meaning
that if A, B are bags of Ts then we do not have A ⊆ B.

The invariant is clearly true for the trivial tree-decomposition T1 with a single
bag. Let vertex set U be a bag of Ts appearing as subproblem H = (U,D) in

8 Computing Minimal Triangulations in Time O(nα log n) = o(n2.376)

Q1. The algorithm proceeds to find A ⊂ U and produces new vertex subsets
A, N [C1], N [C2], ..., N [Ck] where each Ci is a component of G′(U \A). The node
of bag U in Ts is in Ts+1 split into a k-star with center-bag A and leaf-bags
N [C1], N [C2], ..., N [Ck]. Since A is a pmc or A = N [K], it follows that this star is
a tree-decomposition of G′(U) which is non-redundant. The node of a neighboring
bag X of U in the tree of Ts will also be split into a star, unless X induces a
clique in which case it remains a single node, i.e. a trivial star. These two stars
appearing from adjacent nodes in Ts will be joined in Ts+1 by an edge between
two bags U ′ and X ′ that each contain U ∩X. Such a bag must exist in each star
since U ∩ X already induced a clique.

The tree-decomposition Ts+1 is constructed by applying the construction above
to each bag, and to adjacent pairs of bags, of Ts. After newly found minimal sep-
arators in G′ have been saturated then Ts+1 will be a tree-decomposition of G′,
as is easily checked. It remains to show that Ts+1 is non-redundant. We do this
by showing that none of the new vertex subsets A, N [C1], N [C2], ..., N [Ck] are
contained in U ∩X. The crucial fact is that each vertex in U ∩X has a neighbor
in U \ X, since U \ X was a component of the minimal separator U ∩ X. If A

was chosen as A = N [K] then even if K ⊆ U ∩ X we would therefore not have
A ⊆ U ∩ X. Likewise, we could have some component Ci of G′(U) \ A with
Ci ⊆ U ∩ X, but we would never have N [Ci] ⊆ U ∩ X. If A instead was chosen
as a pmc then we cannot have A ⊆ U ∩ X, as U ∩ X was a minimal separator
and a maximal clique cannot be part of a minimal separator. Thus, Ts+1 is non-
redundant. Since any bag of Ts+1 that does not induce a clique is put back onto
Q1 before the next iteration we have established the loop invariant.

Note that each column added to matrix M in the algorithm gives rise to a
unique bag of Ts+1. Since the number of bags in the final tree-decomposition Tp

is at most n, one for each maximal clique in a chordal graph, and the number of
bags in trees T1, ..., Tp is strictly increasing, we have proved the lemma.

Consequently, the matrix multiplication step requires O(nα). In order to be
able to bound the time for the rest of the operations of each iteration by O(nα),
we will store and work on the non-edges, i.e., the edges of the complement graph
for each subproblem. Note that subproblems can overlap both in vertices and
in edges, which makes it difficult to bound the sum of their sizes for the desired
time analysis. A non-edge uv is discarded when it becomes an edge (that is, when
it is added to the graph) or when vertices u and v are separated into different
subproblems, and if it is not discarded it only appears in a single subproblem
in the next iteration. Hence subproblems overlap only in cliques, so if we work
on the complement of these subgraphs, then they actually do not overlap in any
edges at all!

For each subgraph H = (U,D) in Q1, let Ē(H) =
(

U

2

)

\ D be the set of
non-edges of H. Our data structure for each subproblem H is the adjacency list

Computing Minimal Triangulations in Time O(nα log n) = o(n2.376) 9

of H̄ = (U, Ē(H)), where we also store the degree of each vertex in H̄. It is an
easy exercise to show that all linear time operations that we need to do for H,
like computing the connected components and neighborhoods, can be done using
only H̄ in time O(|Ē(H)| + |V (H)|).

An interesting point is also that, when complement graphs are used, matrix
multiplication is not necessary to saturate NH(C) of each subproblem NH [C],
however it is still necessary in order to saturate the subsets of A that become
cliques. In the implementation of our algorithm, for each subproblem H(NH [C]),
we push the complement graph consisting of all non-edges of H(NH [C]) with at
least one endpoint in C onto Q2. (This corresponds to Line 12 of Algorithm
FMT.) We do this only if such a non-edge of H exists. Since these complement
graphs consist of non-edges of H(C) and non-edges of H(NH [C]) between C

and NH(C), all such subproblems can be computed in a total time of O(|Ē(H)|+
|V (H)|) for H. Since we omit all non-edges between vertices belonging to NH(C),
this actually corresponds to saturating NH(C) automatically.

After the matrix multiplication step, we look up in MMT every edge of the
complement of G′ to check whether or not this non-edge should survive or should
be deleted because it has now become a fill edge of G′. Since subproblems do not
overlap in any non-edges checking whether or not G′(A) is now complete can be
done in a total of O(n2) time for all vertex subsets A in Q3.

Thus, for the implementation of our algorithm, we compute Ḡ at the begin-
ning, and use the complement graphs throughout the algorithm. This way, all
operations described within an iteration can be completed within O(nα) time. For
clearness, we will give the algorithms on the actual graphs and not on complement
graphs. We denote the set of non-edges of graph H by Ē(H).

With the given data structures and explanations, it should be clear that all
operations during one iteration, outside of Algorithm Partition, can be performed
in O(nα) time.

4 Efficient Partition into balanced subproblems

In this section we will show how to compute vertex subsets A for each subproblem
H in order to achieve an even partitioning into subproblems. Since each subprob-
lem that results from H will not contain more than 4

5
|Ē(H)| non-edges, this will

guarantee O(log n) iterations of the while loop of Algorithm FMT. 2 The algo-
rithm that we present for doing this will have running time O(|Ē(H)| + |V (H)|)
on each input subgraph H.

The computation of vertex subset A for each subgraph H = (U,D) is done by
Algorithm Partition which is given in Figure 2. This algorithm examines every

2The constant 4

5
can in fact be replaced by q−1

q
for any q ≥ 5. An implementation could

make use of this fact to experimentally find the best value of q.

10 Computing Minimal Triangulations in Time O(nα log n) = o(n2.376)

Algorithm Partition
Input: A graph H = (U,D) (a subproblem popped from Q1).
Output: A subset A ⊂ U such that either A = N [K] for some connected

H(K) or A is a pmc of H (and G′).

Part I: defining P

Unmark all vertices of H;
k = 1;
while ∃ unmarked vertex u do

if EH̄(U \ NH [u]) < 2
5
|Ē(H)| then

Mark u as an s-vertex (stop vertex);
else

Ck = {u};
Mark u as a c-vertex (component vertex);
while ∃ v ∈ NH(Ck) which is unmarked or marked as an s-vertex do

if EH̄(U \ NH [Ck ∪ {v}]) ≥ 2
5
|Ē(H)| then

Ck = Ck ∪ {v};
Mark v as a c-vertex (component vertex);

else
Mark v as a p-vertex (pmc vertex);
Associate v with Ck;

end-if
end-while
k = k + 1;

end-if
end-while
P = the set of all p-vertices and s-vertices;

Part II: defining A

if H(U \ P) has a full component C then
A = NH [C];

else if there exist two non-adjacent vertices u, v such that u is an s-vertex
and v is an s-vertex or a p-vertex then

A = NH [u];
else if there exist two non-adjacent p-vertices u and v, where u is associated
with Ci and v is associated with Cj and u 6∈ NH(Cj) and v 6∈ NH(Ci) then

A = NH [Ci ∪ {u}];
else

A = P ;
end-if

Figure 2: Algorithm Partition.

Computing Minimal Triangulations in Time O(nα log n) = o(n2.376) 11

(a)

5

1

4 7

3

2

6

(b)

5

1

4 7

3

2

6

s

s

s

(c)

5

1

4 7

3

2

6

p

p

p

c1c1

(d)

5

1

4 7

3

2

6

p

p

p

c1c1

c2
c3

Figure 3: We give an example of how set P is found from graph H. In (a),
the number of non-edges |Ē(H)| = 7, and the important bound for finding P is
therefore 2

5
|Ē(H)| = 2.8. First the algorithm decides if vertex 1 can be contained

in component C1 by performing the test EH̄(U \ NH [1]) < 2
5
|Ē(H)|. Vertex set

U \ NH [1] = {2, 3}, and EH̄({2, 3}) = |NH̄(2)| + |NH̄(3)| = 2, thus 1 cannot be
contained in a component and it is marked as an s-vertex. The same result is
obtained when testing 2 and 3, as shown in (b). Vertex set U \NH [4] = {5, 6}, and
EH̄({5, 6}) = |NH̄(5)|+ |NH̄(6)| = 6 > 2.8, thus vertex 4 becomes the first vertex
in component C1. The algorithm will now try to extend C1 by including vertices
from N(C1) in C1. Observe that 1 ∈ N(C1), and that including it in C1 will make
the value of the test EH̄(U \ NH [C1 ∪ {1}]) ≥ 2

5
|Ē(H)| false, and thus 1 becomes

a p-vertex and it is associated to C1 as shown in (c). The same argument is used
to change the marks of 2 and 3 as p-vertices, and to associate these with C1.
For vertex 7 we get the opposite result from the test, and therefore this vertex
is placed in C1. Figure (c) shows that 4 and 7 are marked as c-vertices, and the
index after the c indicates that they belong to C1. Finally, in (d) we create the
components C2 and C3 containing vertices 5 and 6, respectively. All vertices in
the neighborhood of these components are already marked as p-vertices and thus
there is nothing more to do. As a result, the computed set P = {1, 2, 3}. For
the rest of Algorithm Partition, since each connected component of H(U \ P) is
a full component, case 1 will apply, and the resulting returned set A is simply
the union of P with one of these components, for example A = {1, 2, 3, 6}. Note
that there exist extreme cases where every vertex is marked as an s-vertex. An
example of this is a cycle of length 16 with added chords so that every vertex
is adjacent to all vertices except the one on the opposite side of the cycle. The
number of non-edges in this graph is 8 and the graph induced by any vertex and
its neighborhood contains 7 non-edges. Such an extreme case causes no problem
for our algorithm, as case 2 will apply and an appropriate A ⊂ U will still be
found.

12 Computing Minimal Triangulations in Time O(nα log n) = o(n2.376)

vertex of H, and tries to place it into a connected component C that results from
removing some set P of vertices from H, as long as H(NH [C]) does not become
too large with respect to the number of non-edges. The vertices that cannot be
placed into any C with a small enough H(NH [C]) in this way, constitute exactly
the set P whose removal from H results in these balanced connected components.
This way, we compute a vertex set P such that all connected components C of
H(U \ P) have the nice property that H(NH [C]) contains less than a constant
factor of the non-edges of H. The computation of P is illustrated by an example
given in Figure 3.

However, after P is computed, we cannot bound the number of non-edges that
will belong to G′(P) after the saturation. Furthermore it might be the case that
neither P = NH [K] for a connected vertex set K as required, nor P is a potential
maximal clique, which implies that N(C) is not necessarily a minimal separator
for every connected component C of H(U \ P). Thus we cannot simply use P

as our desired set A. The set A is instead obtained using information gained
through the computation of P , and we prove in Theorem 4.3 that it fulfills the
requirements that were used to prove the correctness of Algorithm FMT, and
that the resulting subproblems all have at most 4

5
|Ē(H)| non-edges.

During Algorithm Partition, the vertices that we are able to place into small
enough connected components are marked as c-vertices. The remaining vertices
(which constitute P) are of two types: p-vertices have neighbors in a connected
component of H(U\P), whereas s-vertices do not. For each connected component
C of H(U \ P) we want to ensure that the number |Ē(H(NH [C]))|, i.e. the
number of non-edges with both endpoints in NH [C], is less than some fraction of
|Ē(H)|. The obstacle is that we cannot compute this number straightforwardly
for all connected components of H(U \ P) in the given time, since the non-edges
between vertices in P∩NH [C] could be contained in too many such computations.
However, we are able to give upper and lower bounds on |Ē(H(NH [C]))| by
summing the degrees in H̄ of vertices in each NH [C], which we compute in the
following roundabout manner in order to stay within the time limits. Define
EH̄(S) to be the sum of degrees in H̄ of vertices in S ⊆ U = V (H). Since sum
of degrees is equal to twice the number of edges, we have EH̄(S) = 2|Ē(H)| −
EH̄(U \S). The quantity EH̄(U \NH [C]) we indeed do have the time to compute,
as we will explain in the proof of Lemma 4.1.

EH̄(U \ NH [C]) =
∑

v∈U\N [C]

|NH̄(v)|

When checking whether EH̄(U \ NH [Ck ∪ {v}]) ≥ 2
5
|Ē(H)| in Algorithm Par-

tition we are indirectly checking whether |Ē(NH [Ck ∪ {v}])| ≤ 4
5
|Ē(H)|, which is

what we indeed want to know. The discussion in the proof of Lemma 4.2 explains
this connection. The value EH̄(U \NH [Ck ∪{v}]) can be computed in O(|NH̄(v)|)

Computing Minimal Triangulations in Time O(nα log n) = o(n2.376) 13

time for each vertex v in U , as we show in the proof of the following lemma.

Lemma 4.1 Running Algorithm Partition on all subgraphs H of a single itera-
tion of Algorithm FMT requires a total of O(n2) time.

Proof. First we prove that the running time of Algorithm Partition on input
subgraph H is O(|Ē(H)| + |V (H)|), and then we will argue for the overall time
bound at the end. Note that, as explained in the previous section, also for
Algorithm Partition we will work on the complement graph H̄ for an efficient
implementation. Observe that between a connected component C and U \NH [C],
we have a complete bipartite graph in H̄, meaning that no vertex of C is adjacent
to any vertex of U \ NH [C] in H. These non-edges will be used as an argument
to obtain the desired time bound.

The pseudocode of Algorithm Partition is presented in two bulks. Let us call
the first bulk “defining P”, and the second bulk “defining A”.

The first operation in the “defining P” part is to unmark every vertex in H.
The value EH̄(U \ NH [u]) for a single vertex u is computed straightforwardly by
summing the degrees in the complement graph of all vertices in U \ NH [u] =
NH̄(u), which is an O(|NH̄(u)|) operation.

When a component Ck is created from a first vertex u we label every vertex
w ∈ NH̄(u) with the value nk+|Ck| = nk+1. By labeling the vertices in this way,
we assign a unique value to every vertex set that constitutes a component during
the algorithm and ensure that only vertices in U \ NH [Ck] can have the label
nk + |Ck|. The value EH̄(U \NH [Ck ∪ {v}]) can now be computed in O(|NH̄(v)|)
time, since the set of vertices in NH̄(v) which are labeled nk + |Ck| is exactly the
set U \ N [Ck ∪ {v}]. If v is going to be added to Ck then this increases the size
of Ck by one and may affect the set N [Ck]. We update the labels of the vertices
in U \ N [Ck ∪ {v}], by adding 1 to the label of every vertex in NH̄(v) labeled
with nk + |Ck|, and then add v to Ck. This requires O(|NH̄(v)|) time for each
vertex and O(|Ē(H)| + |V (H)|) in total for the “defining P” part, since every
vertex is considered once and marked as a p, c or s-vertex. The s-vertices may
be reconsidered once, and changed to p-vertices, but this does not affect the time
complexity.

The “defining A” part consists of an if-else statement with 4 cases. In the first
case we can do the required test by simply finding the largest neighborhood of a
component and checking if its size is |P |. Without increasing the time complexity
of the “defining P” part we can store the values |C| and |U \ NH [C]| for each
component C of H(U \ P). Thus |NH(C)| = |U | − (|C| + |U \ NH [C]|).

In the second case, we check every non-edge in H(P), which is also an
O(|Ē(H)| + |V (H)|) operation.

In the third case we will mark non-edges and components, as follows. For
each p-vertex u, and then for each component C of H(U \P) where C ⊆ NH̄(u),
we mark C with the label u. We go through vertices in NH̄(u), check which

14 Computing Minimal Triangulations in Time O(nα log n) = o(n2.376)

components they belong to, add up these numbers for each component, and check
if it matches the total size of the component. Then for every p-vertex v ∈ NH̄(u),
where v is associated to a component labeled u, we add u to the label of non-edge
uv. This takes O(|NH̄(u)|) time for each p-vertex. The third case will now exist
if and only if there is a non-edge uv marked by both u and v. Thus the total
time for this case is O(|Ē(H)| + |V (H)|) for each subgraph H.

The fourth case requires constant time, and thus the total running time of
Algorithm Partition on input subgraph H is O(|Ē(H)| + |V (H)|).

The operations that require O(|Ē(H)|+ |V (H)|) on each subgraph H add up
to O(n2) for all subgraphs of the same iteration of FMT, since they do not overlap
in non-edges, and there are at most O(n) such graphs by Lemma 3.2. Thus the
total time complexity for all subgraphs H at the same iteration is O(n2).

We now give upper and lower bounds on the number of non-edges in various
subgraphs of H related to vertex set P .

Lemma 4.2 Let P be as computed by Algorithm Partition(H). Then each of the
following is true:

(i) |Ē(H(NH [C]))| ≤ 4
5
|Ē(H)| for each connected component C of H(U \ P).

(ii) |Ē(H(NH [v]))| > 3
5
|Ē(H)| for each s-vertex v.

(iii) |Ē(H(NH [C ∪ {v}]))| > 3
5
|Ē(H)| for each p-vertex v associated to C,

where C is a connected component of H(U \ P).

Proof. (i) From Algorithm Partition we know that EH̄(U \ NH [C]) ≥ 2
5
|Ē(H)|

for each connected component C of H(U \ P). Each non-edge uv outside of
H(NH [C]) contributes to the degree-sum EH̄(U \ NH [C]) by 1 if one of u or v is
outside NH [C], and by 2 if both are outside. Thus there are at least 1

5
|Ē(H)|

non-edges outside H(NH [C]) and consequently at most 4
5
|Ē(H)| non-edges inside

H(NH [C]). Hence, |Ē(H(NH [C]))| ≤ 4
5
|Ē(H)| for each connected component C

of H(U \ P), which completes the proof of (i).
(ii) - (iii) From Algorithm Partition we know that EH̄(U \NH [v]) < 2

5
|Ē(H)|

for each s-vertex v, and EH̄(U \ NH [C ∪ {u}]) < 2
5
|Ē(H)| for each p-vertex u

associated to C. It follows by the same argument as case (i) that |Ē(H(NH [v]))| >
3
5
|Ē(H)| and |Ē(H(NH [C ∪ {u}]))| > 3

5
|Ē(H)|. This completes the proof of (ii)

and (iii).

We are now ready to prove the main result of this section, namely that the
vertex set A returned by Partition results in subproblems of size bounded by a
constant factor of the number of non-edges, given in Theorem 4.3.

Theorem 4.3 Let A be the vertex set returned by Algorithm Partition on input
H = (U,D). Then both of the following are true, where G′ is as defined in
Algorithm FMT:

Computing Minimal Triangulations in Time O(nα log n) = o(n2.376) 15

(i) A is a proper subset of U such that either A = NH [K] where K ⊂ U and
H(K) is connected, or A is a pmc of H.

(ii) Both the number of non-edges in G′(A) and the number of non-edges in
G′(NH [C]) for each connected component C of H(U \ A) are at most 4

5
|Ē(H)|.

Proof. We will examine each of the 4 cases of the if-else statement in the ”defin-
ing A” part of Algorithm Partition. We omit the subscript H in NH(C) and
NH [C] to increase readability. The reader should keep in mind that throughout
this proof we regard neighborhoods in H (and not in H̄).

Case 1. H(U \ P) has a full component C, i.e., P = N(C).
This implies in particular that no vertices could have been marked as s-

vertices. By Lemma 4.2 we know that the number of non-edges in H(N [Ci])
is less than 4

5
|Ē(H)| for each connected component Ci of H(U \P), in particular

for C. In this case, Algorithm Partition gives A = N [C], and thus P ⊂ A. C is
a connected set since it was computed by adding new members from its neigh-
borhood, and so (i) is satisfied. Observe that the connected components Ci of
H(U \ A) are exactly the connected components Ci of H(U \ P), except C. It
follows that the number of non-edges in H(A) = H(N [Ci]) and in H(N [Cj]) for
each connected component Cj of H(U \ A) is less than 4

5
|Ē(H)|, already before

the minimal separators are saturated. After the saturation, this number cannot
increase but only decrease.

Case 2. There exist two vertices u, v, such that uv 6∈ E(H), u is marked as an
s-vertex, and v is marked as an s-vertex or a p-vertex.

We give the proof in two parts: the subcase where both u, v are s-vertices,
and the subcase where u is an s-vertex and v a p-vertex. The arguments for the
two subcases are very similar, and note that they are also very similar to the next
Case 3 where both u, v are p-vertices.

Assume both u and v are marked as s-vertices. By Lemma 4.2, |Ē(H(N [u]))|
> 3

5
|Ē(H)| and |Ē(H(N [v]))| > 3

5
|Ē(H)|, and thus for their common part we have

|Ē(H(N(u)∩N(v)))| = |Ē(H(N [u]∩N [v]))| > 1
5
|Ē(H)|, where the first equality

holds since u 6∈ N [v]. The algorithm gives A = N [u] in this case, satisfying (i),
which means that v will belong to a component C of H(U \ A) with N(C) ⊆ A

thus being a u, v-separator. Since any u, v-separator must contain N(u)∩N(v), it
follows that N(C) ⊆ A induces at least 1

5
|Ē(H)| non-edges. All these non-edges

will become edges and disappear from G′. Thus, there are at most 4
5
|Ē(H)| non-

edges left that can appear in subproblems G′(A) or H(N [Ci]) for a component
Ci of H(U \ A), thereby satisfying also (ii).

Assume u is marked as an s-vertex, v is marked as a p-vertex and let j be
the index such that v is associated to Cj. We know that such a Cj exists since v

is marked as a p-vertex. An important observation now is that u 6∈ N [Cj ∪ {v}].

16 Computing Minimal Triangulations in Time O(nα log n) = o(n2.376)

Otherwise u would have been marked as a p-vertex or c-vertex during execution
of the inner while-loop in Algorithm Partition during computation of Cj. By
Lemma 4.2, |Ē(H(N [u]))| > 3

5
|Ē(H)| and |Ē(H(N [Cj ∪ {v}]))| > 3

5
|Ē(H)|, and

thus for their common part we have |Ē(H(N(u)∩N(Cj ∪{v})))| = |Ē(H(N [u]∩
N [Cj ∪ {v}]))| > 1

5
|Ē(H)|, where the first equality holds since u 6∈ N [Cj ∪ {v}],

as we established above. The algorithm gives A = N [u] in this case, satisfying
(i), which means that Cj ∪ {v} will be contained in a component C of H(U \ A)
with N(C) ⊆ A thus separating u from Cj ∪ {v}. Since any such separator must
contain N(u) ∩ N(Cj ∪ {v}), it follows that N(C) ⊆ A induces at least 1

5
|Ē(H)|

non-edges. All these non-edges will become edges and disappear from G′. Thus,
there are at most 4

5
|Ē(H)| non-edges left that can appear in subproblems G′(A)

or H(N [Ci]) for a component Ci of H(U \ A), thereby satisfying also (ii).

Case 3. There exist two vertices u, v marked as p-vertices, such that uv 6∈ E(H),
u is associated to Ci, v is associated to Cj, u 6∈ N(Cj) and v 6∈ N(Ci).

The important observation now is that there are no edges between Ci ∪ {u}
and Cj ∪{v}. By Lemma 4.2, |Ē(H(N [Ci ∪{u}]))| > 3

5
|Ē(H)| and |Ē(H(N [Cj ∪

{v}]))| > 3
5
|Ē(H)|, and thus for their common part we have |Ē(H(N(Ci ∪{u})∩

N(Cj ∪ {v})))| = |Ē(H(N [Ci ∪ {u}] ∩ N [Cj ∪ {v}]))| > 1
5
|Ē(H)|, where the first

equality holds since there are no edges between Ci ∪ {u} and Cj ∪ {v}. The
algorithm gives A = N [Ci ∪ {u}] in this case, satisfying (i), which means that
Cj ∪ {v} will be contained in a component C of H(U \ A) with N(C) ⊆ A

thus separating Ci ∪ {u} from Cj ∪ {v}. Since any such separator must contain
N(Ci ∪ {u}) ∩ N(Cj ∪ {v}), it follows that N(C) ⊆ A induces at least 1

5
|Ē(H)|

non-edges. All these non-edges will become edges and disappear from G′. Thus,
there are at most 4

5
|Ē(H)| non-edges left that can appear in subproblems G′(A)

or H(N [Ci]) for a component Ci of H(U \ A), thereby satisfying also (ii).

Case 4. None of the above cases apply.

First we show that P is a pmc of H in this case. Due to Theorem 2.1, all we
have to show is that if none of the Cases 1, 2, and 3 applies, then H(U \ P) has
no full component associated to P , and for every pair of non-adjacent vertices
u, v ∈ P there is a connected component C of H(U \ P) such that u, v ∈ N(C).
Since Case 1 does not apply, we know that H(U \ P) has no full components.
Since Case 2 does not apply either, then the s-vertices altogether induce a clique
and they all have edges to all p-vertices. So, since P consists only of p and s
vertices, the only non-edges that are possible within P are those non-edges uv

where both u and v are p-vertices. Since Case 3 does not apply either, then for
any non-adjacent u, v ∈ P , if they are not associated to the same component
then one of them must be in the neighborhood of the component that the other
one is associated to. Thus P is a pmc of H, and (i) is satisfied since Algorithm
Partition gives A = P in this case. In this case, whole A is saturated in G′, and

Computing Minimal Triangulations in Time O(nα log n) = o(n2.376) 17

thus G′(A) has no non-edges. The remaining subproblems will each have at most
4
5
|Ē(H)| non-edges by Lemma 4.2, since the connected components of H(U \ A)

are the same as the connected components of H(U \ P).

5 The total O(nα log n) time complexity

Theorem 5.1 Algorithm FMT described in Section 3, using Algorithm Partition
described in Section 4, computes a minimal triangulation of the input graph in
O(nα log n) time.

Proof. By Lemma 3.1 and Theorem 4.3(i), Algorithm FMT computes a minimal
triangulation. By Lemma 3.2, the matrix multiplication at each iteration of FMT
requires O(nα) time. By the discussion that follows Lemma 3.2 in Section 3, all
other operations outside of Algorithm Partition can be performed in O(n2) time at
each iteration of FMT. Using Lemma 4.1, we conclude that the total time required
at each iteration of FMT is O(nα), since α ≥ 2 for any matrix multiplication
algorithm. By Theorem 4.3(ii), the number of non-edges in each subproblem
decreases by a constant factor for each iteration, and since subproblems in one
iteration do not overlap in non-edges we can at most have log n2 = O(log n)
iterations of FMT.

We have thus given the details of a new algorithm to compute minimal tri-
angulations of arbitrary graphs in O(nα log n) time. It is important to use a ma-
trix multiplication algorithm with running time o(n3) to achieve an improvement
compared to existing minimal triangulation algorithms, thus standard matrix
multiplication is not interesting. If we use the matrix multiplication algorithm
of Coppersmith and Winograd [6], then α is strictly less than 2.376, and thus
the total running time of our algorithm becomes o(n2.376). If we instead use the
matrix multiplication algorithm of Strassen [18] which has a worse asymptotic
time bound of Θ(nlog

2
7) = o(n2.81) but is considered more practical due to large

constants in [6], then our time bound becomes O(nlog
2
7 log n) = o(n2.81). Using

Strassen’s algorithm, the time bound claimed by Kratsch and Spinrad mentioned
previously becomes O(n2.91) [12]. In fact, our algorithm is asymptotically faster
than theirs regardless of the matrix multiplication algorithm used.

References

[1] A. Berry, J-P. Bordat, and P. Heggernes. Recognizing weakly triangulated
graphs by edge separability. Nordic Journal of Computing, 7:164–177, 2000.

18 Computing Minimal Triangulations in Time O(nα log n) = o(n2.376)

[2] A. Berry, J.P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-
range algorithm for minimal triangulation from an arbitrary ordering. Jour-
nal of Algorithms, 58(1):33–66, 2006.

A. Berry, J-P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-
range algorithm for minimal triangulation from an arbitrary ordering. J.
Algorithms. To appear.

[3] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach for
dynamically maintaining chordal graphs. In Algorithms and Computation -
ISAAC 2003, pages 47 – 57. Springer Verlag, 2003. LNCS 2906.

[4] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making
filled graphs minimal. Theor. Comput. Sci., 250:125–141, 2001.

[5] V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping the
minimal separators. SIAM J. Comput., 31:212–232, 2001.

[6] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gressions. J. Symb. Comp., 9:1–6, 1990.

[7] E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In
Graph Theoretical Concepts in Computer Science - WG ’97, pages 132–143.
Springer Verlag, 1997. LNCS 1335.

[8] P. Heggernes and Y. Villanger. Efficient implementation of a minimal tri-
angulation algorithm. In Algorithms - ESA 2002, pages 550–561. Springer
Verlag, 2002. LNCS 2461.

[9] D. Hudson, S. Nettles, and T. Warnow. Obtaining highly accurate topology
estimates of evolutionary trees from very short sequences. In Proceedings of
RECOMB’99, pages 198–207. 1999.

[10] T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in of
asteroidal triple-free graphs. Theor. Comput. Sci., 175:309–335, 1997.

[11] D. Kratsch and J. Spinrad. Between O(nm) and O(nα). In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003),
pages 709–716, 2003.

[12] D. Kratsch and J. Spinrad. Minimal fill in o(n3) time. 2004. Submitted.

[13] T. Ohtsuki. A fast algorithm for finding an optimal ordering in the vertex
elimination on a graph. SIAM J. Comput., 5:133–145, 1976.

Computing Minimal Triangulations in Time O(nα log n) = o(n2.376) 19

[14] T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Minimal triangulation of a
graph and optimal pivoting ordering in a sparse matrix. J. Math. Anal.
Appl., 54:622–633, 1976.

[15] A. Parra and P. Scheffler. Characterizations and algorithmic applications of
chordal graph embeddings. Disc. Appl. Math., 79:171–188, 1997.

[16] B. W. Peyton. Minimal orderings revisited. SIAM J. Matrix Anal. Appl.,
23(1):271–294, 2001.

[17] D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimi-
nation on graphs. SIAM J. Comput., 5:146–160, 1976.

[18] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
14:354–356, 1969.

[19] J. van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer
Science, A: Algorithms and Complexity Theory. North Holland, 1990.

20 Computing Minimal Triangulations in Time O(nα log n) = o(n2.376)

Paper V

Exact algorithms for treewidth and minimum

fill-in∗†

Fedor V. Fomin‡

Department of Informatics
University of Bergen
5020 Bergen, Norway

fomin@ii.uib.no

Dieter Kratsch

LITA, Université de Metz
57045 Metz Cedex 01, France

kratsch@univ-metz.fr

Ioan Todinca

LIFO, Université d’Orléans
45067 Orléans Cedex 2, France
Ioan.Todinca@lifo.univ-orleans.fr

Yngve Villanger

Department of Informatics
University of Bergen
5020 Bergen, Norway

yngvev@ii.uib.no

Abstract

We show that there are O(1.8899n) time algorithms to compute the
treewidth and the minimum fill-in of each graph G on n vertices. Our
result is based on a combinatorial proof that each graph on n vertices
has at most n · 1.7087n minimal separators and that all potential maximal
cliques can be listed in O(1.8899n) time. For the class of AT-free graphs
we obtain O(1.4142n) time algorithms to compute treewidth and minimum
fill-in.

Keywords: Exact exponential algorithm, treewidth, fill-in, minimal separators,
potential maximal clique, minimal triangulation

∗A preliminary version [26] of this paper has been presented at the 31st International Col-
loquium on Automata, Languages and Programming, Turku, Finland, July 2004.

†Supported by The Aurora Programme Collaboration Research Project between Norway
and France.

‡Fedor Fomin acknowledges support of Norges forskningsr̊ad, project 160778/V30.

2 Exact algorithms for treewidth and minimum fill-in

1 Introduction

Exact exponential algorithms. The interest in exact (fast) exponential al-
gorithms dates back to Held and Karp’s paper [29] on the travelling salesman
problem in the early sixties. Mention just a few examples: time O∗(1.4422n) algo-
rithm for Knapsack (Horowitz and Sahni [30]); time O∗(1.2600n) and O∗(1.2109n)
algorithms for Independent Set (Tarjan and Trojanowski [44], Robson [40]); 3-
Coloring in time O∗(1.4422n) (Lawler [34]); 3-SAT in time O∗(1.6181n) (Monien
and Speckenmeyer [35]).

In this paper we use a modified big-Oh notation that suppresses all other
(polynomially bounded) terms. For functions f and g we write f(n) = O∗(g(n))
if f(n) = O(g(n)poly(n)), where poly(n) is a polynomial. This modification may
be justified by the exponential growth of f(n).

Nowadays, it is common believe that NP-hard problems can not be solved
in polynomial time. For a number of NP-hard problems, we even have strong
evidence that they cannot be solved in sub-exponential time. In order to obtain
exact solutions to these problems, the only hope is to design exact algorithms
with good exponential running times. How good can these exponential running
times be? Can we reach 2n2

for instances of size n? Can we reach 10n? Or even
2n? Or can we reach cn for some constant c that is very close to 1? The last
years have seen an emerging interest in attacking these questions for concrete
combinatorial problems: There is an O∗(2.4150n) time algorithm for Coloring
(Byskov [15]); an O∗(1.3289n) time algorithm for 3-Coloring (Beigel and Eppstein
[3]); an O∗(1.7325n) time algorithm for Max-Cut (Williams [47]); an algorithms
for 3-SAT in time O∗(1.4726n) (Brueggemann and Kern [14]); an O∗(1.5129n)
time algorithm for Dominating Set (Fomin et al. [25]).

There can be several explanations why now the algorithmic community wit-
nesses the revival of the interest in fast exponential algorithms:

• The design and analysis of exact algorithms leads to a better understand-
ing of NP-hard problems and initiates interesting new combinatorial and
algorithmic challenges.

• For certain applications it is important to find exact solutions. With the
increased speed of modern computers, fast algorithms, even though they
have exponential running times in the worst case, may actually lead to
practical algorithms for certain NP-hard problems, at least for moderate
instance sizes.

• Approximation, randomized algorithms and different heuristics are not al-
ways satisfactory. Each of these approaches has weak points like necessity
of exact solutions, difficulty of approximation, limited power of the method
itself and many others.

Exact algorithms for treewidth and minimum fill-in 3

• A reduction of the base of the exponential running time, say from O(2n) to
O(1.8n), increases the size of the instances solvable within a given amount
of time by a constant multiplicative factor. However running a given expo-
nential algorithm on a faster computer can enlarge the mentioned size only
by a constant additive factor.

For overviews and introductions to the field see the recent surveys by Iwama
[31], Schöning [42], and Woeginger [48, 49].

Treewidth and minimum fill-in. Treewidth is one of the most basic parame-
ters in Graph Algorithms [6] and it plays an important role in structural Graph
Theory. It serves as one of the main tools in Robertson and Seymour’s Graph
Minors project [39]. Treewidth also plays a crucial role in parameterized complex-
ity theory [21]. The minimum fill-in problem (also known as minimum chordal
graph completion) has important applications in sparse matrix computations and
computational biology.

The problems to compute the treewidth and minimum fill-in of a graph are
known to be NP-hard even when the input is restricted to complements of bi-
partite graphs (so called cobipartite graphs) [2, 50]. Despite of the importance
of treewidth almost nothing is known on how to cope with its intractability. For
a long time the best known approximation algorithm for treewidth had a fac-
tor log OPT [1, 11] (see also [7]). Recently, Feige et al. [23] obtained factor√

log OPT approximation algorithm for treewidth. Furthermore it is an old open
question whether the treewidth can be approximated within a constant factor.

Treewidth is known to be fixed parameter tractable. Moreover, for any fixed
k, there is a linear time algorithm to compute the treewidth of graphs of treewidth
at most k (unfortunately there is a huge hidden constant in the running time) [5].
There is a number of algorithms that for a given graph G and integer k, either
report that the treewidth of G is at least k, or produce a tree decomposition of
width at most c1 ·k in time c2

k ·nO(1), where c1, c2 are some constants (see e.g.
[1]). Fixed parameter algorithms are known for the minimum fill-in problem as
well [17, 32].

We are not aware about any previous work on exact algorithms for the treewidth
or minimum fill-in problem. There are three relatively simple approaches result-
ing in time O∗(2n) algorithms:

• One can reformulate the problems as problems of finding special vertex elim-
ination orderings and then find an optimal permutation by using the dy-
namic programming based technique like in the article of Held & Karp [29]
for the travelling salesman problem;

• With some modifications, the algorithm of Arnborg et al. [2] for a given k
deciding in time O(nk+1) if the treewidth of a graph is at most k, can be
used to compute the treewidth (and similarly fill-in) in time O∗(2n);

4 Exact algorithms for treewidth and minimum fill-in

• Both problems can be solved by making use of game theoretic approach, by
finding a specific path in the graph of possible states of Cop and Robber
game [24].

However it is not clear if any of the mentioned approaches can bring us to
time O∗(cn) algorithm for some c < 2.

Our results. In this paper we obtain the first exact algorithm computing the
treewidth in time O∗(cn) for c < 2. Additionally it can be adapted to solve a
number of other minimal triangulation problems like minimum fill-in.

Our main result is an O∗(1.8899n) algorithm computing the treewidth and
minimum fill-in of a graph on n vertices. The algorithm can be regarded as
dynamic programming across partial solutions and is based on results of Bouchitté
& Todinca [9, 10]. The analysis of the running time is difficult and is based
on combinatorial properties of special structures in a graph, namely, potential
maximal clique, i.e. vertex subsets in a graph that can be maximal cliques in some
minimal triangulation of this graph. (See the next section for the definition.)

More precisely, first we modify the algorithm of Bouchitté & Todinca [9] which
computes the treewidth and minimum fill-in of a graph G with the given set ΠG

of all potential maximal cliques of G and then improve the analysis of its running
time to obtain an O∗(|ΠG|) time complexity. The most technical and difficult
part of the paper is the proof that all potential maximal cliques can be listed in
time O∗(1.8899n). Very roughly, our listing algorithms is based on the following
combinatorial result: every “large” potential maximal clique is either “almost”
a minimal separator, or can be represented by a “small” vertex subset. The
technique developed to prove this combinatorial result can be interesting on its
own.

For several special graph classes, for which both problems remain NP-com-
plete, we are able to prove that our approach guarantees significantly better
bounds. To exemplify this we show that for the class of AT-free graphs the
number of minimal separators and the number of potential maximal cliques, and
thus the running time of our algorithm, is O∗(2n/2).

This paper is organized as follows. In Section 2 we give basic definitions. In
Section 3 we show how Bouchitté & Todinca’s approach can be used to compute
the treewidth and fill-in in time linear in the number of potential maximal cliques.
In Section 4 we prove that every graph on n vertices has O(n · 1.7087n) minimal
separators. The results of Section 4 are used in Section 5, where we derive the
most difficult and important combinatorial result of this paper, namely, that all
potential maximal cliques of a graph can be listed in time O∗(1.8899n). Com-
bining with the results from Section 3, this yields the main result of the paper,
that the treewidth and minimum fill-in can be computed in time O∗(1.8899n). In

Exact algorithms for treewidth and minimum fill-in 5

Section 6 we design faster O∗(2n/2) algorithm on AT-free graphs. We conclude
with open problems and final remarks in Section 7.

2 Basic definitions

We denote by G = (V, E) a finite, undirected and simple graph with |V | = n
vertices and |E| = m edges. For any non-empty subset W ⊆ V , the subgraph of
G induced by W is denoted by G[W]. For S ⊆ V we often use G \ S to denote
G[V \ S]. The neighborhood of a vertex v is N(v) = {u ∈ V : {u, v} ∈ E} and
for a vertex set S ⊆ V we set N(S) =

⋃

v∈S N(v) \S. A clique C of a graph G is
a subset of V such that all the vertices of C are pairwise adjacent. By ω(G) we
denote the maximum clique-size of a graph G.

Treewidth and minimum fill-in of graphs. The notion of treewidth is due to
Robertson & Seymour [38]. A tree decomposition of a graph G = (V, E), denoted
by TD(G), is a pair (X, T) in which T = (VT , ET) is a tree and X = {Xi|i ∈ VT}
is a family of subsets of V such that:

(i)
⋃

i∈VT
Xi = V ;

(ii) for each edge e = {u, v} ∈ E there exists an i ∈ VT such that both u and v
belong to Xi; and

(iii) for all v ∈ V , the set of nodes {i ∈ VT |v ∈ Xi} induces a connected subtree
of T .

The maximum of |Xi| − 1, i ∈ VT , is called the width of the tree decomposition.
The treewidth of a graph G, denoted by tw(G), is the minimum width taken over
all tree decompositions of G.

A graph H is chordal (or triangulated) if every cycle of length at least four
has a chord, i.e. an edge between two non-consecutive vertices of the cycle.
A triangulation of a graph G = (V, E) is a chordal graph H = (V, E ′) such
that E ⊆ E ′. H is a minimal triangulation if for any intermediate set E ′′ with
E ⊆ E ′′ ⊂ E ′, the graph F = (V, E ′′) is not chordal.

The following result is very useful for our algorithms.

Theorem 1 (Folklore). For any graph G, tw(G) ≤ k if and only if there is a
triangulation H of G such that ω(H) ≤ k + 1.

Thus the treewidth of a graph G can be defined as the minimum of ω(H)− 1
taken over all triangulations H of G, of ω(H) − 1.

The minimum fill-in of a graph G = (V, E), denoted by mfi(G), is the smallest
value of |EH−E|, where the minimum is taken over all triangulations H = (V, EH)
of G.

6 Exact algorithms for treewidth and minimum fill-in

In other words, computing the treewidth of G means finding a (minimal) tri-
angulation with the smallest maximum clique-size, while computing the minimum
fill-in means finding a (minimal) triangulation with the smallest number of edges.
Clearly, in both cases it is sufficient to consider only minimal triangulations of G,
which makes minimal separators and potential maximal cliques important tools
of our algorithmic approach.

Minimal separators. Minimal separators and potential maximal cliques are
the most important tools used in our proofs. Let a and b be two non adjacent
vertices of a graph G = (V, E). A set of vertices S ⊆ V is an a, b-separator if
a and b are in different connected components of the graph G \ S. A connected
component C of G \ S is a full component (associated to S) if N(C) = S. S is
a minimal a, b-separator of G if no proper subset of S is an a, b-separator. We
say that S is a minimal separator of G if there are two vertices a and b such that
S is a minimal a, b-separator. Notice that a minimal separator can be strictly
included in another one. We denote by ∆G the set of all minimal separators of G.
A set of vertices Ω ⊆ V of a graph G is called a potential maximal clique if there
is a minimal triangulation H of G such that Ω is a maximal clique of H. We
denote by ΠG the set of all potential maximal cliques of G. Clearly, |∆G| ≤ 2n

and |ΠG| ≤ 2n for every graph G on n vertices, and no better upper bounds had
been known prior to our work.

The following result will be used to list all minimal separators of a graph.

Theorem 2 ([4]). There is an algorithm listing all minimal separators of an
input graph G in O(n3|∆G|) time.

There is a very useful relationship between the minimal separators of a graph
and its minimal triangulations. Two minimal separators S and T of a graph
G are said to be crossing if S is a minimal u, v-separator for a pair of vertices
u, v ∈ T , in which case T is a minimal x, y-separator for a pair x, y ∈ S.

Theorem 3 ([37]). The graph H is a minimal triangulation of the graph G if
and only if there is a maximal set of pairwise non-crossing minimal separators
{S1, S2, . . . , Sp} of G such that H can be obtained from G by completing each Si,
i ∈ {1, 2, . . . , p}, into a clique.

Although we do not use this characterization explicitly it is fundamental for
our paper.

Potential maximal cliques. The following structural characterization of po-
tential maximal cliques is extremely useful for our purposes.

For a set K ⊆ V , a connected component C of G \ K is a full component
associated to K if N(C) = K.

Exact algorithms for treewidth and minimum fill-in 7

Theorem 4 ([9]). Let K ⊆ V be a set of vertices of the graph G = (V, E). Let
C(K) = {C1(K), . . . , Cp(K)} be the set of the connected components of G\K and
let S(K) = {S1(K), S2(K), . . . , Sp(K)} where Si(K), i ∈ {1, 2, . . . , p}, is the set
of those vertices of K which are adjacent to at least one vertex of the component
Ci(K). Then K is a potential maximal clique of G if and only if :

1. G \ K has no full component associated to K, and

2. the graph on the vertex set K obtained from G[K] by completing each Si ∈
S(K) into a clique, is a complete graph.

Moreover, if K is a potential maximal clique, then S(K) is the set of the minimal
separators of G contained in K.

Remark. By Theorem 4, for every potential maximal clique Ω of G, the sets Si(Ω)
are exactly the minimal separators of G contained in Ω. Let us point out that
for each minimal separator Si = Si(Ω), all vertices of Ω \ Si are contained in the
same component of G \ Si.

The following result is an easy consequence of Theorem 4.

Theorem 5 ([9]). There is an algorithm that, given a graph G = (V, E) and a
set of vertices K ⊆ V , verifies if K is a potential maximal clique of G. The time
complexity of the algorithm is O(nm).

According to [10], the number of potential maximal cliques of a graph G is at
least |∆G|/n and at most n|∆G|2+n|∆G|+1. We will show later that a graph on n
vertices has O∗(1.7087n) minimal separators and O∗(1.8899n) potential maximal
cliques.

Let us emphasize that it is an open question whether there is an algorithm
listing all potential maximal cliques of any graph with a running time O(poly(n) ·
|ΠG|) for some polynomial poly(n).

3 Computing treewidth and minimum fill-in

We describe a modification of the algorithm of [9] that, given a graph, all its
minimal separators and all its potential maximal cliques, computes the treewidth
and the minimum fill-in of the graph. The running time stated in [9] could be re-
formulated as O(n2 |∆G| · |ΠG|). We show how the algorithm can be implemented
to run in time O(n3 · |ΠG|).

For a minimal separator S and a component C ∈ C(S) of G \ S, we say
that (S, C) is a block associated to S. We sometimes use the notation (S, C) to
denote the set of vertices S ∪ C of the block. It is easy to notice that if X ⊆ V

8 Exact algorithms for treewidth and minimum fill-in

corresponds the set of vertices of a block, then this block (S, C) is unique: indeed
S = N(V \ X) and C = X \ S.

A block (S, C) is called full if C is a full component associated to S. The
graph R(S, C) = GS[S∪C] obtained from G[S∪C] by completing S into a clique
is called the realization of the block B.

Theorem 6 ([33]). Let G be a non-complete graph. Then

tw(G) = min
S∈∆G

max
C∈C(S)

tw(R(S, C))

mfi(G) = min
S∈∆G

(fill(S) +
∑

C∈C(S)

mfi(R(S, C)))

where fill(S) is the number of non-edges of G[S].

Remark. In the equations of Theorem 6 we may take the minimum only over the
inclusion-minimal separators of G. Then all the blocks in the equations are full.

Unfortunately, Theorem 6 is not sufficient for computing the treewidth and
the minimum fill-in. Therefore we now express the treewidth and the minimum
fill-in of realizations of full blocks from realizations of smaller full blocks. Let Ω
be a potential maximal clique of G. We say that a block (S ′, C ′) is associated to
Ω if C ′ is a component of G \ Ω and S ′ = N(C ′).

Theorem 7 ([9]). Let (S, C) be a full block of G. Then

tw(R(S, C)) = min
S⊂Ω⊆(S,C)

max(|Ω| − 1, tw(R(Si, Ci)))

mfi(R(S, C)) = min
S⊂Ω⊆(S,C)

(

fill(Ω) − fill(S) +
∑

mfi(R(Si, Ci))
)

where the minimum is taken over all potential maximal cliques Ω such that S ⊂
Ω ⊆ (S, C) and (Si, Ci) are the blocks associated to Ω in G such that Si ∪ Ci ⊂
S ∪ C.

Theorem 8. There is an algorithm that, given a graph G together with the list
of its minimal separators ∆G and the list of its potential maximal cliques ΠG,
computes the treewidth and the minimum fill-in of G in O(n3 |ΠG|) time. More-
over, the algorithm constructs optimal triangulations for the treewidth and the
minimum fill-in.

Proof. W.l.o.g. we may assume that the input graph G is connected (otherwise
we can run the algorithm for each connected component of G).

The algorithm for computing the treewidth and the minimum fill-in of a graph,
using its minimal separators and its potential maximal cliques is given below. It
is a slightly different version of the algorithm given in [9].

Exact algorithms for treewidth and minimum fill-in 9

Input: G, all its potential maximal cliques and all its minimal separators
Output: tw(G) and mfi(G)
begin

compute all the full blocks (S, C) and sort them by the number of vertices
for each full block (S, C) taken in increasing order

tw(R(S, C)) := |S ∪ C| − 1 if (S, C) is inclusion-minimal
and tw(R(S, C)) := ∞ otherwise

mfi(R(S, C)) := fill(S ∪ C) if (S, C) is inclusion-minimal
and mfi(R(S, C)) := ∞ otherwise

for each p.m.c. Ω with S ⊂ Ω ⊆ (S, C)
compute the blocks (Si, Ci) associated to Ω s.t. Si ∪ Ci ⊂ S ∪ C

tw(R(S, C)) := min(tw(R(S, C)),
max

i
(|Ω| − 1, tw(R(Si, Ci))))

mfi(R(S, C)) := min(mfi(R(S, C)),

fill(Ω) − fill(S) +
∑

i

(mfi(R(Si, Ci))))

end for

end for

let ∆∗
G be the set of inclusion-minimal separators of G

tw(G) := min
S∈∆∗

G

max
C∈C(S)

tw(R(S, C))

mfi(G) := min
S∈∆∗

G

(fill(S) +
∑

C∈C(S)

mfi(R(S, C)))

end

For the sake of completeness we shortly discuss the correctness proof. Ac-
cording to Theorem 7, at the end of the outer for loop the values of tw(R(S, C))
and mfi(R(S, C)) are correctly computed, for each full block (S, C) of G. Then
the treewidth and the minimum fill-in of the graph are computed using Theo-
rem 6 and the fact that in Theorem 6 one can work only with inclusion-minimal
separators.

Let us show how the algorithm can be implemented in time O(n3 · |ΠG|).
To store and manipulate the minimal separators, potential maximal cliques

and blocks we use data structures that allow to search, to insert or to check
whether an element is inclusion-minimal in O(n) time.

During a preprocessing step, we realize the following operations.

• Compute the list of all full blocks and, for each minimal separator S, store
a pointer towards each full block of type (S, C). These operations are per-
formed as follows. For each minimal separator S, we compute the connected
components of G \ S. For each such component C, if N(C) = S then the
block (S, C) is full, so we add it to the list of full blocks and store the
pointer from S to (S, C). Note that this procedure will generate all the full
blocks, and each of them is encountered exactly once. For a given minimal

10 Exact algorithms for treewidth and minimum fill-in

separator S, there are at most n full blocks associated to it, so at most n
pointers to be stored. The insertion of these blocks into the list of full blocks
requires O(n) time for each block. Hence the whole step costs O(n2|∆G|)
time.

• For each potential maximal clique Ω, store a pointer to each full block
associated to it as follows: compute the components Ci of G \ Ω and then
(N(Ci), Ci) are precisely the blocks associated to Ω. In particular there are
at most n such blocks. This computation can be done in O(n2) time for
each potential maximal clique, so globally in O(n2|ΠG|) time.

• Compute all the good triples (S, C, Ω), where (S, C) is a full block and Ω is
a potential maximal clique such that S ⊂ Ω ⊆ S ∪ C. Moreover, for each
good triple we store a pointer from (S, C) to Ω. By Theorem 4, there are at
most n minimal separators S ⊂ Ω each of them being the neighborhood of
a component of G \ Ω and for each such S there is exactly one component
G \ S intersecting Ω (in particular there are at most n|ΠG| good triples).
For each component C ′ of G \ Ω we take S = N(C ′), find the component
C of G \ S intersecting Ω and store the pointer from (S, C) to Ω. Thus
this computation takes O(nm) time for each potential maximal clique, so
O(nm|ΠG|) globally.

Hence this preprocessing step costs O(n2|∆G| + nm|ΠG|). Sorting the blocks by
their size can be done in O(n|∆G|) time using a bucket sort.

Observe that the cost of one iteration of the inner for loop is O(n2), by the fact
that there are at most n blocks associated to a potential maximal clique. With
the data structures obtained during the preprocessing step, each full block (S, C)
keeps a pointer towards each potential maximal clique Ω such that (S, C, Ω) form
a good triple. Thus the number of iterations of the two nested loops is exactly
the number of good triples, that is at most n|ΠG|. It follows that the two loops
cost O(n3|ΠG|) time.

After the execution of the loops, computing the set ∆∗
G of inclusion-minimal

separators costs O(n|∆G|) time. Each inclusion-minimal separator S keeps the
list of its associated blocks, obtained during the preprocessing step. Computing
the maximum required by the two last instructions costs O(n) time for a given
S. This last step costs O(n|∆G|) time.

Altogether, the algorithm runs in time O(n2 · |∆G| + n3 · |ΠG|). It is known
[10] that each minimal separator is contained in at least one potential maximal
clique. According to Theorem 4, each potential maximal clique contains at most
n minimal separators. Therefore |ΠG| ≥ |∆G|/n. We conclude that the algorithm
runs in O(n3 · |ΠG|) time.

The algorithm can be easily transformed in order to output not only the
treewidth and the minimum fill-in of the graph, but also optimal triangulations

Exact algorithms for treewidth and minimum fill-in 11

with respect to these parameters. It is sufficient to keep, for each full block, the
set of potential maximal cliques realizing the minimum treewidth and fill-in of
its realization. At the end of the algorithm, the potential maximal cliques of the
chosen blocks will be the maximal cliques of the computed optimal triangulation:
optimal tree decomposition or minimum triangulation.

Using Theorem 8, the only missing ingredient of our treewidth and minimum
fill-in algorithms is an algorithm listing all (minimal separators and) potential
maximal cliques of a graph in time O∗(cn) for some c < 2. This requires ex-
ponential upper bounds of the type O∗(cn) for some c < 2 for the number of
minimal separators and for the number of potential maximal cliques in a graph
on n vertices. In the next two sections we discuss this issue.

4 Upper bounding the number of minimal sep-

arators

In this section we show that any graph with n vertices has O(n ·1.7087n) minimal
separators. For the main algorithm of this paper the upper bound O∗(1.8899n)
would be sufficient. However, bounding the number of minimal separators in a
graph is a nice combinatorial problem and we prefer to give here the best upper
bound we were able to find.

Let S be a separator in a graph G = (V, E). For x ∈ V \ S, we denote by
Cx(S) the component of G \ S containing x. The following lemma is an exercise
in [28].

Lemma 9 (Folklore). A set S of vertices of G is a minimal a, b-separator if and
only if a and b are in different full components associated to S. In particular, S is
a minimal separator if and only if there are at least two distinct full components
associated to S.

Here is the main combinatorial result.

Theorem 10. For any graph G, |∆G| = O(n · 1.7087n).

Let us note, that by Theorem 2, Theorem 10 yields that all minimal separators
of a graph can be listed in time O(n4 · 1.7087n).

Proof. For a constant α, 0 < α < 1, we distinguish two types of minimal separa-
tors: small separators, of size at most αn, and big separators, of size more than
αn. We denote the cardinalities of these sets by #small sep and #big sep.
Notice that |∆G| = #small sep + #big sep.

12 Exact algorithms for treewidth and minimum fill-in

4.1 Upper bounding the number of big separators

Let S be a minimal separator. By Lemma 9, there are at least two full components
associated to S. Hence at least one of these full components has at most n(1−α)/2
vertices. For every S ∈ ∆G we choose one of these full components, and call it
the small component of S, denoted by s(S).

By the definition of a full component, S = N(s(S)). In particular, for distinct
minimal separators S and T , we have that s(S) 6= s(T). Therefore the number
#big sep of big minimal separators is at most the number of small components
and we conclude that #big sep does not exceed the number of subsets of V of
cardinality at most n(1 − α)/2, i.e.

#big sep ≤
dn(1−α)/2e

∑

i=1

(

n

i

)

By making use of Stirling’s formula we deduce that:

#big sep ≤ n(1 − α)

2
(πn(1 − α)(1 + α)/2)−

1

2

[

(

1 − α

2

)− 1−α
2

(

1 + α

2

)− 1+α
2

]n

4.2 Upper bounding the number of small separators

To count small separators we use a different technique. Let S be a minimal
separator, let x be a vertex of a full component Cx(S) associated to S with
minimum number of vertices and let X ⊂ V be a vertex subset. We say that
(x, X) is a bad pair associated to S if Cx(S) ⊆ X ⊆ V \ S.

Claim 1. Let S 6= T be two minimal separators and let (x, X) and (y, Y) be two
bad pairs associated to S and T respectively. Then (x, X) 6= (y, Y).

Proof. Since Cx(S) ⊆ X and X∩S = ∅, we have that the connected component of
G[X] containing x is Cx(S). Similar, the connected component of G[Y] containing
y is Cy(T).

Thus if x = y and X = Y , then Cx(S) = Cy(T). Since Cx(S) is a full
component associated to S in G, we have that S = N(Cx(S)) and T = N(Cy(T)).
Therefore S = T , which is a contradiction.

By Lemma 9, there are at least two full components associated to every small
separator S. For a full component Cx(S) associated to S with the minimum
number of vertices, |V \(S∪Cx(S))| ≥ n ·(1−α)/2. For any Z ⊆ V \(S∪Cx(S)),
the pair (x, Z ∪Cx(S)) is a bad pair associated to S. Therefore there are at least
2n·(1−α)/2 distinct bad pairs associated to S. Hence by Claim 1, the total number

Exact algorithms for treewidth and minimum fill-in 13

of bad pairs is at least #small sep · 2n·(1−α)/2. On the other hand, the number
of bad pairs is at most n · 2n. We conclude that

#small sep ≤ n2n·(1+α)/2

Finally, choosing α = 0.5456, we obtain

|∆G| = #small sep + #big sep = O(n · 1.7087n).

5 Upper bounding the number of potential max-

imal cliques

In this section the we prove the main technical result of this paper, namely that
there exists an algorithm to list all potential maximal cliques of any graph in
time O∗(1.8899n).

Roughly speaking, the idea is to show that each potential maximal clique of
a graph can be identified by a set of vertices of size at most n/3. The algorithm
for generating all the potential maximal cliques of a graph, lists all the sets of
vertices of size at most n/3 and then, by applying a polynomial time procedure
for each set, generates all the potential maximal cliques of the input graph.

Lemma 11. Let Ω be a potential maximal clique of G, S be a minimal separator
contained in Ω and C be the component of G \S intersecting Ω. Then one of the
following holds:

1. Ω = N(C \ Ω);

2. there is a ∈ Ω \ S such that Ω = N [a];

3. there is a ∈ S such that Ω = S ∪ (N(a) ∩ C).

Proof. Since C is a component of G \ S and S is contained in Ω, we have that
N(C \ Ω) ⊆ Ω. If every vertex of Ω is adjacent to a vertex of C \ Ω, then
Ω = N(C \ Ω).

Suppose that there is a vertex a ∈ Ω having no neighbor in C \ Ω. We
consider first the case a ∈ Ω \ S. We claim that in this case Ω = N [a]. Because
a ∈ Ω \ S ⊆ C we conclude that N [a] ⊆ Ω. Thus to prove the claim we need to
show that Ω ⊆ N [a]. For sake of contradiction, suppose that there is b ∈ Ω which
is not adjacent to a. By Theorem 4, every two non adjacent vertices of a potential
maximal clique are contained in some minimal separator Si(Ω). Thus both a and
b should have neighbors in a component Ci(Ω) of G \ Ω. Since a ∈ Ω \ S ⊆ C,

14 Exact algorithms for treewidth and minimum fill-in

we have that Ci(Ω) ⊆ C \ Ω. But this contradicts the assumption that a has no
neighbors in C \ Ω.

The case a ∈ S is similar. Suppose that Ω \ S 6= N(a) ∩ C, i.e. there is a
vertex b ∈ Ω \ S non adjacent to a. Then again, a and b are contained in some
minimal separator and thus should have neighbors in a component Ci(Ω) ⊆ C of
G \ Ω which is a contradiction.

Definition 12. Let Ω be a potential maximal clique of G. The triple (S, a, b) is
called a separator representation of Ω if S is a minimal separator of G, a ∈ S,
b ∈ V \ S and Ω = S ∪ (N(a) ∩ Cb(S)), where Cb(S) is the component of G \ S
containing b.

The number of all possible separator representations of a graph is at most
n2|∆G|. Unfortunately, not every potential maximal clique has a separator rep-
resentation. In the next subsection we introduce two different types of represen-
tations, the partial representation and the indirect representation, that allows us
to show that all the potential maximal cliques can be represented by small sets
of vertices.

5.1 Upper bounding the number of nice potential maxi-
mal cliques

Definition 13. Let Ω be a potential maximal clique of a graph G and let S ⊂ Ω
be a minimal separator of G. We say that S is an active separator for Ω if Ω is not
a clique in the graph GS(Ω)\{S}, obtained from G by completing all the minimal
separators contained in Ω, except S. If S is active, a pair of vertices x, y ∈ S non
adjacent in GS(Ω)\{S} is called an active pair. Otherwise, S is called inactive for
Ω.

Theorem 14 ([10]). Let Ω be a potential maximal clique of G and S ⊂ Ω a
minimal separator, active for Ω. Let (S, C) be the block associated to S containing
Ω and let x, y ∈ Ω be an active pair. Then Ω \ S is a minimal x, y-separator in
G[C ∪ {x, y}].

Definition 15. We say that a potential maximal clique Ω is nice if at least one
of the minimal separators contained in Ω is active for Ω.

We shall prove first that a graph with n vertices has O∗(
(

n
n/3

)

) nice potential
maximal cliques.

Lemma 16. Let Ω be a nice potential maximal clique, S be a minimal separator
active for Ω, x, y ∈ S be an active pair, and C be the component of G\S containing
Ω \ S. There is a partition (Dx, Dy, Dr) of C \ Ω such that N(Dx ∪ {x}) ∩ C =
N(Dy ∪ {y}) ∩ C = Ω \ S.

Exact algorithms for treewidth and minimum fill-in 15

Proof. By Theorem 14, Ω \ S is a minimal x, y-separator in G[C ∪ {x, y}]. Let
Cx be the full component associated to Ω \ S in G[C ∪ {x, y}] containing x,
Dx = Cx\{x}, and let Cy be the full component associated to Ω\S in G[C∪{x, y}]
containing y, Dy = Cy \ {y}, and Dr = C \ (Ω ∪ Dx ∪ Dy). Since Dx ∪ {x}
and Dy ∪ {y} are full components of Ω \ S, we have that N(Dx ∪ {x}) ∩ C =
N(Dy ∪ {y}) ∩ C = Ω \ S.

Definition 17. For a potential maximal clique Ω of G, we say that a pair (X, c),
where X ⊂ V and c ∈ X is a partial representation of Ω if Ω = N(Cc)∪ (X \Cc),
where Cc is the connected component of G[X] containing c.

Definition 18. For a potential maximal clique Ω of G, we say that a triple
(X, x, c), where X ⊂ V and x, c 6∈ X is an indirect representation of Ω if Ω =
N(Cc ∪ Dx ∪ {x}) ∪ {x}, where

• Cc is the connected component of G \ N [X] containing c;

• Dx is the vertex set of the union of all connected components C ′ of G[X]
such that x ∈ N(C ′).

Let us note that for a given vertex set X and two vertices x, c one can check in
polynomial time whether the pair (X, c) is a partial representation or if the triple
(X, x, c) is a separator representation or indirect representation of a (unique)
potential maximal clique Ω.

We state now the main tool for upper bounding the number of nice potential
maximal cliques.

Lemma 19. Let Ω be a nice potential maximal clique of G. Then one of the
following holds:

1. There is a vertex a such that Ω = N [a];

2. Ω has a separator representation;

3. Ω has a partial representation (X, c) such that |X| ≤ n/3;

4. Ω has a indirect representation (X, x, c) such that |X| ≤ n/3.

Proof. Let S be a minimal separator active for Ω, x, y ∈ S be an active pair, and
C be the component of G\S containing Ω\S. By Lemma 16, there is a partition
(Dx, Dy, Dr) of C \Ω such that N(Dx ∪ {x})∩C = N(Dy ∪ {y})∩C = Ω \ S. If
one of the sets Dx, Dy, say Dx, is equal the emptyset, then N(Dx ∪ {x}) ∩ C =
N(x)∩C = Ω \S, and thus the triple (S, x, z) is a separator representation of Ω.

Suppose that none of the first two conditions of the lemma holds. Then Dx

and Dy are nonempty. In order to argue that Ω has a partial representation (X, c)
or a indirect representation (X, x, c) such that |X| ≤ n/3, we partition the graph

16 Exact algorithms for treewidth and minimum fill-in

further. Let R = Ω \S and let DS be the union of all full components associated
to S in G \ Ω. The vertex set Dx is the union of vertex sets of all connected
components C ′ of G \ (Ω ∪ DS) such that x is contained in the neighborhood of
C ′. Thus a connected component C ′ of G\(Ω∪DS) is contained in Dx if and only
if x ∈ N(C ′). Similarly, a connected component C ′ of G \ (Ω ∪ DS) is contained
in Dy if and only if y ∈ N(C ′). We also define Dr = V \ (Ω ∪ DS ∪ Dx ∪ Dy),
which is the set of vertices of the components of G \ (Ω ∪ DS) which are not in
Dx and Dy.

We partition S in the following sets

• Sx = (S \ N(Dx)) ∩ N(Dy);

• Sy = (S \ N(Dy)) ∩ N(Dx);

• Sxy = S \ (N(Dy) ∪ N(Dx));

• Sxy = S ∩ N(Dy) ∩ N(Dx).

Thus Sx is the set of vertices in S with no neighbor in Dx and with at least one
neighbor in Dy, Sy is the set of vertices in S with no neighbor in Dy and with at
least one neighbor in Dx, Sxy is the set of vertices in S with neighbors neither in
Dx or Dy, and finally Sxy is the set of vertices in S with neighbors both in Dx

and Dy. Notice that the vertex sets DS, Dx, Dy, Dr, R,Sx, Sy, Sxy, and Sxy are
pairwise disjoint. The set Sxy is only mentioned to complete the partition of S,
and will not be used in the rest of the proof.

Both for size requirements and because of the definition of indirect representa-
tion we can not use the sets Sx, Sy, and Sxy directly, they have to be represented
by the sets Zx, Zy, and Zr, which are subsets of the vertex sets Dy, Dx, and Dr.
By the definition of Sx and Sy it follows that there exists two vertex sets Zx ⊆ Dy

and Zy ⊆ Dx such that Sx ⊆ N(Zx) and Sy ⊆ N(Zy), let Zx and Zy be the small-
est such sets. By Lemma 11, Ω = N(Dx ∪ Dy ∪ Dr), thus it follows that there
exists a vertex set Zr ⊆ Dr such that Sxy ⊆ N(Zr), let Zr be the smallest such
set. A sketch of how these vertex sets relates to each other is given in Figure 1.

Let C∗ be a connected component of G[DS], remember that N(C∗) = S. We
define the following sets

• X1 = C∗ ∪ R;

• X2 = Dx ∪ Zx ∪ Zr;

• X3 = Dy ∪ Zy ∪ Zr.

First we claim that

• the pair (X1, c), where c ∈ C∗, is a partial representation of Ω;

Exact algorithms for treewidth and minimum fill-in 17

xySD

D

D

D

x

y

rR

S

S

y
_

x
_

xy
__

S

S

Figure 1: The figure shows a sketch of how the vertex sets
DS, Dx, Dy, Dr, R, Sx, Sy, Sxy, and Sxy partition the graph G, and how the
sets Zx, Zy, and Zr relates to this partition.

• the triple (X2, x, c), where c ∈ C∗ is an indirect representation of Ω;

• the triple (X3, x, c), where c ∈ C∗ is an indirect representation of Ω.

In fact, the pair (X1, c) = (C∗ ∪R, c) is a partial representation of Ω because
N(C∗)∩R = ∅, C∗ induces a connected graph, and Ω = N(C∗)∪R. Thus (X1, c)
is a partial representation of Ω.

To prove that (X2, x, c) = (Dx ∪ Zx ∪ Zr, x, c) is an indirect representation of
Ω, we have to show that Ω = N(Cc ∪D′

x ∪ {x}) ∪ {x} where Cc is the connected
component of G \ N [X2] containing c, and D′

x is the vertex set of the union
of all connected components C ′ of G[X2] such that x ∈ N(C ′). Notice that
(S ∪ C∗) ∩ X2 = ∅ and that S ⊆ N(X2) since S ⊆ N(Dx ∪ Zx ∪ Zr) and
X2 = Dx ∪Zx ∪Zr. Hence the connected component Cc of G \N [X2] containing
c is C∗.

Every connected component C ′ of G[X2] is contained in Dx, Zx, or Zr since
Ω ∩ (Dx ∪ Zx ∪ Zr) = ∅ and Ω separates Dx, Zx, and Zr. From the definition
of Dx it follows that x ∈ N(C ′) for every component C ′ of G[Dx], and from
the definition of Dy and Dr follows that x 6∈ N(C ′) for every component C ′ of
G[Zx ∪ Zr]. We can now conclude that Dx is the vertex set of the union of all
connected components C ′ of G[X2] such that x ∈ N(C ′). It remains to prove that
Ω = N(C∗ ∪ Dx ∪ {x}) ∪ {x}. By Lemma 16, we have that Ω \ S = R is subset
of N(Dx ∪ {x}) and N(Dy ∪ {y}), and remember that N(C∗) = S. From this
observations it follows that Ω = N(C∗∪Dx∪{x})∪{x} since N(C∗∪Dx∪{x}) =
(S ∪ R) \ {x}.

By similar arguments, (X3, x, c) is an indirect representation of Ω.

To conclude the proof of Lemma, we argue that at least one of the vertex sets
X1, X2, or X3 used to represent Ω, contains at most n/3 vertices.

We partition the graph in the following three sets:

18 Exact algorithms for treewidth and minimum fill-in

• V1 = DS ∪ R;

• V2 = Dx ∪ Sx ∪ Sxy;

• V3 = Dy ∪ Sy ∪ Dr.

These sets are pairwise disjoint and at least one of them is of size at most n/3
and to prove the Lemma we show that |X1| ≤ |V1|, |X2| ≤ |V2|, and |X3| ≤ |V3|.
|X1| ≤ |V1|. Since C∗ ⊆ DS, we have that X1 = C∗ ∪ R ⊆ V1 = DS ∪ R.

|X2| ≤ |V2|. To prove the inequality we need an additional result

|Zx| ≤ |Sx|, |Zy| ≤ |Sy|, and |Zr| ≤ |Sxy|. (1)

In fact, since Zx is the smallest subset of Dy such that Sx ⊆ N(Zx), we have that
for any vertex u ∈ Zx, Sx 6⊆ N(Zx \ {u}). Thus u has a private neighbor in Sx,
or in other words there exists v ∈ Sx such that {u} = N(v) ∩ Zx. Therefore Sx

contains at least one vertex for every vertex in Zx, which yields |Zx| ≤ |Sx|. The
proof of inequalities |Zy| ≤ |Sy|, and |Zr| ≤ |Sxy| is similar.

Now the proof of |X2| ≤ |V2|, which is equivalent to |Dx ∪ Zx ∪ Zr| ≤ |Dx ∪
Sx ∪Sxy|, follows from (1) and the fact that all subsets on each side of inequality
are pairwise disjoint.

|X3| ≤ |V3|. This inequality is equivalent to |Dy ∪ Zy ∪ Zr| ≤ |Dy ∪ Sy ∪ Dr|.
Again, the sets on each side of inequality are pairwise disjoint. |Zr| ≤ |Dr|
because Zr ⊆ Dr, and |Zy| ≤ |Sy| by (1).

Thus min{|X1|, |X2|, |X3|} ≤ n/3 which concludes the proof of the lemma.

Lemma 20. Every graph on n vertices has at most 2n2
∑n/3

i=1

(

n
i

)

nice potential
maximal cliques which can be listed in O∗(

(

n
n/3

)

) time.

Proof. By Lemma 19, the number of the number of possible partial represen-
tations (X, c) and indirect representations (X, x, c) with |X| ≤ n/3 is at most

2n2
∑n/3

i=1

(

n
i

)

. By Theorem 10, the number of all possible separator represen-
tations is at most n2|∆G| ≤ n2

(

n
n/3

)

and we deduce that the number of nice

potential maximal cliques is at most 2n2
∑n/3

i=1

(

n
i

)

. Moreover, these potential
maximal cliques can be computed in O∗(

(

n
n/3

)

) time as follows. We enumerate

all the triples (S, a, b) where S is a minimal separator and a, b are vertices, and
check if the triple is the separator representation of a potential maximal clique
Ω; if so, we store this potential maximal clique. We also enumerate all the po-
tential maximal cliques of type N [a], a ∈ V (G) in polynomial time. Finally, by
listing all the sets X of at most n/3 vertices and all the couples of vertices (x, c),
we compute all the nice potential maximal cliques with a partial representation
(X, c) or a indirect representation (X, x, c).

Exact algorithms for treewidth and minimum fill-in 19

5.2 Upper bounding the number of potential maximal
cliques

Not all potential maximal cliques of a graph are necessarily nice (see [10] for
an example). For upper bounding and listing all potential maximal cliques of a
graph, we need the following theorem, used in [10] for showing that the number
of potential maximal cliques of G is O∗(|∆G|2).
Theorem 21 ([10]). Let Ω be a potential maximal clique of G, let a be a vertex
of G and G′ = G \ {a}. Then one of the following cases holds:

1. either Ω or Ω \ {a} is a potential maximal clique of G′.

2. Ω = S ∪ {a}, where S is a minimal separator of G.

3. Ω is nice.

Theorem 22. A graph G on n vertices has at most 2n3
∑n/3

i=1

(

n
i

)

= O(n4·1.8899n)
potential maximal cliques. There is an algorithm to list all potential maximal
cliques of a graph in time O∗(1.8899n).

Proof. Let x1, x2, . . . , xn be the vertices of G and Gi = G[{x1, . . . , xi}], for all i ∈
{1, 2, . . . , n}. Theorem 21 and Lemma 20 imply that |ΠGi

| ≤ |ΠGi−1
| + n|∆Gi

| +
2n2

∑n/3
i=1

(

n
i

)

, for all i ∈ {2, 3, . . . , n}. By Theorem 10, |ΠG| ≤ 2n3
∑n/3

i=1

(

n
i

)

.
Clearly, if we have the potential maximal cliques of Gi−1, the potential maxi-

mal cliques of Gi can be computed in O∗(|ΠGi−1
| +

(

n
n/3

)

) time by making use of
Theorems 21, 10, and Lemma 20. The graph G1 has a unique potential maximal
clique, namely {x1}. Therefore ΠG can be listed in time O∗(

(

n
n/3

)

) time which is

approximately O∗(1.8899n).

Theorems 8 and 22 imply the main result of this paper.

Theorem 23. For a graph G on n vertices, the treewidth and the minimum fill-in
of G can be computed in O∗(1.8899n) time.

6 AT-free graphs

In this section we establish exact algorithms to compute the treewidth and the
minimum fill-in of asteroidal-triple free graphs which are faster than the ones
obtained for general graphs in the previous section. Both algorithms are based
on new upper bounds on the number of minimal separators and the number of
potential maximal cliques in AT-free graphs.

Three pairwise non-adjacent vertices of a graph G form an asteroidal triple
(AT for short) if any two of them are connected by a path avoiding the neighbor-
hood of the third vertex. Graphs without asteroidal triples are called AT-free.

20 Exact algorithms for treewidth and minimum fill-in

Corneil, Olariu & Stewart studied structural properties of AT-free graphs in
their fundamental paper [18]. Among others they showed that every connected
AT-free graph has a dominating pair, where two vertices x and y of G form a
dominating pair (DP for short) if the vertex set of each x, y-path is a dominating
set of G.

AT-free graphs contain cocomparability graphs, permutation graphs, interval
graphs and cobipartite graphs. Thus the treewidth problem and the minimum
fill-in problem remain NP-hard when restricted to AT-free graphs [2, 50].

Remark. There is a well-known cobipartite (and thus AT-free) graph consisting of
two cliques of size n/2 and a perfect matching between them which has precisely
2n/2 − 2 minimal separators. It is not hard to show that this is indeed the largest
number of minimal separators of a cobipartite graph on n vertices.

In a first part we show that |ΠG| = O∗(|∆G|) for AT-free graphs, improving a
result in [9] (Corollary 5.2). This also establishes an algorithm to list the potential
maximal cliques of an AT-free graph in O∗(|∆G|) time. In a second part we prove
that an AT-free graph on n vertices has at most 2n/2+3 minimal separators.

First let us summarize some structural properties of potential maximal cliques
in AT-free graphs.

Lemma 24 (Proposition 5.1 [9]). Let Ω be a potential maximal clique of an
AT-free graph G. Then the set S(Ω) of minimal separators contained in Ω has at
most two inclusion-maximal elements.

Lemma 25 (Theorem 3.10 [9]). Let G be a graph and Ω be a potential maximal
clique of G such that S(Ω) has a unique inclusion-maximal element S. Then Ω\S
is a connected component of G \ S.

Let S and T be two non-crossing minimal separators of G, incomparable with
respect to inclusion. Thus S meets a unique component of G \ T say CS(T), and
T meets a unique component of G \ S say CT (S). We define the piece between S
and T as P (S, T) = S ∪ T ∪ (CT (S) ∩ CS(T)).

Lemma 26 (Theorem 3.11 [9]). Let G be a graph and Ω be a potential maximal
clique of G such that S(Ω) has exactly two inclusion-maximal elements S and T .
Then Ω = P (S, T).

Lemma 27. Let G be an AT-free graph and Ω be a potential maximal clique of G
such that S(Ω) has two inclusion-maximal elements S and T . Choose s ∈ S \ T .
Then Ω = S ∪ (N(s) ∩ CT (S)).

Proof. By Lemma 26, Ω = P (S, T). Clearly s is in the unique component CS(T)
of G\T meeting S, so N(s)∩CT (S) ⊆ P (S, T). Consequently S∪(N(s)∩CT (S)) ⊆
Ω.

Exact algorithms for treewidth and minimum fill-in 21

Conversely, suppose there is a vertex t ∈ Ω, not contained in S ∪ (N(s) ∩
CT (S)). Let S ′ = (S \ {s}) ∪ (N(s) ∩ CT (S)). Clearly S ′ separates s and any
vertex of CT (S) \S ′ in G, in particular S ′ separates s and t. It follows that there
is a minimal separator S ′′ ⊆ S ′ of G, contained in Ω and separating two vertices
of Ω. According to Theorem 4, for each minimal separator U contained in Ω, Ω
intersects exactly one component of G \ U , which is a contradiction.

Theorem 28. An AT-free graph G has at most n2|∆G| + n|∆G| + 1 potential
maximal cliques. Furthermore, there is an algorithm to list the potential maximal
cliques of an AT-free graph in O∗(|∆G|) time.

Proof. If G has no minimal separator, then G is a complete graph and its vertex
set is the unique potential maximal clique of G.

Suppose now that G is not complete. Fix a minimal separator S of G. By
Lemma 25, the number of potential maximal cliques Ω such that S is the unique
inclusion-maximal element of S(Ω) is bounded by the number of connected com-
ponents of G \ S. Hence, there are at most n such potential maximal cliques.

Now let us consider the potential maximal cliques Ω for which S is one of
the two inclusion-maximal separators contained in S(Ω). For any component C
of G \ S, there are, by Lemma 27, at most |S| such potential maximal cliques
contained in S∪C. It follows that there are at most n2 potential maximal cliques
of this type.

Therefore, G contains at most (n2 + n)|∆G| + 1 potential maximal cliques.
These combinatorial arguments can easily be transformed into an algorithm list-
ing the potential maximal cliques of an AT-free graph in time O∗(|∆G|).

Hence Theorem 8 implies that to construct an O∗(1.4142n) algorithm com-
puting the tree-width and the minimum fill-in of an AT-free graph it is enough to
prove that the number of minimal separators in an AT-free graph is O∗(1.4142n).

Our proof that the number of minimal separators in an AT-free graph is at
most 2n/2+3 relies on properties of 2LexBFS, i.e. a combination of two runs
of lexicographic breadth-first-search (also called 2-sweep LexBFS), on AT-free
graphs established by Corneil, Olariu & Stewart in [19].

Definition 29. A vertex ordering xn, xn−1, . . . , x1 is said to be a 2LexBFS order-
ing of G if some 2LexBFS(G) returns the vertices in this order (starting with
xn) during the second sweep of LexBFS on G where xn is supposed to be the last
vertex of the first sweep of LexBFS on G.

We shall write u ≺ v if u = xi, v = xj and i < j. A 2LexBFS ordering and the
levels L0 = {xn}, L1 = N(xn), . . . , Li = {xj : d(xj, xn) = i}, . . . , Lr are called a
2LexBFS scheme of G. Consider any 2LexBFS scheme. Clearly all neighbors of
a vertex v ∈ Li are contained in Li−1 ∪ Li ∪ Li+1. For a vertex v ∈ Li we denote
N(v) ∩ Li−1 by N↑(v), and we denote N(v) ∩ Li+1 by N↓(v).

22 Exact algorithms for treewidth and minimum fill-in

Theorem 30 ([19]). Every 2LexBFS ordering xn, xn−1, . . . , x1 of a connected
AT-free graph has the dominating pair-property (DP-property for short), i.e., for
all i ∈ {1, 2, . . . , n}, (xn, xi) is a dominating pair of the graph G[{xi, xi+1, . . . , xn}].

The following easy consequence of Theorem 30 is useful.

Lemma 31. Let xn, xn−1, . . . , x1 be a 2LexBFS ordering of an AT-free graph G
and let L0, L1, . . . , Lr be the corresponding 2LexBFS scheme. Let s > r, xs, xr ∈
Li and {xr, xs} /∈ E. Then N↑(xr) ⊆ N↑(xs).

Proof. Let w ∈ N↑(xr) \ N↑(xs). Then the path xr, w, ui−2, . . . , u1, xn with
uj ∈ Lj and uj−1 ∈ N↑(uj) for all j = i − 2, . . . , 1 contains no neighbor of
xs contradicting the DP-property of a 2LexBFS scheme of an AT-free graph.

Theorem 32. An AT-free graph on n vertices has at most 2n/2+3 minimal sepa-
rators.

Proof. Let G be an AT-free graph. Let xn, xn−1, . . . , x1 be a 2LexBFS ordering
of G and let L0, L1, . . . , Lr be the levels of the corresponding 2LexBFS scheme.

Let S be any minimal separator of G. Let C and C ′ be two (not necessarily
full) components of G \ S. We claim that at most one level of the 2LexBFS
scheme may contain vertices of C and C ′. Suppose not. Let Li and Li+1 be levels
containing vertices of C and C ′. Then there are edges {u, v} in C and {w, x} in
C ′ such that u, w ∈ Li and v, x ∈ Li+1. W.l.o.g. assume u ≺ w. Then Lemma 31
implies that w and v are adjacent, a contradiction.

Let C and C ′ be two (not necessarily full) components of G \ S such that
both contain vertices of some level of the 2LexBFS scheme, say Li. Furthermore
assume C ∩Li−1 6= ∅ and C ′ ∩Li−1 = ∅. Hence there is an edge {u, v} in C such
that u ∈ Li and v ∈ Li−1. Then for each w ∈ C ′ holds w ≺ u. Otherwise u ≺ w,
w ∈ Li and Lemma 31 would imply that w and v are adjacent, a contradiction.

Finally we claim that in this case c′ ≺ c for each vertex c ∈ C and each vertex
c′ ∈ C ′. This is obviously true if one of c and c′ is not in Li. It remains to consider
the case c ∈ Li, c′ ∈ Li. To the contrary assume c ≺ c′. Since C contains vertices
of Li and Li−1 there is a path in C starting in c passing through vertices of C∩Li

only until it passes through an edge {u, v} in C with u ∈ Li and v ∈ Li−1. This
path can be extended to a path from c to xn that does not contain a neighbor of
c′ although c ≺ c′, a contradiction to the DP-property.

Now we are able to upper bound the number of those minimal separators in
an AT-free graph in which no full component contains only vertices of one level.
Simply divide the vertex set into two halves: A = {xn, xn−1, . . . , xdn/2e+1} and
B = {xbn/2c, . . . , x1}. Now consider two full components C and C ′ of a minimal
separator S of G, i.e. S = N(C) = N(C ′). Then either C or C ′ is a subset of
either A or B, and surely each of them C and C ′ uniquely determines S. Hence we
simply consider all subsets of A and all subsets of B as possible full components

Exact algorithms for treewidth and minimum fill-in 23

of a minimal separator of G. Consequently there are at most 2n/2+1 minimal
separators of this type.

It remains to upper bound the number of all those minimal separators S of
an AT-free graph G for which each full component is neither a subset of A nor a
subset of B. Hence at least one full component of S contains only vertices from
one level of the 2LexBFS scheme.

Let S be such a minimal separator of G. Let C and C ′ be two full components
of G \ S. W.l.o.g. assume C ⊆ Li. Hence xbn/2c ∈ Li, and thus the level Li is
uniquely determined.

C ′ ∩ ⋃i−1
j=0 Lj = ∅ since otherwise c ≺ c′ for all c ∈ C and all c′ ∈ C ′, and

either C or C ′ is a subset of A or B. Similarly C ′ must contain vertices of Li.
Consequently C ′ ⊆ ⋃r

j=i Lj. It is easy to see that C ⊆ Li and S = N(C) imply

N(C ′) = S ⊆ ⋃i+1
j=i−1 Lj. Furthermore N(C) = N(C ′) = S implies S ∩ Li−1 =

N↑(C ∩ Li) = N↑(C ′ ∩ Li).
Now let us consider the graph G′ = G \ ⋃i−1

j=0 Lj. Then S ′ = S \ ⋃i−1
j=0 Lj is a

separator of G′; C and C ′ are components of G′ \ S ′. Furthermore, every vertex
of S ′ ⊆ S has a neighbor in C and C ′, and thus S ′ is a minimal separator of G′.
Consequently every minimal separator S of G for which no full component is a
subset of A or B corresponds uniquely to a minimal separator of G′. Notice G′

has at most n − 1 vertices since we remove at least one vertex of Li−1 from G to
obtain G′.

Let f(n) be a function such that f(n) is an upper bound for the number
of minimal separators in an n-vertex AT-free graph. Then we established the
recurrence f(n) ≥ 2n/2+1 + f(n − 1) and conclude with f(n) = 4 · 2n/2+1 =
8 · 2n/2.

Combining Theorems 8, 28, and 32 we obtain algorithms for AT-free graphs
being faster than the corresponding ones for general graphs.

Theorem 33. There are algorithms to compute the treewidth and the minimum
fill-in of an AT-free graph in O∗(1.4142n) time.

7 Open problems and final remarks

Planar graphs. The computational complexity of treewidth restricted to planar
graphs is a long standing open problem in Graph Algorithms. The treewidth
of planar graphs can be approximated within a constant factor of 1.5. More
precisely, Seymour and Thomas [43] gave a polynomial algorithm for computing
the branchwidth of planar graphs, and the latter parameter differs by at most a
factor of 1.5 from the treewidth.

In the case of planar graphs with n vertices, the treewidth is at most O(
√

n).

24 Exact algorithms for treewidth and minimum fill-in

Theorem 34 ([27]). For any planar graph G on n vertices, tw(G) ≤ 3.182
√

n+
O(1).

Also given a graph G and a number k, one can decide if tw(G) ≤ k in O∗(nk)
time, either using the algorithm of Arnborg et al. [2] or using our technique,
restricted to potential maximal cliques of size at most k + 1.

Consequently the treewidth of planar graphs can be computed in time O∗(
n3.182

√
n) = 2O(

√
n log n).

Unfortunately, although the structure of potential maximal cliques in planar
graphs is very particular [12], our approach can not be used for obtaining algo-
rithms of running time 2O(

√
n) for planar treewidth. This is because the number

of ’large’ potential maximal cliques in planar graphs can be ’large’.

Claim 2. For any integer N , there is a planar graph on n > N vertices with at
least 20.49

√
n log n potential maximal cliques of size at least 2

√
n + 2.

b 11

b p,p

a a a a a
1 2 3

b

b

b

,

1,2

1,p−1

1,p

b

b

b

b

2,1

2,2

2,p−1

2,p

b

b

b

p,1

p,2

p,p−1p p+1

c

d

...
...

Figure 2: Planar graphs with many small potential maximal cliques

Proof. Consider the planar graph Gp depicted in Figure 2. It has n = p2 + p + 3
vertices. The set of vertices S = {a1, b1i1 , a2, b2i2 , . . . , ap, bpip , ap+1} forms a c, d-
minimal separator for any values i1, i2, . . . , ip between 1 and p. By making use
of Theorem 4, it is not hard to see that S ∪ {c} is a potential maximal clique

Exact algorithms for treewidth and minimum fill-in 25

of size p + 1 in Gp. Consequently, G has at least pp potential cliques. If p ≥ 2,
we have p >

√
n − 1, thus the number of potential maximal cliques is at least

(
√

n − 1)
√

n−1.

Since we do not know if the treewidth of a planar graph can be computed in
polynomial time, an interesting task is to design an algorithm of running time
2O(

√
n). As we mentioned, this will need new techniques.

Combinatorial bounds. The running time estimation of our algorithms is
based on combinatorial upper bounds on minimal separators and a bound for
listing all potential maximal cliques. To find better bounds on the number of
minimal separators and potential maximal cliques are interesting combinatorial
challenges.

How many potential maximal cliques can be in a graph? Recently Villanger [45]
proved that the number of potential maximal cliques in a graph on n vertices is
at most n3 ·1.8135n. Unfortunately, it is not clear if the proof of Villanger can be
turned into algorithm listing all potential maximal cliques in time O∗(1.8135n).
Of course, such an algorithm can be used to speed up our algorithm for treewidth
and fill-in. A related interesting question is if it is possible to list potential
maximal cliques with polynomial delay.

How many minimal separators can be in a graph? We are aware of the following
construction providing the lower bound 3n/3 ≈ 1.4422n on the number of minimal
separators: Let G be a graph on n = 3k + 2 vertices. G has two vertices a, b
that are connected by k vertex disjoint paths of length 4. Every minimal a, b-
separator in G contains exactly one inner vertex of each a, b-path. So the number
of minimal separators in G is at least 3n/3 ≈ 1.4422n. However the gap between
the lower bound and the upper bound O(n · 1.7087n) from Theorems 10 is still
big.

For some special graph classes, the use of minimal separators can imply faster
algorithms for triangulation problems. For example, we have shown that every
AT-free graph on n vertices has at most 2n/2+3 minimal separators and that
this upper bound is tight up to a multiplicative constant factor. The interesting
question here is whether similar techniques can be used for other graph classes,
like bipartite graphs and graphs of small degree.

More generally, it is a natural and challenging question to ask how many sub-
graphs satisfying a given property can be in a given graph. Surprisingly, despite
the question is so natural, there are not so many known results of this type. For
example, the number of perfect matchings in a simple k-regular bipartite graph
on 2n vertices is always between n!(k/n)n and (k!)n/k. (The first inequality was
known as van der Waerden Conjecture [46] and was proved in 1980 by Egorychev
[20] and the second is due to Bregman [13].) Another example is the famous Moon
and Moser [36] theorem stating that every graph on n vertices has at most 3n/3

26 Exact algorithms for treewidth and minimum fill-in

maximal cliques (independent sets). Byskov and Eppstein [16] obtain a 1.7724n

upper bound on the number of maximal bipartite subgraphs in a graph. Such
combinatorial bounds are of interests not only on their own but also because often
they are used for algorithm design as well.

Related problems. Our algorithms for treewidth and minimum fill-in can also
be used for solving other problems that can be expressed in terms of minimal
triangulations like finding a tree decomposition of minimum cost [8] or computing
treewidth of weighted graphs. However, there are two ’width’ parameters related
to treewidth, namely bandwidth and pathwidth and one parameter called profile,
related to minimum fill-in, that do not fit into this framework. Bandwidth can
be computed in time O∗(10n) [22] and reducing Feige’s bounds is a challenging
problem. Pathwidth (and profile) can be expressed as vertex ordering problems
and thus solved in O∗(2n) time by applying a dynamic programming approach
similar to Held and Karp’s approach [29] for TSP. Let us note that reaching
time complexity O∗(cn), for any constant c < 2 even for the Hamiltonian cycle
problem is a long standing problem. So it is unlikely that some modification of
Held & Karp’s approach provide us with a better exact algorithm for pathwidth
or profile. It is tempting to ask if one can reach time complexity O∗(cn), for any
constant c < 2 for these problems.

References

[1] E. Amir, Efficient approximation for triangulation of minimum treewidth, in Un-
certainty in Artificial Intelligence: Proceedings of the Seventeenth Conference
(UAI-2001), San Francisco, CA, 2001, Morgan Kaufmann Publishers, pp. 7–15.

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding
embeddings in a k-tree, SIAM J. Algebraic Discrete Methods, 8 (1987), pp. 277–
284.

[3] R. Beigel and D. Eppstein, 3-coloring in time O(1.3289n), Journal of Algo-
rithms, 54 (2005), pp. 168–204.

[4] A. Berry, J.P. Bordat, and O. Cogis, Generating all the minimal separators
of a graph, Proceedings of the 25th Workshop on Graph-theoretic Concepts in
Computer Science (WG’99), LNCS vol. 1665, Springer, Berlin, 1999, pp. 167–172.

[5] H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of
small treewidth, SIAM J. Computing, 25 (1996), pp. 1305–1317.

[6] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth,
Theoret. Comput. Sci., 209 (1998) , pp. 1–45.

Exact algorithms for treewidth and minimum fill-in 27

[7] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks, Ap-
proximating treewidth, pathwidth, frontsize, and shortest elimination tree, J. Algo-
rithms, 18 (1995), pp. 238–255.

[8] H. L. Bodlaender and F. V. Fomin, Tree decompositions with small cost, Pro-
ceedings of the 8th Scandinavian Workshop on Algorithm Theory (SWAT 2002),
LNCS vol. 2368, Springer, Berlin, 2002, pp. 378–387.

[9] V. Bouchitté and I. Todinca, Treewidth and minimum fill-in: grouping the
minimal separators, SIAM J. Computing, 31 (2001), pp. 212–232.

[10] V. Bouchitté and I. Todinca, Listing all potential maximal cliques of a graph,
Theoret. Comput. Sci., 276 (2002), pp. 17–32.

[11] V. Bouchitté, D. Kratsch, H. Müller, and I. Todinca, On treewidth ap-
proximation, Discr. Appl. Math., 136 (2004), pp. 183–196.

[12] V. Bouchitté, F. Mazoit, and I. Todinca, Chordal embeddings of planar
graphs, Discr. Math., 273 (2003), pp. 85–102.

[13] L. M. Brègman, Certain properties of nonnegative matrices and their perma-
nents, Doklady Akademii Nauk BSSR, 211 (1973), pp. 27–30.

[14] T. Brueggemann and W. Kern, An improved determenistic local search algo-
rithm for 3-SAT, Theoret. Comput. Sci., 329 (2004), pp. 303-313.

[15] J.M. Byskov, Enumerating maximal independent sets with applications to graph
colouring, Operations Research Letters, 32 (2004),pp. 547–556.

[16] M. Byskov and D. Eppstein, An algorithm for enumerating maximal bipartite
subgraphs, manuscript, (2004).

[17] L. Cai, Fixed-parameter tractability of graph modification problems for hereditary
properties, Information Processing Letters, 58 (1996), pp. 171–176.

[18] D.G. Corneil, S. Olariu and L. Stewart, Asteroidal triple-free graphs, SIAM
J. Discrete Math., 10 (1997), pp. 399–430.

[19] D.G. Corneil, S. Olariu and L. Stewart, Linear time algorithms for dom-
inating pairs in asteroidal triple-free graphs, SIAM J. Computing, 28 (2000),
pp. 1284–1297.

[20] G. P. Egorychev, Proof of the van der Waerden conjecture for permanents,
Sibirsk. Mat. Zh., 22 (1981), pp. 65–71, 225.

[21] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-
Verlag, New York, 1999.

[22] U. Feige, Coping with the NP-hardness of the graph bandwidth problem, Pro-
ceeding of the 7th Scandinavian Workshop on in Algorithm theory (SWAT 2000),
LNCS vol. 1851, Springer, Berlin, 2000, pp. 10–19.

28 Exact algorithms for treewidth and minimum fill-in

[23] U. Feige, M. Hajiaghayi, and J. R. Lee, Improved approximation algorithms
for minimum-weight vertex separators, in Proceedings of the 37th annual ACM
Symposium on Theory of computing (STOC 2005), New York, 2005, ACM Press,
pp. 563–572.

[24] F. V. Fomin, P. Fraigniaud, and N. Nisse, Nondeterministic Graph Search-
ing: From Pathwidth to Treewidth, Proceedings of the 30th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS 2005), Springer-
Verlag Lecture Notes in Computer Science, to appear.

[25] F. V. Fomin, F. Grandoni, and D. Kratsch, Measure and conquer: Domina-
tion – a case study, in Proceedings of the 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP 2005), vol. 3580 of LNCS, Springer,
Berlin, 2005, pp. 191–203.

[26] F. V. Fomin, D. Kratsch, and I. Todinca, Exact (exponential) algorithms for
treewidth and minimum fill-in, Proceedings of the 31st International Colloquium
on Automata, Languages and Programming, ICALP 2004, Turku, Finland, July
12-16, 2004, pp. 568–580.

[27] F. Fomin and D. Thilikos, A simple and fast approach for solving problems on
planar graphs, Proceedings of the 21st Annual Symposium on Theoretical Aspects
of Computer Science, LNCS vol. 2996, Springer, Berlin, 2004, pp. 56–67.

[28] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

[29] M. Held and R. Karp, A dynamic programming approach to sequencing prob-
lems, J. Soc. Indust. Appl. Math., 10 (1962), pp. 196–210.

[30] E. Horowitz and S. Sahni, Computing partitions with applications to the knap-
sack problem, Journal of ACM, 21 (1974), pp. 277–292.

[31] K. Iwama, Worst-case upper bounds for ksat, Bulletin of the EATCS, 82 (2004),
pp. 61–71.

[32] H. Kaplan, R. Shamir, and R. E. Tarjan, Tractability of parameterized com-
pletion problems on chordal, strongly chordal, and proper interval graphs, SIAM J.
Computing, 28 (1999), pp. 1906–1922.

[33] T. Kloks, D. Kratsch, and J. Spinrad, On treewidth and minimum fill-in of
asteroidal triple-free graphs, Theoret. Comput. Sci., 175 (1997), pp. 309–335.

[34] E. L. Lawler, A note on the complexity of the chromatic number problem, Infor-
mation Processing Letters, 5 (1976), pp. 66–67.

[35] B. Monien and E. Speckenmeyer, Solving satisfiability in less than 2n steps
Discr. Appl. Math., 10 (1985), pp. 287–295.

Exact algorithms for treewidth and minimum fill-in 29

[36] J. W. Moon and L. Moser, On cliques in graphs, Israel Journal of Mathematics,
3 (1965), pp. 23–28.

[37] A. Parra and P. Scheffler, Characterizations and algorithmic applications of
chordal graph embeddings, Discr. Appl. Math., 79 (1997), pp. 171–188.

[38] N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of
tree-width, J. Algorithms, 7 (1986), pp. 309–322.

[39] N. Robertson and P. D. Seymour, Graph minors. X. Obstructions to tree-
decomposition, J. Combin. Theory Ser. B, 52 (1991), pp. 153–190.

[40] J.M. Robson, Algorithms for maximum independent sets, J. Algorithms, 7 (1986),
pp. 425–440.

[41] R. Schroeppel And A. Shamir, A T = O(2n/2), S = O(2n/4) algorithm for
certain NP-complete problems, SIAM J. Computing, 10 (1981),pp. 456–464.

[42] Schöning, Algorithmics in exponential time, in Proceedings of the 22nd Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2005),
vol. 3404 of LNCS, Springer, Berlin, 2005, pp. 36–43.

[43] P. Seymour and R. Thomas, Call routing and the ratcatcher, Combinatorica,
14 (1994), pp. 217–241.

[44] R.E. Tarjan and A.E. Trojanowski, Finding a maximum independent set,
SIAM J. Computing, 6 (1977), pp. 537–546.

[45] Y. Villanger, Improved exponential-time algorithms for treewidth and minimum
fill-in, In LATIN, Lecture Notes in Computer Science. Springer Verlag, 2006. To
appear.

[46] B. van der Waerden, Problem 45, Jahresber. Deutsch. Math.-Verein., 35 (1926),
p. 117.

[47] R. Williams, A new algorithm for optimal constraint satisfaction and its im-
plications, Proceedings of the 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP 2004), LNCS vol. 3142, Springer, Berlin, 2004,
pp. 1227–1237.

[48] G. Woeginger, Exact algorithms for NP-hard problems: A survey, in Combi-
natorial Optimization - Eureka, you shrink!, vol. 2570 of LNCS, Springer-Verlag,
Berlin, 2003, pp. 185–207.

[49] , Space and time complexity of exact algorithms: Some open problems, Pro-
ceeding of the 1st International Workshop on Parameterized and Exact Computa-
tion (IWPEC 2004), vol. 3162 of LNCS, Springer-Verlag, Berlin, 2004, pp. 281–290.

[50] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Alge-
braic Discrete Methods, 2 (1981), pp. 77–79.

30 Exact algorithms for treewidth and minimum fill-in

