
Cand. Scient. Thesis
in

Informatics

Efficient Minimal
Triangulation of Graphs by
Using Tree Decompositions

by

Yngve Villanger

June, 2002

Department of Informatics

University of Bergen

Norway

2

Contents

1 Introduction 7

1.1 Time complexity . 8

1.2 Graph terminology . 9

1.2.1 Tree decompositions 11

1.3 Cholesky factorization . 12

2 Chordal Graphs and triangulations 17

2.1 Characterization of chordal graphs 17

2.2 Clique graphs and clique trees 20

2.3 Elimination game . 22

2.4 Maximum Cardinality Search (MCS) 24

2.5 Minimal triangulations . 25

2.6 Lex-M . 26

2.6.1 An example . 27

2.6.2 Limitations of Lex-M 27

3 LB-triangulation 31

3.1 Basic triangulation . 31

3.1.1 The correctness of LB-triang 32

3.1.2 An example of LB-triang 33

3.1.3 Straight forward implementation of LB-triang 34

3.1.4 Time and space analysis 35

3.2 Improving the implementation 35

3.2.1 Decide if the separator is new 36

3.2.2 Using an adjacency matrix 36

3.2.3 Using an adjacency list (LB-list) 37

3.2.4 Final remarks . 38

4 Algorithm LB-treedec 41

4.1 A tree decomposition approach 41

4.2 A simple description of the algorithm 43

4.3 Finding pairs in G . 43

4.4 Decide which pairs to insert into T 44

3

4 CONTENTS

4.5 Inserting a pair Ψxi into T 46
4.6 Data structure . 47
4.7 Finding NGx

(x) . 49
4.7.1 Properties of the tree T 50
4.7.2 Grouping subtrees into different types 52
4.7.3 Finding InnerOuter and BorderOuter 52
4.7.4 Separate the InnerOuter from the BorderOuter 52
4.7.5 Finding Inner . 53
4.7.6 Summing it up . 53

5 Time analysis of LB-treedec 55
5.1 Introduction . 55
5.2 Finding pairs in G . 56
5.3 Find pairs not inserted into T 57

5.3.1 Traversing the tree . 58
5.4 Inserting a pair into T . 59

5.4.1 The insertion . 59
5.4.2 Reconnecting of edges 59

5.5 Data structure . 60
5.5.1 Reading and traversing 60
5.5.2 Insertion into T . 60

5.6 Finding NGx
(x) . 61

5.6.1 Borderx edges . 61
5.6.2 Finding U(x) . 61
5.6.3 Summing it up . 62

5.7 Space analysis . 62

6 Experimental results 63
6.1 Analyzing LB-treedec . 63

6.1.1 Is LB-treedec an O(nm) algorithm ? 65
6.1.2 The maximum point in LB-treedec time curve 67
6.1.3 The roughness of LB-treedec 68

6.2 LB-treedec versus LB-list . 70
6.3 Lex-M versus LB-treedec . 73

6.3.1 Compare computation time 73
6.3.2 Compare fill . 75

7 Concluding remarks 79
7.1 An overview of our results . 79
7.2 Open questions . 81

Acknowledgments

First and foremost I would like to thank my advisor Associate professor
Pinar Heggernes. Her teaching and guidance have been invaluable to me in
the work of this thesis, and she shall have a lot of credit for the results in
this thesis.

I would also like to thank Tone M. Sæle for always being patient, and
for reading the thesis.

Lastly I will thank my friends and the staff at the Algorithms Research
Group for good social environment and many interesting discussions.

5

6 Acknowledgments

Chapter 1

Introduction

Many problems that originate from natural sciences, such as meteorology, oil
reservoir simulation and structural engineering, can be represented as linear
systems of equations. In many of these cases we can get a better model of
the problem if we increase the number of variables in the linear system of
equations. This gives us the motivation to solve as large systems as possible
on a given computer system. Many of these problems have special sparse
structures, such that one variable only depends on few others. If we use
a matrix A to represent such a problem, then variables i and j that are
not related will be represented by a zero entry A[i, j] in the matrix A. We
define a matrix as sparse, if only a few of the elements are non-zero. Larger
problems can be stored in the memory of a computer if the problem is sparse,
and we only store the non-zero elements. In 1961 Parter [16] presented the
Elimination game which is a graph theoretical approach to simulate sparse
matrix factorization. Given a graph G, representing a matrix A, Elimination
game outputs a graph G+ representing a factorization of A, where G is a
subgraph of G+. Later in 1965 Fulkerson and Gross [8] showed that the
graphs resulting from Elimination game are exactly the class of chordal
graphs. We define the new edges introduced by Elimination game as fill.
The size of the fill depends on the order in which the vertices are eliminated,
and can vary from minimum to a complete graph. The resulting graph G+

is called a triangulation of G.

The goal is to minimize the size of the fill, since this minimizes both the
space used by the result, and the work needed to complete the factorization
and solve the system. Rose, Tarjan and Lueker [17] conjectured that the
problem of deciding whether a given fill is minimum is NP-complete, and
later Yannakakis [20] verified this conjecture. A widely accepted alternative,
which has polynomial time solutions, is the problem of finding a minimal
triangulation. A triangulation H of G is minimal if no subgraph of H is a
triangulation of G. There exist several algorithms that solve this problem,
such as [15] and [17] with the algorithm Lex-M that solves the problem

7

8 CHAPTER 1. INTRODUCTION

in O(nm) time. In this thesis we are focusing on a new algorithm, LB-
triang, described by Berry [3] in 1999. The time complexity of LB-triang
was conjectured by Berry to be O(nm). However this remained unproven
since it’s presentation. The implementation suggested in [3] turned out to
require O(nm′) time, where m′ is the number of edges in the chordal graph.

The original goal of this thesis was to implement and experiment with
the LB-triang algorithm. But the unsolved question, regarding whether or
not an O(nm) solution to LB-triang exists, inspired to theoretical work.
In this thesis we actually prove the O(nm) time bound by presenting im-
plementation and data structure details to achieve this bound. This result
has been accepted at the European Symposium on Algorithms and will be
presented in Rome, Italy, September 2002 [10]. The key to this solution is
the data-structure, which is based on refining a tree decomposition as the
minimal separators are discovered. In the end this data-structure contains
a clique tree of the computed minimal triangulation of G. We call this new
O(nm) time and O(m′) space algorithm LB-treedec. We have also imple-
mented Lex-M, LB-treedec and Berry’s original O(nm′) time of LB-triang,
and used these in different practical experiments. The results from these
experiments show that LB-treedec behaves in a Θ(n2) fashion on randomly
triangulated graphs, and requires Θ(nm) for some special cases.

This thesis is organized as follows. This chapter describes the basic graph
terminology, and other basic theory used in this text. Chapter 2 gives the
necessary background on chordal graphs, and Chapter 3 describes LB-triang
and Berry’s O(nm′) implementation. Description of LB-treedec, and the
proof that this algorithm keeps the O(nm) time bound are explained in
Chapter 4 and 5. Chapter 6 contains the experimental results, and their
results and analysis. We conclude this thesis in Chapter 7.

1.1 Time complexity

When we talk about mathematically formulated problems it is often inter-
esting to know how much time and space a given algorithm uses, compared
to the size of the input. The notation O, Ω and Θ is commonly used to
establish an asymptotic limitation.

Definition 1.1. Let f and g be two functions f, g : N → R+. Say that
f(n) = O(g(n)) if some positive integers c and n0 exist so that for every
integer n ≥ n0, f(n) ≤ cg(n).

Definition 1.2. Let f and g be two functions f, g : N → R+. Say that
f(n) = Ω(g(n)) if some positive integers c and n0 exist so that for every
integer n ≥ n0, cg(n) ≤ f(n).

1.2. GRAPH TERMINOLOGY 9

Definition 1.3. Let f and g be two functions f, g : N → R+. Say that
f(n) = Θ(g(n)) if some positive integers c1, c2 and n0 exist so that for every
integer n ≥ n0, c1g(n) ≤ f(n) ≤ c2g(n).

We can see from the Definitions 1.1, 1.2 and 1.3, that the O and Ω
notation defines an upper and lower bound, while the Θ notation quite
accurately describes how much time is used compared to the size of the
input. The exact same notations are used to describe the space usage of an
algorithm.

Some problems are more time consuming in general than others. First
note the dramatic difference between the growth rate of typically occurring
polynomials such as n3 and typically occurring exponentials such as 2n. For
example let n be 1000, the size of a reasonable input to an algorithm. In
that case, n3 is 1 billion, a large, but manageable number, whereas 2n is a
number much larger than the number of atoms in the universe. Polynomial
time algorithms are fast enough for many purposes, but exponential time
algorithms rarely are useful. We define P as the class of problems that have
polynomial time algorithms, and we define problems that have polynomial
time verifications of a solution as the class NP . Classes that go beyond this
will not be discussed, since they mainly have theoretical interest.

The largest unsolved problem in informatics is whether or not P = NP .
The reason that this problem is so important is that many interesting prob-
lems are in NP , and these will have a polynomial solution if P = NP . One
result from the work done in this area is the class of NP-Complete problems,
which are problems in NP that are at least as difficult as all other problems
in NP .

Definition 1.4. A decision problem B is NP-Complete if it satisfies two
conditions:

1. B is in NP

2. Every problem A in NP is polynomial time reducible to B

It follows from this that P = NP if and only if any NP-Complete problem
has a polynomial time solution. A relevant example of such a problem is
minimum fill, which is NP-complete [20].

1.2 Graph terminology

A graph G = (V (G), E(G)) is defined by the set of vertices V (G) and the
set of edges E(G). We define the size of V (G) as n and E(G) as m, thus
|V (G)| = n and |E(G)| = m. An edge e ∈ E(G) is a pair of vertices (u, v)
where u, v ∈ V (G). All graphs in this thesis are undirected and finite. Graphs
in this text do not contain self loops, i.e. if (u, v) ∈ G then we demand that

10 CHAPTER 1. INTRODUCTION

u 6= v. Nor do we allow any multiple edges in our graph G, i.e. only one
instance of one edge (u, v) is allowed in E(G).

A vertex u is described as adjacent or neighbor of another vertex u in a
graph G if (u, v) ∈ E(G). All adjacent vertices of a vertex x in a graph G
are defined as NG(x), and if we include the vertex x in the set we denote
it as NG[x]. A clique is defined as a set of vertices S ∈ V (G), where every
pair of vertices u, v ∈ S has an edge (u, v) ∈ E(G). If S = V (G) we denote
the graph G as a complete, thus in a complete graph of n vertices there are
n(n−1)

2 edges.
An ordering α of G is a one-to-one mapping of {1, 2, ..., n} into V (G),

so α can be seen as a numbering of the vertices of G. The ordering can also
be seen as a sequence of the vertices from V (G), with the first vertex in the
sequence being the vertex numbered 1 and so forth.

A path is a number of vertices that connect two vertices. The base case
of a path can be described as an edge between two vertices. Paths can be
described in a more general way as a sequence of vertices v1, v2, ..., vk from
V (G) such that for 1 ≤ i ≤ k − 1, (vi, vi+1) ∈ E(G). The length of the path
is the number of edges it contains. A path is called simple if all the vertices
are different except that we may have v1 = vk, in which case we call the
path a cycle. Graphs can be described as connected if there exists a path
from a vertex x ∈ V (G) to every vertex in V (G). Trees are a class of graphs
where the graph is connected but no subset of the vertices forms a cycle.

A subgraph H is a subset of the vertices or edges in a graph; if H is a
subgraph of G, then V (H) ⊆ V (G) and E(H) ⊆ E(G). If some of the nodes
or edges in G are not present in H, then H is a proper subgraph of G, i.e.
H ⊂ G. Furthermore, we call H an induced subgraph of G if V (H) ⊆ V (G),
and where (u, v) ∈ E(H) ⇔ (u, v) ∈ E(G) and {u, v} ⊆ V (H). If S is a
subset of V (G), then the notation G[S] means the subgraph of G induced
by S, i. e. G[S] = (S, F) where (u, v) ∈ F iff (u, v) ∈ E(G) and u, v ∈ S. If
H is a subgraph of G, then we denote G as a supergraph of H. Furthermore
if S ⊂ V (G), then the neighbors in G of S are denoted as NG(S).

Graphs can be represented by two different data structures, as an adja-
cency matrix, or an adjacency list. The representations differ in space usage,
access time and how to update. Adjacency matrix is the simplest repre-
sentation, which requires O(n2) space, but gives us direct access to every
edge. List representation is based on keeping a vector for each vertex in the
graph, where the elements in the vector are the non-zero elements in the
characteristic vector representing this vertex in the adjacency matrix. This
only requires O(m) space, and is therefore dynamicly changing space with
the number of edges in the graph. Adding an edge can be done in O(1)
for both representations, while updating, removing or reading an edge is an
O(1) operation in the matrix, and O(n) for the list representation. However,
listing the neighbors of a vertex costs Θ(n) in a matrix, and only requires
Θ(N(x)) for the list representation. Since we are working on sparse graphs,

1.2. GRAPH TERMINOLOGY 11

and often require the neighborhood of a vertex, then the obvious choice is
list representation to minimize space and time usage.

1.2.1 Tree decompositions

The improvement of the LB-triang algorithm present in this thesis relies on
two important structures, called tree decompositions and clique trees. A Tree
decomposition is a special kind of data-structure that tries to represent the
graph as a tree.

Definition 1.5. A tree decomposition of a graph G = (V,E) is a pair ({Xi |
i ∈ I}, T = (I,M)) where {Xi | i ∈ I} is a collection of subsets of V , and T
is a tree, such that:

• ⋃

i∈I Xi = G(V)

• (u, v) ∈ G(E) ⇒ ∃ i ∈ I such that u, v ∈ Xi

• For all vertices v ∈ V, {i | v ∈ Xi} induces a connected subtree of T

The last condition of Definition 1.5 can be replaced by the following equiva-
lent condition:

• i, j, k ∈ I and j is on the path from i to k in T ⇒ Xi ∩ Xk ⊆ Xj.

Thus each tree node corresponds to a vertex subset Xi, also called a
bag (in which the graph vertices are placed). The width of a decomposition
({Xi | i ∈ I}, T = (I,M)) is maxi∈I |Xi| − 1, and the treewidth of a graph
G is the minimum width over all tree decompositions of G.

Theorem 1.1. (Arnborg, Corneil and Proskurowski [1]) The following prob-
lems are NP-complete:

• Given a graph G = (V,E) and an integer c < |V |, is the treewidth of
G ≤ c?

• Given a graph G = (V,E) and an integer c < |V |, is the pathwidth of
G ≤ c?

A path decomposition is a tree decomposition ({Xi | i ∈ I}, T = (I,M))
such that T is a path. Even though we are not capable of deciding these
questions, we have some useful information about the graph G given a tree
decomposition of G. The largest clique in G may not be larger than the width
+ 1 of our tree decomposition, and the intersection between two adjacent
bags in the tree T is a separator in the graph G. A separator is a set of
vertices in V (G), whose removal from G results in a disconnected graph.

A clique tree is a special kind of tree decomposition, where every bag
contains a maximal clique in the graph G. We will discuss this in the next
chapter since clique trees are only defined for chordal graphs.

12 CHAPTER 1. INTRODUCTION

1.3 Cholesky factorization

Since the problem that we are studying is motivated by applications in
sparse matrix computations, we find it useful to give some background here
on Cholesky factorization. We start by defining a SPD matrix, since Cholesky
factorization only applies to these kinds of matrices.

Definition 1.6. A matrix A with m rows and n columns is said to be sym-
metric positive definite (SPD), if it satisfies the following three properties:

• A is square (m = n).

• A is symmetric.

• For any non-zero vector x we have xT Ax > 0.

We have previously talked about natural problems which are solvable via
a linear system of equations. If the matrix of the linear system is SPD we
may use Cholesky factorization to solve this kind of problems. The procedure
consists of three steps:

1. Decompose A such that A = LLT , with L lower triangular.

2. Solve Ly = b for y using forward substitution.

3. Solve LT x = y for x using backward substitution.

The matrix L has non-zero elements in the positions of all non-zero
elements in the lower triangle of A. In addition, L may have more non-zero
elements. In this work, we are only interested in operation 1, where we find
the unique Cholesky factor L. The reason for this is the fact that the new
non-zero elements in L are equivalent to the fill created by a triangulation
of A. A result of this is that a triangulation of A that creates little fill will
keep many zero elements in L, and therefore be less work to compute. Let
us describe the actual computation of L. We start by expanding A = LLT

into

A =

[

a11 bT

b Â

]

=

[

l11 0

v L̂

] [

l11 vT

0 L̂T

]

= LLT , (1.1)

where a11 and l11 are positive scalars, b,v and 0 are (n − 1) dimensional
vectors and Â as well as L̂ are (n − 1) × (n − 1) matrices. From this we get

l11 =
√

a11, v =
1

l11
b (1.2)

and

Â − vvT = L̂L̂T . (1.3)

1.3. CHOLESKY FACTORIZATION 13

It is possible to prove that the new matrix L̂L̂T is SPD if A is SPD. We
can now apply this recursive procedure until L is computed. If we compare
L with the lower part of A, then the interesting information is how many
non-zero elements are in L compared to A. The new non-zero elements that
are added during Cholesky factorization are called fill. In this thesis we are
studying a method that is trying to reduce fill.

Symbolic Cholesky factorization introduces the same set of non-zero ele-
ments as the regular Cholesky factorization, but does not compute the actual
value of each element in the matrix. We can obtain the same fill if we use
the Elimination game [16] on the graph G = G(A). The Elimination game
algorithm will be discussed in more detail in the next chapter, when we talk
about triangulations and chordal graphs.

G

2
3
4
5

1
2 3 4 51

x

x
x

x x x
x

x
x

xx x x
x
x

x x

A

1 2

3

54

Figure 1.1: The matrix A, and the graph G = G(A).

In Figure 1.1 we have an example of a matrix A, and the graph G =
G(A), where each x represents a non-zero element in the matrix. We are
now going to compute one iteration of the symbolic Cholesky factorization.

a11 = x Â =









x x
x x

x x
x x x x









b =









x
x
x









bT =
[

x x x
]

We read out the values a11, b, bT and Â from the matrix A. Since we are
only interested in the non-zero values, then the only interesting operation is
the computation of Nz(L̂L̂T), where Nz an abbreviation of Non-Zero.

Nz(L̂L̂T) = Nz(Â − vvT) = Nz(Â − bbT) =









x y y x
y x y x
y y x x
x x x x









The y elements in the matrix represent the introduced fill. Since the
matrix Nz(L̂L̂T) contains no non-zero values, then no new non-zero values
may be changed through the rest of the algorithm.

14 CHAPTER 1. INTRODUCTION

1 2

3

54

A

y
y

y
yy

y2
3
4
5

1
2 3 4 51

x

x
x

x

x
x

x

x x x
x
x

x x
x x x

G+ +

Figure 1.2: The resulting graph G+.

In Figure 1.2 we have drawn the graph representing the non-zero ele-
ments in the new matrix A+. The edges representing the new non-zero ele-
ments in the matrix A are the dotted lines. If we use a permutation matrix to
perform a symmetric reordering of the rows and columns of A and apply the
Symbolic Cholesky method on the equivalent system (PAP T)(Px) = Pb,
we may reduce the amount of fill, sometimes substantially.

G

2
3
4
5

1
2 3 4 51

x

x
x

x

x
x

x x
x
x

x x
x x x
x
x

1

2

3

45

A

1

2

3

45

A

y
y

2
3
4
5

1
2 3 4 51

x

x
x

x

x
x

x x
x
x

x x
x

+

x x
x
x

G+

p p

p p

Figure 1.3: Symbolic Cholesky Factorization of a permutation of A.

The matrix Ap and the graph Gp in Figure 1.3 show a permutation of
the previously discussed matrix A. This is a concrete example where we
reduce the size of the fill or the number of introduced edges by doing a
permutation of the matrix. The factorization of A introduced 6 new non-

1.3. CHOLESKY FACTORIZATION 15

zero elements, while the factorization of Ap only introduced 2. Observe that
the permutation of A is equivalent to a new ordering of the vertices in the
graph, and that each new edge corresponds to two new elements in the
matrix.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Chordal Graphs and
triangulations

Chordal graphs were originally defined as an extension of trees by Gavril
[9]. Gavril defined this big and important class as the intersection graphs
of subtrees of a tree. In literature Chordal graphs are often referred to as
triangulated graphs.

Definition 2.1. A graph is chordal if every cycle of length ≥ 4 has a chord.

A chord is defined as an edge joining two non consecutive vertices of a
cycle. Chordal graphs arise from several practical applications, like sparse
matrix computations. Another reason for the research done in this area is
the restrictions in the definition, which allow us to solve many problems
much faster than for general graphs.

2.1 Characterization of chordal graphs

Several different characterizations of chordal graphs exist, and we are going
to mention some of them to get a better picture of the class of chordal
graphs. The first characterization is by Dirac who uses the definition of
minimal separators to characterize chordal graphs. Separators and minimal
separators are often mentioned when discussing chordal graphs.

Definition 2.2. Let G = (V,E) be a graph where u, v ∈ V (G), and let
S ⊆ V (G) − {u, v}. Then S is a u, v-separator if there exists no path from
u to v in G[V − S].

A direct consequence of the separator definition is that at least two
different connected subgraphs will remain if a separator is removed from the
graph, i.e. those containing u and v.

17

18 CHAPTER 2. CHORDAL GRAPHS AND TRIANGULATIONS

Definition 2.3. Let G = (V,E) be a graph where u, v ∈ V (G), and let S be
a u, v-separator. Then S is a minimal u, v-separator if no subset of S is a
u, v-separator.

Observation 2.1. Let S be a minimal u, v-separator, then every vertex
x ∈ S has a path to u and v in G[V (G) − S].

The reason that Observation 2.1 is true is quite simple. If a vertex x ∈ S
only has neighbors in one subgraph then this vertex may be removed from
S, and S ∪ {x} will still separate u from v.

Definition 2.4. A separator S is a minimal separator in G, if S is a min-
imal u, v-separator for some pair of vertices u, v ∈ V (G).

Definition 2.5. Let S separate the two components C1 and C2 in the graph
G. S is a minimal C1, C2-separator if S is a minimal u, v-separator for every
pair of vertices u, v where u ∈ C1 and v ∈ C2.

A minimal separator is not necessarily a minimal u, v-separator for ev-
ery pair of vertices u, v separated by the separator. In Figure 2.1 we have
an example of a graph G, where the separator S = {x, y} is a minimal
u, v-separator. Observe that S also separates the pair u,w, while the mini-
mal u,w-separator is only {y}, thus S is not a minimal u,w-separator. But
observe that both {x, y} and {y} are minimal separators of G.

x

u

v

y

z

w

G

Figure 2.1: Example of separators in a graph

Characterization 2.1. (Dirac[7]) A graph is chordal iff every minimal sep-
arator is a clique.

Definition 2.6. A vertex x is called simplicial if N(x) induces a clique.

Dirac defined simplicial vertices, and proved that every chordal graph
that is not complete has at least two non adjacent simplicial vertices. In
the special case where the graph is complete, then every vertex is simplicial.
Fulkerson and Gross [8] used this and the fact that chordality is a hereditary
property when they proved that every simplicial vertex may be removed from

2.1. CHARACTERIZATION OF CHORDAL GRAPHS 19

a chordal graph without destroying chordality. Since the remaining graph is
still chordal this may be done recursively. They used this to define a perfect
elimination order(PEO), which is an order in which simplicial vertices can
be removed from a chordal graph. From Dirac we know that every chordal
graph has at least two simplicial vertices. This implies that there exist at
least 2n different PEOs of a chordal graph.

Definition 2.7. The following process defines a perfect elimination order
(PEO). We find the PEO of G = (V,E) by removing simplicial vertices.
This continues until no vertices remain.

Many graphs do not have a PEO, a simple example is the 4-cycle. Because
non of the vertices in the cycle is simplicial. Let us now describe the class
of graphs that has a PEO.

Characterization 2.2. (Fulkerson and Gross [8]) A graph is chordal iff it
has a PEO.

Lekkerkerker and Boland [14] also characterized the chordal graphs, but
they used a different approach. By defining the notion of substars of a vertex
x, which are sets of vertices included in N(x), they characterized chordal
graphs as graphs for which each substar is a clique. It has been proven that
these substars are minimal separators contained in the neighborhood of the
vertex x. Since every minimal separator in a chordal graph is in a vertex
neighborhood, this result is in fact closely related to Dirac’s characterization.
We use the following definition to reformulate a result of Lekkerkerker and
Boland [14]. The abbreviation LB stands for Lekkerkerker and Boland.

Definition 2.8. (Berry and Bordat and Heggernes [4])A vertex x is LB-
simplicial iff every minimal separator contained in N(x) is a clique.

Using this definition Lekkerkerker’s and Boland’s characterization of a
chordal graph can be rewritten in the following way [4]:

Characterization 2.3. (Lekkerkerker and Boland [14]) A graph is chordal
iff every vertex is LB-simplicial.

These characterizations give us different perspectives on chordal graphs,
and are useful when working on these graphs. Both Characterizations 2.2
and 2.3 describe a chordal graph from the properties of a vertex neighbor-
hood. The difference is that Lekkerkerker’s and Boland’s characterization
does not require any specific order or relation between the selected vertices.
The LB-triang algorithm described in the next chapter is based on this last
characterization.

20 CHAPTER 2. CHORDAL GRAPHS AND TRIANGULATIONS

2.2 Clique graphs and clique trees

Definition 2.9. Given a graph G = (V,E), the clique graph G = (K, E) of
G is a graph where K is the set of maximal cliques in G and (U,W) ∈ E
⇐⇒ U ∩ W 6= ∅, for two maximal cliques U and W in G. The weight of
edge (U,W) = w(U,W) = |U ∩ W |.

Clique graphs are not very useful on general graphs, since these can
contain n!/(k!(n − k)!) different cliques of size k. It follows from this that
clique graphs of general graphs can be exponentially large, and it is no
surprise that finding the maximal clique for general graphs is hard. Chordal
graphs on the other hand have limitations that make clique graphs useful.

Lemma 2.1. (Dirac [7]) A chordal graph G contains at most n maximal
cliques.

We will now give an alternative proof to this lemma.

Proof. We know from Characterization [8] that every chordal graph has
a PEO α. Every vertex in u ∈ α is simplicial if every vertex previous to
u in α is removed. The removal of a simplicial vertex will either remove a
maximal clique from G, or reduce a maximal clique with one vertex. The
fact that G is connected implies that the two last vertices in α is connected,
and therefore are contained in the same clique. This limits the number of
maximal cliques in a chordal graph.

This limitation alone is not enough to get a more practical representation
of a chordal graph, since the clique graph may contain O(n2) edges. Gavril
[9] proved that every chordal graph can be represented by a clique tree
limiting the number of edges to O(n).

Theorem 2.1. (Gavril [9]) Let G = (V,E) be an undirected graph, and let
K be the set of maximal cliques of G, with Kv the set of all maximal cliques
of G that contain vertex v. The following statements are equivalent:

1. G is chordal.

2. G is the intersection graph of a family of subtrees of a tree.

3. There exists a tree T = (K, E) whose vertex set is the set of maximal
cliques of G such that T [Kv] induces a connected subtree for each v ∈
V .

Definition 2.10. A tree as described in Theorem 2.1 (3) is a clique tree.

The following results give us some useful properties of clique trees.

Observation 2.2. A clique tree has at most n nodes and n − 1 edges.

2.2. CLIQUE GRAPHS AND CLIQUE TREES 21

This follows directly from Lemma 2.1 and the fact that T is a tree.

Theorem 2.2. (Bernstein and Goodman [2]) Any maximum weight span-
ning tree of the clique graph of a chordal graph G is a clique tree of G.

Theorem 2.3. (Ho and Lee [11]) Given a chordal graph G and a clique tree
T of G, a set of vertices S is a minimal separator of G iff S = Ci ∩ Cj for
an edge (Ci, Cj) in T.

From this we can conclude that for any given clique tree T of G, every
edge of the clique graph not in T is a subset of or equal to an edge in T .

Corollary 2.1. (Ho and Lee [11]) A chordal graph G has at most n − 1
minimal separators.

a

c d

e

g

f

b
G

bcdacd

cdg

ceg

cd

cd

dfg

Clique graph of G Clique tree of G

bcdacd

cdg

ceg

cd

cd

dc

g
dfg

dgcg

c

cd

dg

d

cg

Figure 2.2: The clique graph and a clique tree of the chordal graph G.

In Figure 2.2 we have an example of a chordal graph, with the clique
graph and a clique tree representation. The clique graph is unique for a
given chordal graph, while the number of clique trees can be as large as 2n.
If a separator is a minimal separator for more than two components we get
several different clique trees. If we remove the minimal separator {c, d} from
the graph G in Figure 2.2, then three subgraphs will remain. Since these
subgraphs are connected with the same minimal separator, we get a clique
of size three in the clique graph where all edges are labeled with the minimal
separator {c, d}. Since all these edges have the same weight and are minimal
separators of G, then any subset connecting all cliques can be used in the
clique tree. This gives us an upper limit of 2n different clique trees.

If we choose to represent a chordal graph as a clique tree, then this will
require O(n + m) space. We know that every chordal graph G has a PEO
α, and that removing a simplicial vertex only affects one maximal clique
in G. Then there exists a vertex u ∈ α, for each maximal clique U in G,
such that u is the first vertex in α which is also contained in U . Let us now
assume that we remove the vertices in the order described by α. Then we
will remove |U | edges when the vertex u is removed from the graph, because

22 CHAPTER 2. CHORDAL GRAPHS AND TRIANGULATIONS

u is simplicial and has only edges to vertices in U . This ensures that the
sum of all bags in the clique tree is less than or equal to m. If we add the
edges needed to connect the tree nodes, then we get m + n as a total.

Notice that clique trees meet all the three requirements for tree decom-
positions. This implies that clique trees are proper subsets of tree decompo-
sitions, since tree decompositions not necessarily are clique trees.

2.3 Elimination game

We have studied properties of chordal graphs. We are now going to study the
problem of making any given non chordal graph chordal by adding edges.
The chordal supergraph we obtain from this process is called a triangulation
of the original graph. Since chordal graphs have many desirable properties,
finding triangulations with special requirements is an important problem of
graph theory. First we will look at Algorithm 2.1 The Elimination game.
This algorithm was first proposed by Parter [16] as a graph theoretical ap-
proach to simulate sparse matrix factorization. Later Fulkerson and Gross
[8] showed that the graphs resulting from Elimination game are exactly the
class of chordal graphs.

Algorithm 2.1 The elimination game

Input: G = (V,E) and a ordering α of the vertices in V (G)
Output: G+

α

Gα0 = G
for u = α(1) to α(n) do

Gαi = Gαi−1

Make NGαi
(u) into a clique by adding the necessary edges

NG+
α
(u) = NGαi

(u)
Remove u from Gαi

end for

Lemma 2.2. (Fulkerson and Gross [8]) The class of graphs produced by
Elimination game ≡ the class chordal graphs.

Elimination game produce the triangulated graph G+
α which is also called

the filled graph of G with respect to α. The advantage of Elimination game
is that it has very fast implementations. In 1984 Tarjan and Yannakakis [19]
introduced an O(m′) implementation of Elimination game. This algorithm
does not make N(x) into a clique when the vertex x is processed, since this
alone is an O(m′) operation. The solution is to add only the edges from N(x)
to u where u is the first vertex in α that is also in N(x). Meaning that u is
the first vertex in N(x) to be processed after x. Using this algorithm disables
us from choosing the vertices in an on-line fashion. We will now present a

2.3. ELIMINATION GAME 23

new version that we call ElGame-online and show how to implement it to
run in O(m′) time on-line.

Lemma 2.3. ElGame-online can be executed in an on-line fashion in O(m′)
time.

Proof. We prove this by constructing an algorithm that solves the problem.

Algorithm 2.2 ElGame-online

Input: G = (V,E)
Output: α,G+

α

H = G
∀u ∈ V (H) set u as unmarked
for i = 1 to n do

Choose an arbitrary vertex u for elimination
α(i) = u
for all v such that v ∈ NH(u) and v is marked do

for all w ∈ NH(v) do
Insert the edge (w, u) into H

end for
Remove v and every edge connected to v

end for
N

G+
α
(u) = NH(u)

mark u
end for

Algorithm 2.2 will clearly produce the same graphs as elimination game
since the neighborhood of a vertex u in the filled graph is exactly the vertices
that has a path to u in G there every vertex in this path is already selected.
The proof that ElGame-online runs in O(m′) time is actually quite simple
since every edge is only read twice and deleted. We do have to include the
inserted edges, but since every edge is only inserted once and every inserted
edge is in G+ then the total time becomes O(m′). There is no numbering or
labeling of the vertices which enables us to select the vertices in an on-line
fashion.

Producing a chordal graph G+ with elimination game ensures that we
get a chordal supergraph of G, and that the order α we select the vertices is
a PEO of G+. But we know very little about the quality of the triangulation
with respect to the size of the fill.

Definition 2.11. Let G = (V,E) be a graph and let α be the an ordering of
G. Then fill F (Gα) is defined as the set of edges added by Elimination game
to compute the chordal supergraph G+

α . The size of the fill F is the number
of added edges, |F |.

24 CHAPTER 2. CHORDAL GRAPHS AND TRIANGULATIONS

For many practical problems, finding triangulations with small fill is
important to reduce work load in computations.

Lemma 2.4. (Rose,Tarjan,Lueker[17]) Let Gα = (V,E, α) be an ordered
graph. Then (v, w) is an edge of G+

α = (V,E ∪F (Gα)) iff there exists a path
µ = [v = v1, v2, ···, vk+1 = w] in Gα such that α−1(vi) < min{(α−1(v), α−1(w)},
2 ≤ i ≤ k.

This lemma provides a characterization of the fill produced by any elim-
ination ordering. We can use this to demonstrate how much fill Elimination
game produces on a badly chosen input ordering. If the first selected vertex
x has a neighborhood such that |N(x)| = |V (G)|−1, then the chordal graph
will be complete. The worst example is a tree with only one non leaf tree
node x, and n−1 leafs. Let x be the first selected vertex, then (n2−3n+2)/2
edges will be added while the minimum fill is empty. From this we can con-
clude that no guarantees can be given about the fill created by Elimination
game.

2.4 Maximum Cardinality Search (MCS)

Tarjan and Yannakakis [19] introduced the algorithm Maximum Cardinality
Search(MCS) in 1984. This was an improvement of the Lex-P algorithm
introduced by Rose, Tarjan and Lueker [17] in 1976. Both these algorithms
produce an ordering α of the vertices in V (G), which is a PEO iff the graph
is chordal. If we are using these algorithms to decide if a graph is chordal,
we have to use elimination game and the ordering α to test if any fill is
added. Both the MCS and Lex-P has a time complexity of O(n + m), but
MCS is preferable since it is simpler than Lex-P. In Algorithm 2.3 we give
a description of MCS.

Algorithm 2.3 MCS

Input: A graph G(V,E)
Output: An ordering α of V (G)
∀ v ∈ V (G) set the label Lv = 0
Pick any vertex v ∈ V (G) and assign v the number n
∀ u ∈ N(v): Lu = Lu + 1
for i = n − 1 to 1 do

Let v be an unnumbered vertex with the highest Lv

Assign v the number i
∀u ∈ N(v): Lu = Lu + 1

end for
{The numbering of the vertices gives the ordering α}

Inspired by the algorithm MCS, Blair and Peyton [6] modified the MCS
algorithm to also be able to find the maximal cliques of the chordal graph.

2.5. MINIMAL TRIANGULATIONS 25

The difference is that after numbering the vertex v we set the variable k = 0.
The second change is that we set k′ = the number of Lv. If k′ > k we are
in the same clique, and if k′ ≤ k, when we start a new clique. After each
incrementation of the loop we set k = k ′. Only minor changes are required
to produce the clique tree directly from this algorithm.

This is a concrete example of an NP-hard problem for general graphs,
which is polynomially solvable for chordal graphs. The book Introduction
to the Theory of Computation [18] by Sipser contains an NP-completeness
proof for deciding whether the maximum clique is of size ≥ k in a general
graph.

2.5 Minimal triangulations

It is often desirable to find a triangulation that creates little fill, since this
keeps the problem small, and reduce work in remaining computations. An
example is the Cholesky factorization problem.

In Section 2.3 we computed a chordal graph G+ from G by adding edges
or fill, and we claimed that elimination game not always produces little fill.
Yannakakis [20] showed that computing minimum fill is NP-hard. A closely
related problem, which is the main theme of this thesis, is finding a minimal
triangulation.

Definition 2.12. A triangulation H is minimal if no subgraph of H is a
triangulation of G.

This is the simple, and straight forward definition of minimal triangu-
lation. In the paper [17] Rose, Tarjan and Lueker prove several different
theorems and lemmas regarding minimal triangulation.

Theorem 2.4. (Rose, Tarjan and Lueker [17]) Let G = (V,E) be a graph,
and let H = (V,E ∪ F) be a triangulation with E ∩ F = ∅. F is a minimal
triangulation iff for each f ∈ F , H−f = (V,E∪F −{f}) is not triangulated.

The remarkable thing about Theorem 2.4 is that we can remove one
edge at the time, until minimal triangulation is achieved. This makes it easy
to verify that a triangulation is minimal, and to make any triangulation
minimal, by removing edges.

Lemma 2.5. (Rose, Tarjan and Lueker [17]) Let G = (V,E) be a triangu-
lated and f ∈ E. Then either G− f is triangulated or G− f has a chordless
cycle of length 4.

Lemma 2.5 gives us a tool to check that a graph remains chordal when
an edge is removed from a triangulated graph. In this way we do not have
to recompute a PEO, to check if the graph remains chordal.

26 CHAPTER 2. CHORDAL GRAPHS AND TRIANGULATIONS

Theorem 2.5. (Rose, Tarjan and Lueker [17]) Let G = (V,E) be a graph,
and let H = (V,E ∪ F) be triangulated. Then f ∈ F is a minimal triangu-
lation iff each f ∈ F is a unique chord of a 4-cycle in H.

A unique chord is defined as the last chord in a 4-cycle i.e if we have
the 4-cycle u, v, w, z then u,w is a unique chord iff the chord v, z is not
represented. Theorem 2.5 is used by Rose, Tarjan and Lueker[17] when they
prove the correctness of Lex-M.

2.6 Lex-M

Lex-M was introduced by Rose, Tarjan and Lueker[17] in 1976. This was
one of the first known algorithms that produced a minimal triangulation
G+

α of a graph G in O(nm) time. A nice property of Lex-M is that it returns
an ordering α of the vertices such that G+

α is the same G+
α as produced by

Elimination game with G and α. When G+
α is a minimal triangulation of G,

α is called a minimal elimination ordering (MEO).

Algorithm 2.4 Lex-M

Input: A graph G(V,E)
Output: A minimal triangulation G+

α of G
G+

α = G
∀ u ∈ V (G) set Lu = ∅
for i = n to 1 do

Pick the unnumbered vertex v with the largest label
α(i) = v
for each unnumbered vertex w such that there is a path [v =
v1, v2, ...vk+1 = w] with vj unnumbered and Lvj

<lex Lw, j = 2, 3, ..., k
do

add i to Lw

add fill edge (v, w) to G+
α

end for
end for

In Algorithm 2.4 the labels are compared lexicographically. Thus Lu <lex

Lv ⇔ The list Lu is lexicographically smaller than the list Lv.

Theorem 2.6. (Rose,Tarjan,Lueker[17]) Lex-M produces a minimal trian-
gulation G+

α of a graph G.

We will now discuss some of the properties of the Lex-M algorithm.
The first observation is that the numbered vertices always form a connected
subgraph of G. To explain this we take a closer look at the circumstances
when the first number is added to the label Lu of a vertex u. Let us assume
that the vertex v is given the first number added to Lu, when there exists

2.6. LEX-M 27

a lower labeled path from v to u in the graph. But since Lu = ∅ before the
number of v is added, then it follows that a direct edge from v to u is the
only possible path where every vertex in the path has a lower label than both
u and v. A result of this is that G+

α is a supergraph of G since every edge
in E(G) is considered as a lower numbered path. It follows from this that
the set of unnumbered vertices with a non-empty label is the neighborhood
of the numbered vertices. If we on the contrary assume that the numbered
vertices are not connected, and let u be the first numbered vertex that is
not connected to the previous numbered vertices, then Lu = ∅, which is a
contradiction since the graph is connected.

We can now conclude that there exists a path through numbered vertices
between every pair of vertices which has a non-empty label, and we can also
conclude that Lex-M only introduces a new edge (u, v) if u is the vertex with
the highest label and the label Lv 6= ∅. An edge (u, v) is represented as the
number of u in the label of v if Lu ≥ Lv, and we know that the edge (u, v)
is represented in the input graph if Lv = ∅.

A consequence of this is that every edge (u, v) introduced by Lex-M
is a chord of some cycle in G. We have already argued that there exists
a numbered path from u to v, and that both Lu 6= ∅ and Lv 6= ∅ since
(u, v) 6∈ E(G). We know that Lex-M only introduces an edge or adds the
number of u to the label Lv if there exists an unnumbered path from u to
v where the label of every vertex in the path has a lower label than Lu and
Lv. The result is that Lex-M only introduce an edge (u, v) if there exist two
disjoint paths from u to v.

2.6.1 An example

We show an example of how Lex-M works in Figure 2.3. In this case vertex
c is chosen as the last vertex in α, and apart from this we let Lex-M choose
the remaining order of the vertices. The bold face numbers indicate the
numbering of the vertices i.e. α. But Lex-M also produces the triangulated
graph, this information is stored in the labeling of the vertices when the
algorithm halts. If the edge (u, v) ∈ G+ and α−1(v) > α−1(u) then α−1(v) ∈
Lu, i.e. if v is numbered higher than u, then the number of v is in Lu. With
this information we are able to compute the triangulated graph directly from
the labeling.

2.6.2 Limitations of Lex-M

Lex-M uses a lexicographic ordering scheme which is a special type of
breadth-first search. A result of this is that all vertices at level i from the
last vertex in α are chosen before the first vertex at level i + 1. This limits
the number of different possible triangulations created by Lex-M. We are
allowed to choose the last vertex in the ordering α, and apart from this we

28 CHAPTER 2. CHORDAL GRAPHS AND TRIANGULATIONS

b

c d

e

f g

h i

ab

c d

e

f g

h i

a b

c d

e

f g

h i

a

9

(9)

(9)

(9)

8[9]

9

b

c d

e

f g

h i

a b

c d

e

f g

h i

a b

c d

e

f g

h i

a

8[9]

9

7[9,8]

8[9]

9

7[9,8]

6[9,8,7]

8[9]

9

7[9,8]

6[9,8,7]

5[8,7,6]

b

c d

e

f g

h i

a b

c d

e

f g

h i

a

8[9]

9

7[9,8]

6[9,8,7]

5[8,7,6]

4[8,7,6,5]

8[9]

9

7[9,8]

6[9,8,7]

5[8,7,6]

4[8,7,6,5]

3[7,6,5,4]

b

c d

e

f g

h i

a

8[9]

9

7[9,8]

6[9,8,7]

5[8,7,6]

4[8,7,6,5]

3[7,6,5,4]

2[6,5,4,3]

8[9]

9

7[9,8]

6[9,8,7]

5[8,7,6]

4[8,7,6,5]

3[7,6,5,4]

2[6,5,4,3]

G1

(9,8)

(9,8)

(8)

(8)

(7)

(8,7)

(8,7)

(9,8,7)

(6)

(7,6)

(8,7,6)

(8,7,6) (8,7,6,5)

(7,6,5)

(6,5)

(5) (5)

(7,6,5,4)

(6,5,4)

(5)

(6,5,4,3)

(5,2) 1[5,2]

G G

G4 G5 G6

G7 G8 G9

2 3

Figure 2.3: An execution of Lex-M on the graph G.

only have an option when several vertices have the largest labeling. The re-
sult is that Lex-M is not capable of producing some triangulations, including
the minimum for some graphs.

We illustrate this by an example. In Figure 2.4 we have an example of
such a graph. The original graph is indicated by the solid lines in the figure.
The minimum triangulation of this graph is achieved by adding the edges
(c, d), (c, g), (d, g) in the center. Since the graph is symmetric we only have
to consider two cases, that is when e and c is the last in the ordering α.
The numbering defines the level from the last vertex in α. For graph A,
where e is selected to be last in α we end up with d as the first vertex in

2.6. LEX-M 29

1

2

2

3

3 3

3

a

c d

e

g

h i

f

b a

c d

e

g

h i

f

b

1

2

2

2

2

3

3

4

4

3

4

BA

Figure 2.4: The number of the vertices indicates the level of each vertex
related to the vertex e in graph A and c in graph B. The solid lines are the
edges in the original graph G.

α, since d is the only vertex at level 4. Lex-M makes every vertex at one
level simplicial before any vertex at the next level. This implies that Lex-M
makes the neighborhood of d into a clique, as the dashed lines described at
graph A.

The second case is drawn in graph B. We use c as the last vertex in α.
This leveling forces us to fill in the edge {g, d} which is one of the edges
in the minimum fill-in. Next we either have to pick the vertex d or g since
these are the only ones at level three. Since the graph is symmetric we get
the same number of fill edges, undependently of how we choose the first
vertex. In this case we choose g, and the created fill is the dashed lines in
graph B. We can observe from the dashed lines that this is not a minimum
triangulation. This proves that Lex-M is unable of finding the minimum
triangulations for all graphs with a star structure.

30 CHAPTER 2. CHORDAL GRAPHS AND TRIANGULATIONS

Chapter 3

LB-triangulation

In this chapter, we will study a newer algorithm for minimal triangulations,
LB-triang. The algorithm LB-triang was originally described by Berry [3]
in 1999. This is an algorithm that produces a minimal triangulation GLB

α of
any given graph G = (V,E). GLB

α is defined as the chordal graph obtained
by making the vertices of G LB-simplicial in the order described by α. The
algorithm is based on Lekkerkerker’s and Boland’s Characterization 2.3 of
chordal graphs, and use the definition of LB-simplicial vertices, to ensure the
chordality of the resulting graph. We define a set of vertices as saturated if
the set induces a clique in the graph after adding the necessary fill edges. As
a reminder, a vertex x is LB-simplicial if every minimal separator in N(x) is
saturated. Note that this algorithm can process the vertices in an arbitrary
order. Thus any order can be chosen by the user, and this order can even
be supplied in an on-line fashion, if desired. At the end of an execution,
α = x1, x2, ..., xn is the order in which the vertices have been processed.

Definition 3.1. Given a graph G = (V,E) and an ordering α of V (G),
then Gu is the graph obtained after every vertex previous to u ∈ α is made
LB-simplicial.

3.1 Basic triangulation

The basic steps of the algorithm are quite simple. Pick the next vertex u
from α, and make u LB-simplicial. This operation will introduce new edges
between vertices in N(x). This set of edges is called LB-deficiency.

Definition 3.2. (Berry et. al. [5]) The deficiency of a vertex x in a graph G,
DefG(x), is the set of edges that has to be added to G to make x simplicial.
The LB-deficiency of a vertex x in G, LBDefG(x), is the set of edges that
has to be added to G to make x LB-simplicial.

The new edges will give some of the remaining vertices a larger neigh-
borhood, which forces us to consider these when we find the neighborhood

31

32 CHAPTER 3. LB-TRIANGULATION

Algorithm 3.1 Basic LB-triangulating of a graph G

Input: A graph G = (V,E)
Output: A minimal chordal graph GLB

α

G0 = G
for i = 1 to n do

Choose an arbitrary vertex u that is not processed
Gi+1 = Gi ∪ LBDefGi

(u)
end forGLB

α = Gn

of the remaining vertices.

3.1.1 The correctness of LB-triang

We are not going to repeat the entire proof from [3] and [5], but we will
talk about the idea behind the proof, and mention some of the results. The
correctness of LB-triang is based on two steps. The first is to show that every
vertex is LB-simplicial when the algorithm stops, which leads to chordality,
according to Lekkerkerker and Boland Characterization 2.3.

Invariant 3.1. (Berry et. al. [5]) If a vertex u is LB-simplicial in Gu, then
u is LB-simplicial for all graphs Gv, where v > u.

Lemma 3.1 follows directly from Invariant 3.1, since Gn = GLB
α .

Lemma 3.1. (Berry et. al. [5])The graph GLB
α resulting from Algorithm

LB-triang is a triangulation of G.

An interesting intermediate result from the proof of Lemma 3.1 is that
no edge is added incident to a vertex after it has been made LB-simplicial.

Lemma 3.2. (Berry et. al. [5]) During Algorithm LB-triang, if a vertex u
is LB-simplicial in Gu, then no edge is added incident to u at step v ≥ u.

Definition 3.3. (Kloks, Kratsch, and Spinrad [12]) A pair of separators S
and S′ are defined as crossing if a pair of vertices u, v ∈ S are separated by
S′.

Secondly we have to ensure that the triangulation actually becomes mini-
mal. This is done by proving that only non-crossing separators are saturated,
which corresponds to Kloks’s, Kratsch’s and Spinrad’s [13] description of
minimal triangulation. Two lemmas are used to ensure this. The first states
that the separators in the neighborhood of a vertex do not cross, and the
second states that a new minimal separator does not cross any previous
saturated separator.

Lemma 3.3. (Berry et. al. [5]) When vertex u is processed, the set of min-
imal separators included in NGu(u) are pairwise non-crossing.

3.1. BASIC TRIANGULATION 33

Lemma 3.4. (Berry et. al. [5]) When a minimal separator S is chosen at
step i, S is non-crossing with all the minimal separators chosen at some
previous step.

Theorem 3.1 follows directly from these lemmas and the invariant.

Theorem 3.1. (Berry et. al. [5]) Algorithm LB-triang computes a minimal
triangulation of the input graph.

Property 3.1. (Berry, Bordat and Heggernes [4]) For a vertex x in a graph
G, the set of minimal separators of G included in N(x) is exactly {N(C) |
C ∈ C(N [x])}.

Definition 3.4. (Ohtsuki, Cheung and Fujisawa [15]) An ordering α is
defined as minimal elimination ordering (MEO) if G+

α is a minimal trian-
gulation of G.

There exist several interesting properties regarding LB-triang, but one
theorem will be mentioned especially since we will use it later in this thesis.

Theorem 3.2. (Berry et. al. [5]) Given a graph G = (V,E), and an ordering
α of the vertices in V (G), then GLB

α = G+
α iff α is a MEO.

In other words Elimination game and LB-triang will create the same
triangulation if they where given a graph G and a MEO of the vertices in
the graph.

3.1.2 An example of LB-triang

In Figure 3.1 we have an example of a graph GA which is triangulated using
LB-triang. Let the numbering of the vertices describe the ordering α. The
graphs GB , GC and GD correspond to G after the vertices 1, 2, 3 have been
processed. Since no edge is introduced after adding the LBDefG(3), then
this makes GLB

α = GD.

Table 3.1 describes each stage of the LB-triang algorithm. Each row in
the table has four values, the number of the processed vertex Vnr, the neigh-
borhood of the vertex N(Vnr), minimal separators in the neighborhood
Min sep and finally the new edges new edges to saturate the separators.

Observe that a single minimal separator can be found several times dur-
ing the execution of LB-triang. We can also find separators that are subset
of, superset of or intersects with previously found separators. The separa-
tors {3, 5}, {4, 5, 9}, {5, 7} and {5, 9} in Figure 3.1 are examples of this. Only
crossing is not allowed since this breaks the minimal triangulation. Vertex
5 is a special case since N [5] = V (G). A direct consequence of this is that
N(5) contains no minimal separators, because there are no vertices left for
the components.

34 CHAPTER 3. LB-TRIANGULATION

2

5

37

8

4 1

6

9

2

5

37

8

4 1

6

9

2

5

37

8

4 1

6

9

2

5

37

8

4 1

6

9

A B

C D

Figure 3.1: Example of triangulating a graph using LB-triang.

Vnr N(Vnr) Min sep New edges

1 {4,5,9} {4,9},{4,5,9} (4,9),(5,9)
2 {3,5} {3,5} (3,5)
3 {2,4,5,7,9} {4,9},{5,7},{5,9} (5,9),(5,7)
4 {1,3,5,9} {3,5},{5,9}
5 {1,2,3,4,6,7,8,9}
6 {5,9} {5,9}
7 {3,5,8} {3,5}
8 {5,7} {5,7}
9 {1,3,4,5,6} {3,5}

Table 3.1: Specify the triangulation of the graph in Figure 3.1.

3.1.3 Straight forward implementation of LB-triang

By updating the graph with adding the new edges, we can do a straight
forward implementation of LB-triang. Since there exists no simple way to
compute overlap between different separators, we end up with saturating all
discovered separators even if they have been saturated previously. Checking
whether an edge exists before writing it will not improve the time complexity
since both operations are O(1).

We can now assume that every previously found separator is saturated,
and therefore finding NGLB

α
(u) is easy since we have Gu, and NGu(u) =

NGLB
α

(u).

The final operation is to find the minimal separators in N(x). Let x be

3.2. IMPROVING THE IMPLEMENTATION 35

the next vertex to be made LB-simplicial. The simplest way to visualize
how we find the minimal separators in N(x), is to assume that N [x] is
removed from the graph. This will leave one or more subgraphs as long as
|N [x]| < |V (G)|.

Algorithm 3.2 Straight forward LB-triang

Input: A graph G = (V,E)
Output: A minimal chordal graph GLB

α

G0 = G
for all u ∈ V (G) do

Gu = Gu−1

for all Components C ∈ Gu − NGu [u] do
Update Gu with the edges needed to saturate NGu(C)

end for
end for
GLB

α = Gn

3.1.4 Time and space analysis

Let us first do the time analysis of this straight forward version of LB-
triang. The first observation is that we run through all the vertices, and
find minimal separators in their neighborhoods and saturate them. Finding
them is an O(m′) operation since we risk to read the entire graph, where m′

is the number of edges in the triangulated graph GLB
α . We have to use m′

because we update the graph with new edges during the algorithm. Since the
number of minimal separators in the neighborhood of one vertex is limited
to n and each of them can introduce m′ edges, then the time used to saturate
is O(nm′) for each vertex. This gives us a total of n(m′ + nm′) = O(n2m′)
for the straight forward implementation of LB-triang.

The algorithm is based on saturating the separators, which is the most
time consuming part. If we are going to keep this time complexity, then
updating an edge has to be an O(1) operation. This forces us to use an
adjacency matrix to store the graph, since an adjacency list representation
of the graph does not support constant update of an edge. An adjacency
matrix requires O(n2) space, which gives us the space complexity of the
straight forward LB-triang.

3.2 Improving the implementation

LB-list is an improvement of LB-triang which is described by Berry et. al.
[5]. The idea is to reduce the number of saturations. This can clearly be done
since a single separator is often saturated several times. We can see that this
actually happens several times in the example in Figure 3.1 and Table 3.1.

36 CHAPTER 3. LB-TRIANGULATION

The fact that every chordal graph contains less than n minimal separators,
and that saturating a maximal set of non crossing minimal separators leaves
a triangulated graph, ensures us that the number of different minimal sepa-
rators are less than n. If we now only saturate each separator once, then this
will only require O(nm′) time. This leaves us with the challenge of finding
an efficient way to decide if the separator is already saturated.

3.2.1 Decide if the separator is new

It is clearly preferable to accomplish this in O(nm′) time since this is the time
used by the saturation. In order to decide if a separator has been saturated
before, we store the separators in a main separator list MS . Further let the
separators in MS be stored in a lexicographic order. We now want to limit
the size of MS to m′.

Lemma 3.5. The total sum of the sizes of all minimal separators in a
chordal graph with m edges is less than or equal to m.

Proof. Every chordal graph G = (V,E) has a PEO α. Let u be the first
vertex in α and therefore simplicial. It follows that NG(u) contains a minimal
u, v-separator for any vertex v 6∈ NG[u]. Let S be the u, v-separator in NG(u),
where S ⊂ NG(u) and |S| ≤ |NG(u)|. If we now remove u from G, then the
number of removed edges is greater or equal to the size of the removed
minimal separator. We can now do this for all vertices in V (G) in the order
described by α, and the number of removed edges will always be at least the
sum of the sizes of the removed minimal separators.

Since the number of minimal separators in the neighborhood of a vertex
is limited by n, then this limits the number of discovered minimal separators
to n2. The sum of the sizes of all minimal separators in the neighborhood
of a vertex is clearly limited to m′, since each vertex in a minimal separator
has an edge to a vertex in the component it is separating. Let x be the next
vertex to be made LB-simplicial, and let the minimal separators in N(x) be
inserted into the separator list SLx. We can now sort the separators, and
the vertices in each separator in SLx by using counting-sort in O(m′) time.
Finally we traverse the lists MS and SLx, and update MS with the new
separators in SLx.

3.2.2 Using an adjacency matrix

In the matrix solution we saturate a new separator when we insert it into the
MS list. This makes the operation of finding NGx(x) easy since we read it
directly from the graph Gx. The catch is that we store the minimal separators
both in the list MS and the graph.

3.2. IMPROVING THE IMPLEMENTATION 37

Time and space analysis for adjacency matrix implementation

Finding the components and the minimal separators is an O(m′) operation
since we update the graph with new edges. Next we sort the vertices in
the separators which is an O(m′) operation. Saturating a separator is an
O(m′) operation since the clique may contain more edges than m. Sorting
the vertices and the separators in each SLx list is an O(m′) operation size
we use counting-sort, and that the list may contain m′ vertices. All of these
operations are executed n times, and we will therefore get a total time
complexity of O(nm′).

The matrix and main separator list are the only space users in this
algorithm. From Lemma 3.5 we know that the size of the main list is limited
to m′. When we add the O(n2) space of the matrix representation of the
graph, we get a total size of O(n2 + m′) = O(n2).

3.2.3 Using an adjacency list (LB-list)

The list solution does not saturate the separators when they are inserted
into the list MS . This results in faster update after new separators have
been found. But we have to pay it back when we are going to find the
neighborhood of the next vertex x. We compute this by finding NGx(x+1) =
NG(x) ∪ U(x).

Definition 3.5. Let us assume that we are at stage x and we want to com-
pute Gx+1. Then U(x) is defined as the union of all minimal separators
containing x that are found in any previous stage.

We have to read the separator S one time for each of the |S| vertices in
the separator in order to find the neighborhood of each of the vertices. The
work of reading a separator |S| times is exactly the same work as updating
the |S|(|S| − 1)/2 edges. We can conclude that the work of the list, and
matrix solutions are equivalent.

Time and space analysis of adjacency list implementation

The only difference in the time analysis from the matrix solution, is that
we skip the saturation of separators and do this work later, when we com-
pute U(x). We can now conclude that the list solution has the same time
complexity as the matrix solution i.e. O(nm′).

When we compare the space usage between the list and matrix solution,
then the only significant difference is that list solution does not update the
graph. Because of this we can store the graph as an adjacency list. This
results in a total space usage of O(m′), since the graph uses O(m) space,
and the main list MS uses O(m′).

38 CHAPTER 3. LB-TRIANGULATION

As a remark we can observe that list uses less space than matrix, while
matrix has a lower constant since saturation is a simpler operation than
finding U(x).

3.2.4 Final remarks

We can do several improvements to the algorithm LB-list, but non of them
are able to improve the saturation of separators, or the computing of U(x).
The result of this is that the best known implementation of LB-list is
O(nm′).

We are now going to prove that the component search, sorting of the
separators and updating of MS can be done in O(m) time. Berry claims in
[3] that the component search can be done in the original graph, but no
proof is given. We will now present a proof that states that this actually is
the case.

Observation 3.1. Let H be a supergraph of G. Then every separator S in
H is also a separator in G.

Proof. This follows directly from the fact that G[V (G) − S] ⊆ H[V (H) −
S].

Lemma 3.6. Let H be a supergraph of G, where a set of minimal separators
in G are saturated in H. Then every edge in E(H) − E(G) is a chord of
some cycle in G.

Proof. We know that a minimal separator separates two components, where
every vertex in the separator has a neighbor in both of the components. It
follows directly from this that for every pair of vertices u, v in the separator
there exists a path from u to v in both components. Because there is a path
in both components for every pair of vertices in the separator, then clearly
every added edge is a chord of some cycle. Since the order of saturation does
not affect the set of added edges, then the same argument holds for a set of
minimal separators.

Lemma 3.7. Let H be a graph with a minimal separator S ′ that is a clique.
Then no minimal separator S in H crosses S ′.

Proof. We prove this by contradiction. Let us assume that S is a minimal
separator for the components C1 and C2, and that S ′ is a minimal sepa-
rator for the components C ′

1 and C ′

2. Let us further assume that S and S ′

are crossing, i.e. there exists a pair of vertices u, v ∈ S ′ such that u, v are
separated by S. But since S ′ is a clique, then the edge (u, v) ∈ E(H). This
is a contradiction since neighbors can not be separated.

3.2. IMPROVING THE IMPLEMENTATION 39

Lemma 3.8. Let G be a non-chordal graph, and let a minimal separator S ′

of G be saturated to result in a new graph H. Then all minimal separators
of H are minimal separators of G.

Proof. We prove this by contradiction. Let us assume that S, S ′ ∈ V (G) and
that S is not a minimal separator of G. Let us further assume that S 6= S ′,
and that S becomes a minimal separator of H, after the saturation of S ′.
We know from Lemma 3.7 that S does not cross S ′, since S′ is saturated
and S is a minimal separator of H. Let us assume that S is a minimal
separator for the components C1 and C2, and that S ′ is a minimal separator
for the components C ′

1 and C ′

2. We can further assume that S ′ and C ′

1 are
contained in C1 ∪S, since S and S ′ do not cross. Every vertex x ∈ S has an
edge to a vertex in C1 and C2 after the saturation of S ′ since S is minimal
separator in H. Since S is not minimal before the saturation of S ′, then
there exists a vertex u ∈ S that does not have an edge to any vertex in C1

before the saturation. Further let the edge (u, v) be introduced during the
saturation, where v ∈ C1. It follows from this that u, v ∈ S ′. Then there
exist two disjoint paths from u to v in C ′

1 and C ′

2, since S′ is a minimal
C ′

1, C
′

2-separator. Since C ′

1 contains a path from u to v, and C ′

1 is totally
contained within C1, we now have a contradiction to the fact that u does
not have any neighbors in C1.

Corollary 3.1. Let H be a supergraph of G, where a set of non-crossing
minimal separators in G are saturated in H. Then every minimal separator
in H is also a minimal separator in G.

Proof. This follows directly from Lemma 3.8.

Lemma 3.9. Let H be a supergraph of G, where a set of non-crossing
minimal separators in G are saturated in H. Then NH(C) = NG(C) = S
for every minimal separator S in H.

Proof. Let us assume on the contrary that S does not create the same
components in G and H. There must exist two components C1 and C2 such
that S separates C1 and C2 in G, and not in H. It follows from this that
there exists a saturated separator S ′ in H, that contains vertices from both
C1 and C2. This is a contradiction since S and S ′ will be crossing.

Lemma 3.10. Let H be a supergraph of G, where a set of non-crossing
minimal separators in G is saturated in H, and let S be a minimal C1, C2-
separator in H. Then NG(C1) = NH(C1) and NG(C2) = NH(C2).

Proof. This follows directly from the fact that S is a minimal C1, C2-
separator in both G and H, and that every vertex in a minimal separator
has edges to both the components separated by the separator.

40 CHAPTER 3. LB-TRIANGULATION

It follows directly from Lemma 3.1 that we get the same result if we do
the component search in G or H, and that the size of LSx for any vertex
x ∈ V (G) is limited to m. If each separator in the main list has a pointer
to the first different vertex in the next separator, then we do not have to
read the end of the current separator, and the beginning of the next. This
enables us to update MS with LSx in O(m) time.

u

5

6

(2n/3)−1
2n/3

Vertices
(n/3)−1

4

3

2 1

Each of the thick lines
contains (n/3)−1 edges.

Figure 3.2: A graph that computes n
3 separators of size n

3 .

We will now give an example of how difficult it is to create a system
of the overlap between the separators. In Figure 3.2 we have a graph that
will create n

3 different separators of size n
3 . While the number of edges is

2n
3 + (2n

3 + 1) ∗ (n
3 − 1) = n

9 (2n + 3) − 1. If we now randomly remove edges
from the thick lines which originally contain (n

3 − 1) edges. It gets quite
complex to find an efficient algorithm to compute U(x) in O(m) time, since
the size of m may have dropped below O(n2). We are doing this example to
illustrate how bad the input graph can make the algorithm behave. However,
it should be noted that this is a special graph, and that on most graphs the
overlap will not be this heavy.

Chapter 4

Algorithm LB-treedec

In this chapter we present Algorithm LB-treedec which is the main contri-
bution of this thesis, and prove that LB-treedec is an O(nm) time imple-
mentation of the algorithm LB-triang.

The algorithm LB-treedec requires a graph G = (V,E) and an ordering α
of the vertices in G(V) as input parameters. We denote the resulting graph
as GLB

α . Before we start the explanation we give the following definition to
help in the coming discussions.

Definition 4.1. We define stage x, as the point where every vertex previous
to x in α is made LB-simplicial, and the current stage is to make x LB-
simplicial.

Since we want to achieve O(nm) time complexity, we can only afford
to do O(m) work at each stage. In the previous chapter we described the
algorithm LB-list which achieved a time complexity of O(nm′). The op-
eration that causes LB-list to use O(nm′) is the computation of NGx(x) =
NG(x)∪U(x) where U(x) is defined in Definition 3.5. In order to achieve our
requested time limit we have to avoid reading every separator that contains
a vertex x in order to compute U(x).

4.1 A tree decomposition approach

Our goal in general LB-triang is to identify the minimal separators of the
resulting minimal triangulation. Before we have any information of the sep-
arators, we may treat the triangulated graph GLB

α as complete. As we en-
counter the minimal separators, we get more and more information on the
non-existing edges in GLB

α . This way of viewing the problem enables us to
attack the problem with a different approach. But we have to find an ap-
propriate way to store which vertices that do not have edges between them.
Clearly we can use a compliment graph to store these edges, but this will
bring us too close to the previous approach. Instead, we group the vertices in

41

42 CHAPTER 4. ALGORITHM LB-TREEDEC

bags such that graph edges only exist between vertices that appear together
in the same bag.

This is actually quite close to the definition of tree decompositions, and
we can introduce the remaining restrictions of tree decompositions without
any conflict with our previous requirements. An intuitive explanation of how
this is done in LB-treedec is as follows: In the beginning of the algorithm,
all vertices of G are placed in one bag, and the tree T that represents the
triangulated graph consists of one tree node which is equivalent to this bag.
As we encounter new minimal separators at each step of the algorithm, we
insert these as edges in T , splitting the appropriate tree-node into two new
tree-nodes.

At each step of the algorithm the tree T is actually also a tree decompo-
sition of G, which will be proved later in this chapter. After every minimal
separator found in G is inserted into T , then T is a clique tree representing
the minimal triangulated graph GLB

α .
The purpose of the tree T is to allow us to compute U(x) efficiently. But

since the operation of computing U(x) from T is quite complex, we will first
explain how to update the tree every time we find new minimal separators,
and then how to find U(x).

When processing vertex x every minimal separator Sxi ⊆ NGx(x) sep-
arates a component Cxi from x and every other component found at this
stage. We use the separator Sxi and the component Cxi to form a pair
Ψxi = (Sxi, Cxi), and by using the pair Ψxi we are able to define the inverse
component C−1

xi = G − (Sxi ∪ Cxi). Sxi thus separates C−1
xi and Cxi, where

C−1
xi may be disconnected.

To be able to use the tree T we need to update T every time a new pair
Ψxi is found. From the definition of the separator and the component, we
have some invariants regarding a pair Ψxi found at stage x.

Invariant 4.1. The following is always true.

In a pair Ψxi = (Sxi, Cxi), Sxi is a minimal x, u-separator where u is
any vertex in Cxi.

•• Sxi separates every vertex in Cxi from every vertex in C−1
xi .

First some general information about how the tree is updated. Every step
will be carefully explained later. In the base case there is only one tree-node
X containing every vertex in V (G). Let Cxi be a component found when
making vertex x LB-simplicial. We use Cxi to form the pair Ψxi = (Sxi, Cxi).
If this pair is not already inserted into T there exists a tree-node X ∈ T
that contains at least one vertex from Cxi and one vertex from C−1

xi . To
update T we split the tree-node X into X1 and X2 in such a way that the
vertices in Cxi and C−1

xi are separated. We connect X1 and X2 with a tree-
edge containing the separator Sxi. Further, we replace X with X1 and X2

and reconnect every incident tree-edge to X to either X1 or X2.

4.2. A SIMPLE DESCRIPTION OF THE ALGORITHM 43

In Figure 4.1 we have an example of a graph G where the pair Ψxi is
inserted into T . At stage 1 the tree is in the base case where every vertex
in G is in the same tree-node. In stage 2 vertex 1 is made LB-simplicial and
the component {4} is discovered. This component creates the pair Ψ11 =
({2, 3}, {4}) where {2, 3} is the minimal separator. If there exists a tree-node
X ∈ T containing vertex 1 and at least one vertex from the component, then
X has to be split. In this example there exists a tree-node containing 1 and
4. In stage 2 we can see the tree T after the insertion of the pair Ψ11.

1 2 3 4

Tree T

1

4

2

3

1

4

2

3

1

4

2

3

Stage 1 Stage 2

Graph G Graph G

Tree T

1 2 3 2 3 4
2 3

Figure 4.1: Example of inserting a pair Ψ11 into T

4.2 A simple description of the algorithm

In Algorithm 3.1 the basic steps of LB-treedec is presented. Observe that each
of the steps in the outer for loop has to execute in O(m) time to achieve
a total time complexity of O(nm). Some of these steps need an amortized
time analysis to prove the O(m) time complexity.

Because finding U(x) is the most complex part and that it is depending
on all the other steps, this will be explained last. For now let us assume that
we are able to find U(x) from the tree T in O(m) time.

4.3 Finding pairs in G

At this point we are at stage x, and have already found the new neighborhood
NGx(x) of vertex x. Our goal is to return a pair Ψxi for each connected
subgraph left after removing NGx [x] from G. Each component Cxi is used
to form a pair Ψxi = (N(Cxi), Cxi) = (Sxi, Cxi).

44 CHAPTER 4. ALGORITHM LB-TREEDEC

Algorithm 4.1 LB-treedec

Input: G = (V,E) and an ordering α of V (G).
Output: GLB

α

for x = α(1) to α(n) do
Compute U(x) from the tree T
NGLB

α
(x) = NG(x) ∪ U(x)

for each connected component Cxi of G − NGLB
α

(x) do
Sxi = NG(Cxi)
C−1

xi = V (G) − (Cxi ∪ Sxi)
Ψxi = (Sxi, Cxi)
Ψ−1

xi = (Sxi, C
−1
xi)

if (Ψxi or Ψ−1
xi) is not already inserted into T then

Insert Ψxi into T
end if

end for
end for
Return GLB

α

4.4 Decide which pairs to insert into T

We have now found the pairs Ψx1..Ψxk, and want to update the tree T
with these new pairs. Some of these pairs may have been found at some
stage previous to x, which forces us to detect whether or not each of the k
different pairs have been inserted before. First we will look at which pairs
that need to be inserted.

Lemma 4.1. Let the pair Ψxi = (Sxi, Cxi) be found at stage x, and let no
tree-node X in T contain both x and a vertex u ∈ Cxi. Let STxi

, 1 ≤ i ≤ k be
the separators representing the tree-edges between a tree-node that contains
x and a tree-node that does not contain x. Then there do not exist a pair of
separators STxi

, STxj
, 1 ≤ i, j ≤ k and i 6= j, where STxi

separates v from x
and STxj

separates w from x and v, w ∈ Cxi.

Proof. The contradiction follows directly since there exists a path from v
to w in Cxi and every path from v to w has to pass through a tree-node that
does not contain any vertex from Cxi.

Lemma 4.2. Let the pair Ψxi = (Sxi, Cxi) be found at stage x. Then the
pair Ψxi or (Sxi, C

−1
xi) is not already inserted into T iff there exists a tree-

node X ∈ T that contains both the vertices u and x, where u is any vertex
in Cxi.

Proof. ⇒ Let Ψxi = (Sxi, Cxi) ∈ T and let there exists a tree-node X ∈ T
as described. Since Sxi is separating x from every vertex in Cxi, then this is
a contradiction.

4.4. DECIDE WHICH PAIRS TO INSERT INTO T 45

⇐ Let Ψxi = (Sxi, Cxi) 6∈ T and let there not exist a tree-node X ∈ T as
described. Let Y be a tree-node in T that contains x, and let the tree-node
U contain the vertex u ∈ Cxi. There exists a path from Y to U in T . Let the
separator S represent the first tree-edge in this path that does not contain
x. It follows from Lemma 4.1 that there exists a component C such that
N(C) = S and Cxi ⊂ C. Let us now assume that a vertex y 6∈ Cxi is in C.
This is a contradiction since y ∈ Sxi∪C−1

xi and clearly y 6∈ Sxi since the edge
(x, y) will cross S, and y 6∈ C−1

xi since every path from y to u passes through
Sxi and there exists a path from y to u in C, and therefore an edge in S.
It follows from this that C = Cxi and clearly S = Sxi since N(Cxi) = Sxi.
Now we have a contradiction since Ψxi = (Sxi, Cxi) 6∈ T .

Lemma 4.3. If a pair Ψxi = (Sxi, Cxi) 6∈ T then there exists exactly one
tree-node X ∈ T that contains x and u, where u is any vertex in Cxi.

Proof. Let us on the contrary assume that u, v ∈ Cxi, and that there exist
two tree-nodes U,W ∈ T such that u, x ∈ U and v, x ∈ W . We know that no
pair inserted into T contains a separator S such that x, u ∈ S or x, v ∈ S,
since x is separated from u and v. There exists a path from U to W in T
since T is connected, and let S ′ be a separator representing an edge in this
path. It follows that S ′ contains x since both U and W contain x. Observe
that S′ separates u and v since S ′ is in the path from U to V and S ′ can
not contain u or v. We have now a contradiction since there exists a path
from u to v in Cxi that does not contain any vertex from NGx(x) and S′ is
a minimal u, v-separator where S ′ ∈ NGx(x) since S ′ is saturated in Gx and
x ∈ S′.

Now we know that there is at most one tree-node in T that contains
both x and a vertex u of Cxi. Thus the search to find this tree-node can be
explained as follows. We start with any vertex u that belongs to Cxi. We
find a tree-node U in T that contains u. From U we do a depth first search
until we find a tree-node Y that contains x. Now the search can stop. If Y
contains a vertex of Cxi then we have found our desired tree-node to split. If
Y does not contain a vertex y of Cxi then no other tree-node in T contains
both x and a vertex y of Cxi, because T is a tree decomposition (this will
be proved later), and the search can stop. The following lemma shows how
we can efficiently decide whether or not Y contains a vertex y of Cxi.

Lemma 4.4. Let Sj be the separator representing the edge used to reach Y ,
and let Sxi be the separator in the pair Ψxi = (Sxi, Cxi), which we want to
insert into T . Sj 6= Sxi iff Y contains any vertex u belonging to Cxi.

Proof. ⇒ Let Sj 6= Sxi and let Y contain no vertex from the component
Cxi. This is a contradiction since Sj = Sxi (Lemma 4.2).

46 CHAPTER 4. ALGORITHM LB-TREEDEC

⇐ Let Sj = Sxi and let the tree-node Y contain at least one vertex u
from the component Cxi. This is a contradiction since Sxi is separating x
and u, and Sj = Sxi.

From Lemma 4.4 it is easy to see that we have to split Y in order to
insert Ψxi into T . The efficiency of these operations will be discussed in the
following chapter.

4.5 Inserting a pair Ψxi into T

We are still at stage x, and have found the pairs Ψx1..Ψxl, which are not
inserted, and the corresponding tree-nodes Y1..Yl that contain vertices which
are separated by the separator in the pair. Let us focus on how to update T
with a single pair Ψ = (S,C), and let Y be the found tree-node containing
vertices separated by S. In order to update T we have to split the tree-
node Y . This split is done by replacing Y with X1 and X2. The vertices in
X1 = S ∪ (Y ∩C−1) and X2 = S ∪ (Y ∩C). The separator S is representing
the tree-edge between X1 and X2, and is used when we create the tree-
edge (X1, X2). In order to complete the update we have to reconnect every
tree-edge connected to Y to either X1 or X2.

Invariant 4.2. At all stages of the algorithm, for any pair of adjacent tree-
nodes X and Y , the separator SXY representing the tree-edge (X,Y) is a
subset of both tree-nodes X and Y , and S = X ∩ Y .

The invariant is definitely true when there are no edges in the tree and
the tree consists only of one tree-node. When the very first tree-node is split
the invariant is true by the definition of X1 and X2. The following discussion
explains that the invariant will remain true after each split operation.

In Lemma 4.5 we prove that the vertices in SXY representing the edge
(X,Y) are not partitioned when the tree-node Y is split. So it is always
possible to reconnect (X,Y) to either X1 or X2.

Lemma 4.5. Let SXY be the separator in the tree-edge (X,Y) ∈ E(T), and
let the separator S ∈ Ψ split Y into X1 and X2. Then one of these three
situations will occur:

1. SXY ⊆ X1, SXY 6⊆ X2

2. SXY ⊆ X2, SXY 6⊆ X1

3. SXY ⊆ X1, SXY ⊆ X2

Proof. Assume that none of the three cases occurs, so that SXY 6⊆ X1 and
SXY 6⊆ X2. We know that SXY ⊂ Y = X1∪X2 and that S = X1∩X2. From
this we may conclude that (X1−S)∩SXY 6= ∅ and that (X2−S)∩SXY 6= ∅.
Then SXY and S will be crossing, because S is separating vertices in SXY ,
which gives a contradiction.

4.6. DATA STRUCTURE 47

Because of Lemma 4.5 we are able to do a straight forward reconnection
of the tree-edges connected to Y . If the separators in the tree-edge is a
subset of X1 we reconnect to X1, and if not we reconnect to X2. In the third
case where SXY ⊆ X1 and SXY ⊆ X2, then SXY ⊆ S, since S = X1 ∩ X2.
When this situation occurs the tree-edge may be reconnected to either X1

or X2. Since we are building a tree, it does not matter which tree-node we
connect the tree-edge to. In this way we maintain the Invariant 4.2 that
the separator in the tree-edge is a subset of both the tree-nodes that the
tree-edge is connected to.

Definition 4.2. Let us define UA as the union of all separators from the
pairs inserted into T .

In section 4.7 of this chapter we want to find U(x), and to be able to
do this we need the union of the separators from all the pairs inserted into
T . This union is updated every time a new pair is inserted into T . We will
implement UA as a characteristic vector of length n where UA[v] = 1 if v is
in this union and 0 otherwise.

4.6 Data structure

The only remaining operation is to compute U(x), which is the first opera-
tion in each stage. Since this operation is closely connected to the underlying
data structure, we will do a more accurate description of the tree T . The
complete tree data structure is built out of four different objects: tree, tree-
node, tree-edge and tree-node element. It is important to observe that every
vector not specified to the size of n, is dynamic and is only storing necessary
data.

Tree object

The first object is the tree T which is displayed in Figure 4.2. As we can
see from Figure 4.2 the tree T contains two vectors of size n. The tree-node
pointer vector is a vector of size n, where element u contains a pointer to
a tree-node U ∈ T containing the vertex u. With this vector we get direct
access to a tree-node U ∈ Tu for all u ∈ V (G). This will be useful to decide
a starting point for depth first search from a tree-node containing a vertex
u.

We defined UA as the union of all separators in the pairs Ψ inserted into
T . UA is a characteristic vector, where every element in UA is initially set
to zero. Element u of UA is set to one if u ∈ S, and some pair Ψ = (S,C) is
inserted into T .

48 CHAPTER 4. ALGORITHM LB-TREEDEC

Tree−node pointer vector[n]

The tree T

vector[n]U A

Figure 4.2: Tree data object.

The tree-node and tree-node elements

Every tree-node object consists of an element vector and a tree-edge pointer
vector. Every vertex stored in the tree-node is represented with an element
object, in the element vector. Figure 4.3 shows the relationship between a
tree-node and its elements. Each tree-node element consists of four values.
Table 4.1 explains the different elements in the tree-node element object.

Variable name Description

Vn The vertex number which the element represents.
Nn The number of neighboring tree-nodes containing

the vertex stored in Vn.
Sc The last stage this element was requested.
Co Counter variable.

Table 4.1: Description of element values.

The tree-node also contains a vector of pointers to tree-edges, where
every tree-edge points to a neighbor of the tree-node. In Figure 4.5 we see
an example of a tree with two tree-nodes and a connecting edge between
them.

Tree-edge object

The only object left to explain is the tree-edge object. Tree-edges are always
created in pairs. We think of tree-edges as bidirectional and we represent
both directions. Every tree-edge has a pointer to the edge in the opposite
direction. The tree-edge object also stores a pointer to the tree-node it is
directed to, and a vector of pointers to elements in this tree-node. The
pointers in the vector are pointing to elements that represent the separator
in this edge. Figure 4.4 shows the relationship between a tree-edge and a
tree-node.

4.7. FINDING NGX
(X) 49

Edge pointer vector

Vn

Nn

Sc

Co

Vn

Nn

Sc

Co

Vn

Nn

Sc

Co

Element vector

Tree−node

3

1

0

0

2

1

0

0

1

0

0

0

Tree−node element

Tree−node element

Tree−node element

Figure 4.3: Diagram of a tree-node with the relation to three stored elements.

Edge pointer vector

Element vector

Tree−node

Pointer to tree−node

Pointer to opposite edge

Tree−edge

Tree−node element pointer vector

Figure 4.4: The interaction between a tree-edge and the neighbor tree-node.

4.7 Finding NGx
(x)

Finding U(x) is actually the only reason for building the tree T . We use U(x)
to find NGx(x) which is the union of NG(x) and U(x). A straight forward
way of computing U(x) is to scan all the minimal separators found so far
that contain x. In the beginning of this chapter we promised to find U(x)
without reading every separator containing the vertex x. Actually we are
going to find U(x) without reading any separator containing the vertex x.

50 CHAPTER 4. ALGORITHM LB-TREEDEC

Element vector

Tree−node

Edge pointer vector

Pointer to tree−node

Pointer to opposite edge

Tree−node element pointer vector

Tree−edge

Pointer to tree−node

Pointer to opposite edge

Tree−node element pointer vector

Tree−edge

Element vector

Tree−node

Edge pointer vector

Figure 4.5: An illustration of the two bidirectional tree-edges representing
an edge in T .

4.7.1 Properties of the tree T

Invariant 4.3. At each stage x, the tree T is a tree decomposition of Gx.

Proof. For the tree T to be a legal tree decomposition of Gx, it has to fulfill
three properties at all times.

(i)
⋃

X∈T = V (G).

(ii) For every (u, v) ∈ E(Gx) there exists a tree-node Y ∈ T , such that
u, v ∈ Y .

(iii) For all vertices v ∈ V (G), the set of tree-nodes containing the vertex
v induces a connected subtree Tv of T .

We are going to prove each property by induction. Clearly all three
properties hold for the base case where T is only one bag containing all
vertices of G. For each of the properties, assume now that the property
holds for T , and we will show that it holds also after a tree-node is split into
two tree-nodes.

(i) If a tree-node X is splited into X1 and X2, then X1 ∪ X2 = X. This
guarantees that the set of vertices in the tree T is unaffected by splitting
the tree-nodes.

(ii) By the way we described the split operation, two vertices x, y that
are neighbors are never splited into two different tree-nodes and the result
follows.

4.7. FINDING NGX
(X) 51

(iii) Let us on the contrary assume that the subtree Tv is connected
before the split of X and not connected after the operation, and violating
the last requirement of a tree decomposition. Vertex v must belong to the
tree-edges (X,Z) and (X,Y) of T for two neighbours Y and Z of X. Each
of these tree-edges is incident to either X1 or X2 after the split of X. We
have now a contradiction since (X,Z) and (X,Y) can not be incident to the
same tree-node since this makes Tv connected, and the edge (X1, X2) also
makes Tv connected.

We have now proved that T is a tree decomposition of G. Since every
minimal separator in GLB

α is also a minimal separator in G, and the fact
that V (G) = V (GLB

α), then T is also a tree decomposition of GLB
α .

Corollary 4.1. At the end of the algorithm the tree T is a clique tree, and
is representing a chordal graph.

Proof. The tree T is a clique tree iff the vertices in a tree-node is represent-
ing a clique and every subtree Tv where v ∈ V (G) is connected (F. Gavril
[9]). We have already proved that every subtree is connected in Invariant
4.3, and each tree-node is already representing a clique. Clearly the tree T
is always representing a chordal graph, but T is only representing a minimal
triangulation of G when every pair in G is inserted into T .

Since T is a tree decomposition of G, then for every vertex u ∈ V (G)
there exists a connected subtree Tu ∈ T . Tu is the set of tree-nodes and
tree-edges containing the vertex u. We know from Definition 1.5 of tree
decompositions that every subtree Tu ∈ T is connected. From Lemma 4.6
it is easy to see that the set of subtrees in T that have an edge in common
with Tx is the same as the set of vertices in U(x).

Lemma 4.6. Let Tu and Tv be two connected subtrees of T . There exists a
separator SXY where the vertices u, v ∈ SXY iff Tu and Tv have a common
edge in T .

Proof. ⇒ Let there exist a separator SXY so that the vertices u, v ∈ SXY ,
and let there not exist a common edge between Tu and Tv. Let the separator
SXY represent the tree-edge (X,Y) ∈ T , where u, v ∈ X and u, v ∈ Y . The
edge (X,Y) ∈ Tu, Tv since Tu, Tv are connected and X,Y ∈ Tu, X, Y ∈ Tv.
This is a contradiction since there does not exist a common edge between
Tu and Tv.

⇐ Let there not exist a separator SXY so that the vertices u, v ∈ SXY ,
and let there exist a common edge between Tu and Tv. This is a contradiction
since there exists a common edge between Tu and Tv, and therefore there
exists a separator SXY where u, v ∈ SXY .

52 CHAPTER 4. ALGORITHM LB-TREEDEC

Subtree Type Description

NoEdge The tree Tu is only one tree-node.
Inner Every tree-edge in Tu is in Tx.
InnerOuter At least one tree-edge in Tu is in Tx,

and at least one tree-edge in Tu is not in Tx.
BorderOuter No tree-edge in Tu is in Tx,

and there exists a tree-node X ∈ Tu where x ∈ X.
Outer No tree-edge in Tu is in Tx, and there

does not exist a tree-node X ∈ Tu where u ∈ X.

Table 4.2: Different subtree types

4.7.2 Grouping subtrees into different types

To be able to find the set of subtrees from T that have a common edge with
Tx, we classify the subtrees into five different types. Table 4.2 contains the
definition of these subtrees.

If we are able to find the union of Inner and InnerOuter subtrees then
the resulting set will be U(x), because Inner and InnerOuter are the only
subtrees that have a common tree-edge with Tx. To be able to do this we
first find the union between the InnerOuter and the BorderOuter. Then we
separate the InnerOuter from the BorderOuter. Next we remove the NoEdge,
InnerOuter and BorderOuter from the complete set. This leaves us with the
union of Inner and Outer. Finally we separate Inner and Outer and we are
able to find the union between Inner and InnerOuter.

4.7.3 Finding InnerOuter and BorderOuter

Definition 4.3. A tree-edge (U,X) ∈ T is a Borderx edge if X contains
the vertices x and u, where u ∈ U and x 6∈ U .

Since InnerOuter and BorderOuter always contain a Borderx edge (4.3),
and are the only subtrees that contain Borderx edges we are using this
property to find the union of InnerOuter and BorderOuter.

In fact the Borderx edges are the tree-edges in T with exactly one end-
point in Tx. By doing a depth first search from a tree-node X where the
vertex x ∈ X we are able to find Tx, and every Borderx edge. The Borderx

edges are the set of tree-edges not containing the vertex x, and are connected
to Tx. If we find the union of all the separators stored in the Borderx edges
we will get the union of InnerOuter and the BorderOuter subtrees.

4.7.4 Separate the InnerOuter from the BorderOuter

The next step is to separate InnerOuter and BorderOuter. This operation
is by far the most complex part of the algorithm. The difference between

4.7. FINDING NGX
(X) 53

InnerOuter and BorderOuter is that InnerOuter has at least one edge in
common with Tx, and BorderOuter has none.

Let X be the tree-node in the Borderx edge containing the vertex x.
When separating InnerOuter and the BorderOuter it is tempting to check
every edge in Tx connected to X, to decide what kind of subtree it is. But
by doing this we risk to read all separators containing the vertex x.

To avoid this we use the properties of the tree data structure. The separa-
tor in the edge is a vector of pointers to tree-node elements in the tree-node.
Initially the Sc value from the tree-node element is set to -1. We use this
value to decide if this is the first time this element is visited at this stage.
If it is so, we update the Sc value to this stage and copy the Nn value to
Co. Every time an element is visited we decrement the Co value by one. If
this results in that the Co value is zero, then the subtree representing this
vertex is a BorderOuter, and if not it is an InnerOuter subtree.

Simply by reading every separator in the Borderx edges we are able to
separate the InnerOuter from the BorderOuter subtree.

4.7.5 Finding Inner

The complement of UA gives us the NoEdge subtrees. These subtrees have
no edges, and therefore they are not in the set of subtrees which have a
common edge with Tx. If we also remove InnerOuter and BorderOuter, the
remaining subtrees are either Inner or Outer. Since every tree-node in an
Inner subtree contains the vertex x, and there does not exist a tree-node in
an Outer subtree that contains the vertex x, we just pick a tree-node and
check if it contains x.

4.7.6 Summing it up

We have now described an algorithm and a data structure that are capable
of computing LB-triang of a given graph G. It is important to observe that
we did manage to find U(x) only by reading the separators in the Borderx

edges.
Comparing this algorithm to the previous described LB-triang algorithm,

there are several important differences. Maybe the most important is the fact
that the tree T stores the relationship between the minimal separators. This
is the main reason that we are able to find the subtrees of T .

54 CHAPTER 4. ALGORITHM LB-TREEDEC

Chapter 5

Time analysis of LB-treedec

5.1 Introduction

In the previous chapter we presented the algorithm LB-treedec that imple-
ments LB-triang. This chapter is explaining and proving that LB-treedec
runs in O(nm) time. Some of the operations in LB-treedec can use more
than O(m) time in a specific stage. So in order to achieve the total time
complexity of O(nm) we have to use amortized time analysis for these op-
erations.

Since we also want to limit space requirements we use a list represen-
tation of the vertices in the tree-node. This represents a problem since the
algorithm is heavily based on deciding whether or not a vertex x is repre-
sented in the vertex list of a given tree-node.

We will now do an amortized time analysis to prove that these questions
can be answered in O(n2 + k) time, where k is the number of requests.
Before continuing we need to introduce some limitations. First we limit the
number of created tree-nodes in the tree T . In Section 4.5 we described
how we increment the number of tree-nodes, i.e. deleting one tree-node and
replacing it with two new ones.

Lemma 5.1. The total number of tree-nodes created during algorithm LB-
treedec is less than 2n.

Proof. Since the tree T is a clique tree, then we know that the final number
of tree-nodes in T is less than or equal to n. Increasing the number of tree-
nodes in T is done by removing one tree-node and replacing it with two new
ones. This operation may only be repeated n−1 times since V (T) ≤ n. If we
add the tree-node created in the base case, then the total number of created
tree-nodes is less than or equal to 1 + 2(n − 1) = 2n − 1.

Lemma 5.2. Let k be the number of requests to decide if the vertex x belongs
to X, where X is a tree-node in T , and let the requested vertices be sorted
in a nondecreasing order. Then the total time for all requests is O(n2 + k).

55

56 CHAPTER 5. TIME ANALYSIS OF LB-TREEDEC

Proof. To be able to do this we demand several properties from the tree-
nodes, and these properties have to be maintained through the whole algo-
rithm.

• The Vector Vx containing vertices in a tree-node X is always sorted in
a non decreasing order.

• Every tree-node X has a pointer px pointing to the last read vertex in
the vector Vx.

• A vertex x is never listed twice in the same tree-node vector.

• The number of vertices in a tree-node is less than or equal to n.

• The number of tree-nodes to be processed is less than 2n.

Since the vector Vx containing the vertices in X is sorted, and the re-
quests come in a non decreasing order, then the pointer px stays in the
same place or is moved to a greater index in the vector Vx. As a result
of this every Vector Vx is traversed at most once. We have to consider all
tree-nodes that have been created at some point, and not only the ones cur-
rently present in T . By considering the maximal length of the Vector Vx,
and the maximal number of created tree-nodes, then we get a total time of
O(n(2n) + k) = O(n2 + k). It is necessary to add the k since the number of
requests may be larger than n2.

Clearly the number of requests k may not exceed O(nm), since we want
to achieve a total time complexity of O(nm). In Section 5.3 we will explain
that the total number of requests will never exceed O(nm). When we are
doing the time analyzing of LB-triang, we do not have to consider this
operation since the total time is limit to O(nm) for O(nm) requests.

5.2 Finding pairs in G

When we start this operation we are at stage x, and have already found
NGx(x). If we remove NGx [x] from Gx, then each connected remaining sub-
graph is defined as a component Cxi. Each Cxi has a minimal separator Sxi

separating the component from the rest of the graph Gx. We use the sep-
arator Sxi and the component Cxi to define the pair Ψxi = (Sxi, Cxi). But
since E(GLB

α) = m′, and we want to achieve O(m), we have to do this search
in the original graph G. The difference between G and GLB

α is that some
minimal separators in G are saturated in GLB

α , but we know from Lemma
3.1 that every minimal separator in GLB

α is also a minimal separator in G.
Lemma 3.9 states that the exact same components will remain if we remove a
minimal separator S from both G and GLB

α . We can conclude from this that

5.3. FIND PAIRS NOT INSERTED INTO T 57

component search can be done in O(m) time since we get the exact same
result if we do the search in G or GLB

α . Before continuing we need to define
some properties regarding the number of pairs and the size of components
and separators.

Definition 5.1. Let Cx1, Cx2...Cxk be the connected subgraphs, after re-
moving NGx [x] from the graph G. Further let Sx1, Sx2...Sxk be the minimal
separators defined by the neighborhoods of these components in G.

Property 5.1. The sum
∑k

i=1 |Cxi| < n.

Proof. Clearly Cxi ∩Cxj = ∅ for 1 ≤ i, j ≤ k, i 6= j, since the subgraphs are
not overlapping. Each component contains at least one vertex, and therefore
k < n.

Property 5.2. The sum
∑k

i=1 |Sxi| < m.

Proof. Let Sxi be the minimal separator of a component Cxi. It follows
directly that every vertex u ∈ Sxi has an edge to at least one vertex in Cxi.
Clearly this limits the size of

∑k
i=1 |Sxi| < m.

Achieving the time complexity

The separators and components found at each stage must have their vertex
lists sorted, this is done once for each stage. To reduce the work we sort all
the vertices from separators and components in one big sorting. For every
vertex u in a component Cxi or separator Sxi we define a pair (u, Sxi) or
(u,Cxi), where i is the number of the current separator or component. Next
we use Counting sort to sort all these pairs according to the vertex number.
Since the vertex numbers are in the interval [1, n], and the the maximal
number of elements is n+ m, then counting sort runs in O(n + m) time. By
parsing through the sorted list and reading the second value in the pair, we
are able to decide which separator or component the vertex number belongs
to and reinsert the vertex into its sorted place in the separator or component.
In this way we are able to reconstruct every component and separator in a
sorted order.

5.3 Find pairs not inserted into T

When deciding if a pair Ψxi = (Sxi, Cxi) is already inserted into T we find
a tree-node U ∈ T that contains any vertex u, where u ∈ Cxi. This is a
straight forward O(1) operation since we use the tree-node pointer vector
(Figure 4.2).

Next we do a depth first search in T from U until we hit a tree-node Y ,
where the vertex x ∈ Y . Let Sj be the separator representing the tree-edge
we use to reach the tree-node Y . In Lemma 4.4 we proved that Sj 6= Sxi iff

58 CHAPTER 5. TIME ANALYSIS OF LB-TREEDEC

the pair Ψxi is not already inserted into T . To decide if Sj 6= Sxi is a |Sxi|
operation since the separators may differ by only the last vertex.

Property 5.2 states that the sum of all separators found at stage x is
< m. By using this we are able to compare every separator found at stage
x with it’s matching Sj in O(m) time.

5.3.1 Traversing the tree

We need to describe how much time is used to traverse the tree T . The
number of components found at stage x is < n. If we combine this with the
size of T , it becomes O(n2) which is more time than we can afford. We solve
this by proving that the searches do not overlap, with the only exception of
the tree-node Y , which is containing the vertex x. Thus the search concer-
nens the separators found at stage x are done in disjoint subtrees for each
separator.

The tree search at stage x starts in a tree-node U containing any vertex
u from the component Cxi of the pair Ψxi = (Sxi, Cxi) found at stage x. We
search from U until we find Y . Since we are dealing with a tree, there is only
one edge connecting the subtree containing U to Y .

Lemma 5.3. Let the pair ΨY = (SY , CY) define the edge SY used to reach
Y , and let C−1

Y contain the vertex x. Further let Ψxi and Ψxj be two other
pairs found at stage x, where u ∈ Cxi and v ∈ Cxj. Then the component CY

may not contain both the vertices u and v.

Proof. Let assume that CY contains both u and v. Since Ψxi and Ψxj are
found at stage x, then both Sxi and Sxj are separating u from v. This is a
contradiction since SY is separating x from u and v, and Su is separating U
from x and v. The result is crossing separators.

Corollary 5.1. Each tree-edge (X,Y) used to reach Y is only traversed
once at stage x.

Proof. Let TXU be the subtree left containing U after removing (X,Y)
from T . Lemma 5.3 proves that this subtree only contains vertices from one
component. Therefore only one component is capable of starting the search
in TXU , and traversing the tree-edge (X,Y).

If we remove every tree-node Y containing the vertex x from T then a
forest F will be left. From Corollary 5.1 it is easy to see that each of the
subtrees of F only contains vertices from one component in a pair Ψ found
at stage x. Every edge in the tree T is only traversed once, and therefore
the total time for all tree searches in stage x is O(n).

The traversal of each edge involves a request of type “does x belong to
Y ”. Thus the total number of such requests during the whole algorithm is
O(n2).

5.4. INSERTING A PAIR INTO T 59

5.4 Inserting a pair into T

Since the maximal number of tree-nodes in T is limited by n, this limits the
number of inserted pairs Ψxi into T to n. With only n insertions, then each
insertion is allowed to use O(m) time if we want to achieve a total time of
O(nm).

5.4.1 The insertion

When deciding if a pair Ψxi = (Sxi, Cxi) is already inserted into T , we end
the search in the tree T with a tree-node Y , which contains the vertex x. If Y
also contains any vertex u where u ∈ Cxi, then the pair Ψxi is not inserted.
Let Y contain the vertices u and x, and let Sxi separate these vertices. To
remove the edges between vertices separated by Sxi, from the chordal graph
represented by the tree T , we have to split Y .

The vertices u and x are separated by Sxi, and therefore we have to
split the tree-node Y into X1 and X2. The split of Y , and the insertion of
the tree-edge between X1 and X2 is a straight forward O(n) operation. The
reason for this is the simple way to find the set of vertices in X1 and X2,
and the fact that the separator Sxi is representing the tree-edge between X1

and X2.

5.4.2 Reconnecting of edges

Since the tree-node Y is deleted, we have to reconnect every tree-edge (X,Y)
in T to either X1 or X2. This is done to keep the tree connected, and to
maintain the invariant that T is a tree decomposition of G. Because of
Lemma 4.5 we know that it is always possible to reconnect the tree-edge to
either X1 or X2.

To decide if (X,Y) should be reconnected to X1 or X2, we have to read
the separator SXY representing the tree-edge. If SXY ⊂ X1 we reconnect
the edge to X1, and if not we reconnect it to X2.

With a straight forward analysis this is an O(n2) operation, since the
number of edges connected to Y is ≤ n and the size of each separator is ≤ n.
But O(n2) is to expensive so we have to improve the analysis.

Lemma 5.4. If we remove every vertex u ∈ Y from G, then one subgraph
will remain for each tree-edge connected to Y .

Proof. Every tree-edge (X,Y) connected to Y stores a separator SXY . This
separator is a subset of both the tree-nodes the tree-edge is connected to.
Therefore every separator is represented by a tree-edge connected to Y is
removed from G. Each of the removed separators will leave a connected
subgraph, i.e. the component separated by the separator.

60 CHAPTER 5. TIME ANALYSIS OF LB-TREEDEC

Lemma 5.5. The sum of the sizes of the separators representing the tree-
edges incident to Y is less than m.

Proof. The separator Sxi = N(Cxi), where Cxi is a connected subgraph
of G. A result of this is that for every vertex v ∈ Sxi, there exists a vertex
u ∈ Cxi such that (u, v) ∈ E(G). If we include Lemma 5.4, then one subgraph
will remain for each tree-edge connected to Y , and for each vertex in the
separators separating the subgraphs there exists an edge in E(G) connecting
it to the component. This limits the sum of the sizes of all separators in the
tree-edges incident to Y to ≤ m.

In the view of this analysis we are able to split the tree-node, create the
two new, connect them and reconnect every tree-edge connected to Y in
O(m) time. By combining this with the maximum number of insertions, we
are able to do all insertions in O(nm) time.

5.5 Data structure

The level of details in the tree data structure has increased, and we have to
prove that this does not affect the time complexity of the algorithm. The
difference are mainly that we use pointers instead of direct access, and that
the tree-edges are duplicated to make the effect of bidirectional edges. Both
these difference only increase time complexity with a constant.

5.5.1 Reading and traversing

Information needed when reading or traversing the tree is done by read-
ing vertices in a tree-node, reading separators and finding neighbors of a
tree-node. The only difference regarding the tree-nodes is that the vector
containing the vertex number now contains a set of variables, and among
them the vertex number. Storing of the separators is actually the biggest
changes. As previously the separator is stored in the tree-edge, but the
vector only contains pointers to tree-node elements, which are storing the
vertex number. The neighbor vector in a tree-node consists of pointers to
tree-edges, which points to the neighbor. These three operations have one
thing in common, we have indirect access instead of direct.

5.5.2 Insertion into T

Insertion of pairs is the second operation that we need to explain since it is
actually creating the tree. The basic operations of the insertion are splitting,
connecting the new tree-nodes and reconnecting the edges.

When inserting a pair into the new data structure, we do the split as
usual. But to be able to reconnect the tree-edges and connect the new tree-
nodes in O(m) time, we create one vector of size n for each of the new

5.6. FINDING NGX
(X) 61

tree-nodes. This new vector is created in such a way that element i contains
a pointer to the tree-node element containing vertex i. If the vertex does
not exist in the tree-node then the value is set to zero. By using this vector
we are able to connect the tree-nodes and reconnect the tree-edges almost
as usual. Since we create these vectors in O(n) time, and the extra pointers
only add a constant factor, we still manage to execute the insertion in O(m)
time.

5.6 Finding NGx
(x)

NGx(x) is defined as the union of NG(x) and U(x). In the previous chapter we
proved that U(x) is equal to the union of the Inner and InnerOuter subtrees
of T . We find InnerOuter by separating out BorderOuter and InnerOuter,
and then separate these two by deciding if they have a common tree-edge
with Tx. Inner is found by removing NoEdge, InnerOuter and BorderOuter,
and then separating Inner from Outer.

5.6.1 Borderx edges

BorderOuter and InnerOuter are the only subtrees containing a Borderx

edge, and we use this property to find them. Borderx edges are the edges
having one endpoint in Tx. So finding the Borderx edges is done by traversing
the Tx subtree. From the tree object we get a pointer to a tree-node X
containing the vertex x. We start the traversing of T in X, and every time
we find a tree-node not containing x, then the last traversed tree-edge is a
Borderx edge. Since deciding if a tree-node contains x is an amortized O(1)
operation at stage x, this is an O(n) operation.

Next we read the separators in these Borderx edges. To decide the sum
of these separators we remove every vertex in Tx from the graph G and one
subgraph will remain for each Borderx edge. Lemma 5.5 proves that each
of these subgraphs have an edge to every vertex in the separator separating
it. This guarantees that the sum of the separators in Borderx edges ≤ m.
With this guarantee we separate BorderOuter and InnerOuter as described
in the previous chapter, with a time complexity of O(m).

5.6.2 Finding U(x)

The remaining job is quite simple, we remove BorderOuter, InnerOuter and
NoEdge from the set of all subtrees. NoEdge is the set of non-zero elements
in the UA vector, which is clearly an O(n) operation.

From the definition we know that every tree-node in an Inner subtree
contains the vertex x, and no tree-node in an Outer subtree contains this
vertex. By using this we are able to decide in amortized O(1) time if a

62 CHAPTER 5. TIME ANALYSIS OF LB-TREEDEC

remaining subtree is an Inner or an Outer. Since the total number of subtrees
is n, then this is clearly an O(n) operation.

5.6.3 Summing it up

Theorem 5.1. The time complexity of LB-treedec is O(nm).

Proof. As shown in this chapter every step of LB-treedec is an O(m) opera-
tion, either with direct or amortized time analysis. Therefore the total time
for this algorithm is O(nm).

The original algorithm LB-triang is on-line, meaning the ordering of the
vertices can be decided while the algorithm is running. LB-treedec does not
implement LB-triang completely since an ordering of the vertices is required
as an input parameter. The reason for this is to avoid each tree-node to use
O(n) space which will require a total of O(n2) space. It is quite clear that
adding a characteristic vector of size n in each tree-node enables us to decide
if a vertex is contained in the tree-node in O(1) time, independently of the
order of the requests. It follows that LB-treedec can be implemented to run
on-line in O(nm) time if we increase the space requirement to O(n2).

5.7 Space analysis

The O(nm) implementation of LB-treedec uses a tree data structure to solve
the problem of storing separators and finding the new neighborhood of ver-
tices. An interesting aspect about LB-treedec is the space requirement.

Obviously we need to store the graph G, since we do the component
searches in the original graph. But the clique tree will also require some
space. All vertices are stored in one tree-node in the base case, which requires
O(n) space. The only operation in the actual algorithm that requires more
space is the operation that insert a new pair Ψxi into T , which split a tree-
node and inserts a tree-edge.

Lemma 5.6. Insertion of a pair Ψxi = (Sxi, Cxi) into T , requires O(|Sxi|)
extra space.

Proof. Let the pair Ψxi split the tree-node Y into X1 and X2, and insert
the tree-edge (X1, X2). The split operation requires |Sxi| space, since Sxi =
X1 ∩ X2. Insertion of the new tree-edge also requires |Sxi| space, since the
tree-edge only stores a pointer to the opposite tree-edge, the neighbor tree-
node and |Sxi| pointers to vertices in the neighbor tree-node.

From Lemma 5.6 it is easy to conclude that the total space requirement
for LB-treedec is O(m+m′) = O(m′). The reason for this is that Lemma 3.5
proves that the sum of all separators in the inserted pairs is less than m′.

Chapter 6

Experimental results

In this chapter we present experimental runtime results from our implemen-
tations of LB-treedec, LB-list and Lex-M. We are analyzing the practical
behavior of LB-treedec in three different ways. First we report from experi-
ments on simply the run time of LB-treedec, and show that it exhibits very
good runtime in practice. Although the practical runtime is very good, we
also show an example that meets the O(nm) time bound, showing that LB-
treedec is Θ(nm).

We then compare this algorithm to the algorithms LB-list and Lex-M.
It is interesting to compare the two different implementations of LB-triang,
since this gives us exact information about how the difference in data struc-
ture affects the time used by the application. Comparing LB-treedec against
Lex-M is interesting since both algorithms create a minimal triangulation
in O(nm) time, by using different approaches to find the minimal triangula-
tion. This gives us the opportunity to compare both the size of the created
fill, and the time used by the different implementations.

The implementations of the algorithms are done in C++, and we have
used the Standard Template Library SDL, to create the data structures.
C++ was selected because we want a fast implementation that easily can
be moved between different platforms. The tests where executed on a ma-
chine with an Intel Pentium III 1GHz processor and 512 MB RAM. Our
code can be obtained via anonymous FTP from ftp.ii.uib.no at directory
pub/pinar/LB-treedec/.

6.1 Analyzing LB-treedec

It is especially interesting to do some practical analysis on LB-treedec be-
cause it uses a rather big data structure, and the fact that it is a new O(nm)
time algorithm which solves minimal triangulation. Let us first have a look
at how the run time changes as the size of the graph changes. In this first
experiment we use randomly generated graphs, where the number of ver-

63

64 CHAPTER 6. EXPERIMENTAL RESULTS

tices is fixed at 1000, and the number of edges ranges from 1000 to 499500
or n(n− 1)/2. We make sure that all these graphs are connected, thus only
connected random graphs are tested and presented. By keeping the num-
ber of vertices constant, and changing the number of edges, we get the nm
function as a straight line in the figure. This is an advantage when we are
analyzing the result of the experiment.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

% Of edges

LB−treedec

Component search

Building tree

Find U(x)

Figure 6.1: Run time of LB-treedec, and three different time components.

We have four curves in Figure 6.1, which display the time usage of three
main operations in LB-treedec and the fourth is the total time. The first and
quite surprising observation is that the run time actually decreases as the
number of edges increases and that the decrease is quite significant. We can
also observe the roughness of the curve indicating that the actual structure
of the graph affects the run time. The structure of the graphs will change
form step to step since we add the edges randomly.

The operation Find U(x) in Figure 6.1 is the operation that finds the
new neighborhood of a vertex from the clique tree. The time of this operation
varies some with the construction of the triangulated graph, but apart from
this it seems to be quite unaffected by the increase in the number of edges.
The second operation is Building tree, which represents the time used
to decide if a pair Ψ or its complement pair is already inserted, and the
time used to build and maintain the tree. This operation has an interesting
development since it starts out with using approximately half of the run
time, and then rapidly drops to a quarter of the time. It is likely that this
operation is closely connected to the number of maximum cliques in the
resulting triangulated graph. The third operation is Component search
which is the time used to find the minimal separators in the neighborhood

6.1. ANALYZING LB-TREEDEC 65

of a vertex. As we can see from Figure 6.1 this is the dominating time
component. If we take a closer look at Figure 6.1, we can actually see that
each of the three components decreases as the number of edges increases.
It is quite surprising that LB-treedec behaves like an O(n2) algorithm for
randomly generated graphs. A possible explanation for this is that the edges
in G[N [x]] do not have to be read during the component search. This will
clearly become significant when the size of N [x] gets large, and the average
neighborhood will clearly increase when the number of edges increases.

6.1.1 Is LB-treedec an O(nm) algorithm ?

Is it possible that LB-treedec actually is an O(n2) algorithm that we only
have been able to prove an O(nm) time limit for? Probably unlikely since we
do a search in the original graph each time we find the connected components
and theirs separators. Now we will actually show an example of a graph
that causes LB-treedec to use Θ(nm) time. The fact that the number of
edges incident to a set of vertices is limited to m, causes the operations of
deciding what pair to insert, updating the tree and finding U(x) to have a
time complexity of O(nm). So in order to create a worst possible graph we
have to use these properties. We solve this by creating a graph class β.

Definition 6.1. The graph G = (V,E) ∈ β if the following properties are
for filled.

• |V (G)| = 3k for some k ≥ 1

• A ∪ B ∪ C = V (G)

• |A| = |B| = |C| = k

• ∀ v ∈ A : NG(v) = V (G) − v

• ∀ v ∈ B : NG(v) = A ∪ (B − v)

• ∀ v ∈ C : NG(v) = A

Let us first find the size of m. The number of neighbors for each of the
sets are: v ∈ A ⇒ |N(v)| = n − 1, v ∈ B ⇒ |N(v)| = (2n/3) − 1 and v ∈ C
⇒ |N(v)| = n/3. It follows that m = n/3((n− 1) + ((2n/3)− 1) + n/3)/2 =
4n2/9 − 2n/3 = O(n2). The sets A and B induce a clique of size 2n/3, and
clearly A and B are cliques of size n/3. The first selected vertex not present
in A will find the separator A, and create the complete clique tree, which
contains (n/3) + 1 tree-nodes and (n/3) tree-edges. Every vertex v ∈ C is
only contained in one tree-node that contains the vertices A ∪ {v}, and the
extra tree-node contains the vertices A ∪ B. Every tree-edge contains the
same separator A.

66 CHAPTER 6. EXPERIMENTAL RESULTS

Let us first take a closer look at the component search done in LB-treedec.
For every vertex v ∈ C we have to do a component search that covers the
vertices B ∪ (C − v). Since every vertex in B has (2n/3) − 1 neighbors and
every vertex in C has n/3 neighbors, then the number of edge read for the
vertex v component search is n/3(2n/3 − 1) + (n/3 − 1)n/3 = n/3(n − 2)
which is clearly Ω(m). For every vertex v ∈ B we have to do a component
search from every vertex in C. This results in reading n2/9 edges, which is
of size Ω(m). It follows from this that the component searches for vertices
in B and C uses Ω(m) time.

Since all vertices in B and C find the separator A and therefore find n/3
different components with a minimal separator of size n/3, then the size
of the found pairs will be Ω(m). This causes sorting of the separators and
detecting if the pair is inserted to cost Ω(m).

For all the vertices v ∈ B, the computation of U(v) will force us to read
all the n/3 edges in the clique tree. Since each of these edges contains a
separator of size n/3 then this becomes an Ω(m) operation. It is quite clear
that LB-treedec will use Θ(nm) time on graphs from the class β.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Number of vertices in the generated graph

LB−treedec
nm/500,000

Figure 6.2: Run time of LB-treedec, on graphs from the class β.

Figure 6.2 is the result from an experiment, where we use this graph class
as input to LB-treedec. We can clearly see that this behavior is quite different
to the result in Figure 6.1, where we used 1000 vertices. The result in Figure
6.2 is expected to be worse than the previous experiments since we force
LB-treedec to use Θ(nm) time. We have also introduced the nm/500, 000
curve in Figure 6.2. The even worse than expected behavior of LB-treedec
compared to the nm curve probably arises from the memory architecture.
The speed of memory is very closely connected to the price, so in order to

6.1. ANALYZING LB-TREEDEC 67

get good value for the funding computers are built with a large slow main
memory. In order to speed up the computer, several layers of smaller and
faster memory are placed between the CPU and the main memory, such that
the size decreases and the speed increases when we are getting closer to the
CPU. It follows from this that increasing a given problem forces some of the
operations to use a new level of memory. This can have major influences on
operations that are executed often in an algorithm. We can conclude from
this that the time used by a computer to solve a problem also depends on
the architecture of the computer, and not only the algorithm and the given
input.

6.1.2 The maximum point in LB-treedec time curve

An interesting question from Figure 6.1 is how the start of the time curve
looks like. This is especially interesting since the triangulation of sparse
graphs is in this area. To get a picture of this we do another experiment,
where we only focus on graphs that has 0.25% to 10% of the maximum
number of edges present.

0 1 2 3 4 5 6 7 8 9 10
12

14

16

18

20

22

24

26

28

30

32

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

% Of edges

Figure 6.3: Run time of LB-treedec, on sparse graphs.

In Figure 6.3 we use randomly generated graphs with 2000 vertices. We
can clearly see that LB-treedec has a maximum point at approximately 1, 5%
of the maximum number of edges. A very interesting question now is whether
or not the position of this top point depends on the number of vertices. In
order to get an answer to this question we did an experiment. For a given
number n of vertices, our idea was to generate graphs with varying number
of edges and identify the one that resulted in the highest runtime. Thus for

68 CHAPTER 6. EXPERIMENTAL RESULTS

each n we want to find the m that give the worst runtime. We let the number
of vertices range from 1000 to 2000 in steps of 10, and then compute the
maximum point for each of these steps. Thus n = 1000 +10k , 1 ≤ k ≤ 100,
and for each k we create 100 random graphs where m = n(n−1)/2∗ l/2000,
1 ≤ l ≤ 100, i.e 0.05% of the maximum number of edges to 5% in steps of
0.05%. In order to decide how the maximal point develop as the number of
edges change we register the size of m that causes LB-treedec to use most
time for a given n. In Figure 6.4 we plot these maximum edge values against
the number of vertices.

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

N
um

be
r

of
 e

dg
es

 in
 th

e
m

os
t h

ea
vy

 c
om

pu
ta

tio
n

Number of vertices in the generated graphs

Figure 6.4: Displays the number of edges that creates most work for LB-
treedec.

We insert the line 10n in Figure 6.4, to get a picture of how this maximum
value developed compared to the number of vertices in the input graph. The
structural changes in the input graph cause the variations in the position of
this maximum point. But the indications are quite clear, the maximum point
for m keeps below 10n. This shows that every one of these triangulations was
done in an O(n2) time complexity. We may add that every other random
experiment (not especially designed to prove Θ(nm)) has shown the same
behavior during our tests.

6.1.3 The roughness of LB-treedec

We have observed that every figure containing the running time of LB-treedec
has an uneven curve. Figure 6.1 shows that this is the case for all the main
operations. This is clearly connected to the structure of the graph since the
difference between two almost equal graphs in size can vary this much.

6.1. ANALYZING LB-TREEDEC 69

The time used by LB-treedec is divided into three components. Observe
that the roughness descends from all of the time components, even though
the graph search is dominating. Another interesting aspect is that there
seems to be some kind of connection between the roughness of the graph
search and the tree-node separation. A possible theory is that low fill gener-
ates a bigger tree data structure, and smaller separators force the component
search to read more edges.

0 2 4 6 8 10 12 14 16 18 20
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Execution number

LB−treedec
Np/10000

Figure 6.5: Displays execution time of LB-treedec, and number Np of found
separator component pairs.

Another possible explanation is the number of found separator and com-
ponent pairs is large. We will clearly use more time to find the new pairs,
which causes the tree operations to use more time. Since we have found
many pairs, then it is likely that we get a clique tree with many tree-nodes.
We will at least get as many tree-nodes as the largest number of separators
in the neighborhood of one vertex. Every leaf tree-node L contains a vertex
l that only exists in L. The component search from such a vertex, will only
find one component that contains every vertex not in L.

Let us define Np as the total number of pairs found during the execu-
tion of the algorithm. Figure 6.5 displays the run time of LB-treedec, and
Np/10000. We have divided Np by 10000 to make it fit into the figure. In this
experiment we keep the number of vertices and edges constant i.e. n = 1000
and m = 10000. The graphs are randomly generated, and therefore the
execution time, and Np will alter around a middle value. The interesting
observation is that every major change in Np, makes an almost equivalent
reaction in the execution time. This indicates that there might be a connec-

70 CHAPTER 6. EXPERIMENTAL RESULTS

tion between the roughness of LB-treedec and Np.

In this experiment Np has an average value of 37256, and an interesting
question is: what are we able to tell about a graph with 1000 vertices and
a Np of 37256? We can conclude from this that the average subtree Tx has
37.3 Borderx edges, and it follows from this that the clique tree consists of
at least 38 tree-nodes and at least 37 leafs.

6.2 LB-treedec versus LB-list

We are now going to show how LB-treedec compares to LB-list in practice.
Comparing these two different implementations of LB-triang is interesting
since they only differ in how to store the minimal separators, and how to
find U(x). The LB-list algorithm stores the minimal separators in a list, and
reads every separator containing the vertex x, in order to compute the new
neighborhood of x. Finding U(x) is the operation that makes this into an
O(nm′) algorithm. In practice, this is a quite simple operation that adds a
relatively low constant to the runtime of the algorithm. The fact that many
triangulations have little overlap between separators enables this algorithm
to triangulate in O(nm) time in many cases.

The LB-treedec algorithm on the other hand dynamically builds a clique
tree as the separators are discovered, and uses this to compute U(x) in
O(m) time. The extra work of dynamically maintain and build this clique
tree gives this algorithm a larger constant than LB-list.

It is actually very simple to create graphs, and graphs classes that force
LB-list to use Θ(nm′) time. The overlap between separators decides the size
of the separator list, and the size of the separator list decides the run time
of LB-list.

We are now going to define a graph class that ensures big overlap between
the minimal separators, and thereby forcing LB-list to actually use Θ(nm′)
time. In Figure 6.6 we describe the graph class γ for this property.

x

1

2

j+1

j+2

2jj

j(i−1)+1

j(i−1)+2

ji

y

Figure 6.6: A class of graphs that will create big separator overlap.

Any graph from this class will have ji+2 vertices and (i+1)j edges, for

6.2. LB-TREEDEC VERSUS LB-LIST 71

given integers i and j. We use the vertex number as the ordering α of which
the vertices are made LB-simplicial. This will guarantee j(i−1)+1 minimal
separators of size j, which gives us a total size of all minimal separators of
j2(i − 1) + j. The fact that we number the vertices in an order such that
every neighbor with a large number is a minimal separator or the rest of
the graph, ensures that the vertices are numbered in a MEO order. If we
now count every edge to a vertex with a higher number, then it is easy to
compute m′. The first j(i − 1) + 2 vertices has j neighbors with a higher
number, and the remaining j vertices have j − 1 to 0 larger neighbors. This
sums up to m′ = j2i − j2/2 + 3j/2. For all graphs in this class where j ≥ 3
and i ≥ 2, the sum of the sizes of the minimal separators is larger than m.
We can now use the class γ to give a practical verification that the separator
list version uses more time. The fact that γ forces LB-treedec to update the
tree at each operation makes the experiment more interesting, since non of
the implementations has any specific advantage, apart from the proven time
bound.

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Size of u in the generated graph

LB−treedec
LB−list
(LB−list/LB−treedec)*10

Figure 6.7: Display run time of LB-treedec and LB-list, when we use graphs
from the class γ as input.

In Figure 6.7 we have used graphs from our predefined class and mea-
sured the time used to triangulate, where j ranges from 100 to 1500 and i
is set to 2. We can clearly see that the difference between the implementa-
tions rapidly increases as the size of the graph increases. The curve with the
dots gives us the time used by (LB-list/LB-treedec)*10. We can see that the
algorithms start with a one to one relation, and end up with a 5 to 1. The
interesting part here is the fact that the difference increases with the size of
the graph. This indicates that these two algorithms do not have the same

72 CHAPTER 6. EXPERIMENTAL RESULTS

time complexity, because if LB-treedec has a constant k then there exists
an n such that LB-list uses more time then LB-treedec. The reason for this
comes from the fact that the sum of the sizes of the separators is O(m′).

Because of these conditions we want to run an experiment using ran-
domly generated graphs. By using randomly generated graphs we will not
have the problem of the previous experiment where we selected the vertices
in a MEO order such that the algorithms only find one minimal separator
in the higher numbered vertices. If a separator is a minimal separator for
more than two components, then the number of minimal separators are re-
duced, but this separator will be discovered more than one time. In this
experiment we will keep the number of vertices fixed at 1000, and vary the
number of edges from 1000 → 100000. This will give us a picture of how
the implementations deal with different fill in the input graph. We measure
the number of edges in a graph by comparing the number of edges to the
maximum possible number of edges, i.e. n(n − 1)/2. By doing it this way
we manage to range the number of edges from 1% → 20%. This is the most
interesting interval, because after we pass 20% fill we will mainly end up
with a few large cliques. The results are presented in Figure 6.8.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Edges in input graph

LB−list
LB−treedec

Figure 6.8: Display running time of LB-treedec and LB-list, with randomly
generated graphs i.e. n = 1000 and 1000 ≤ m ≤ 100000.

There are several things to notice about the results in Figure 6.8. Let us
first focus on the fact that these algorithms seem to use less time when the
number of edges increases. We have already discussed this for LB-treedec,
but the fact that LB-list has the same behavior indicates that this does not
depend on the data structure storing the separator, or the way we compute

6.3. LEX-M VERSUS LB-TREEDEC 73

the neighborhood of a vertex. This leaves us with the general properties
of algorithm LB-triang which both LB-treedec and LB-list implement. We
may also observe that LB-treedec generally uses less time than the LB-list
even though it has a larger constant. A final observation may be that a big
change in one of the algorithms often results in a change in both curves.
This indicates that big variation in run time is connected to the component
searches since this is exactly the same for both implementations.

6.3 Lex-M versus LB-treedec

Both algorithms Lex-M and LB-treedec have a provable O(nm) runtime, and
this makes it interesting to compare them. An interesting question will be
whether or not the previously discussed limitations in Lex-M will be reflected
in the results. We will do two types of experiments, first to compare run time,
and second to compare the size of the fill.

6.3.1 Compare computation time

We are now going to compare run time between Lex-M and LB-treedec. The
optimal configuration for such an experiment is when both algorithms create
the same result on the same input data, without any restrictions. In this case
we will have a problem when it comes to making both algorithms produce
the same output, since Lex-M is not able to compute some triangulations,
while LB-treedec is capable of creating every minimal triangulation. This fact
forces us to use LB-treedec to create the same graph as Lex-M. We know
that Lex-M creates a MEO of the input graph. If we now force LB-treedec
to make the vertices LB-simplicial in the MEO order described by Lex-M,
then LB-treedec will create the exact same graph as Lex-M. This follows
directly from Lemma 3.2. This is not an optimal solution since we have to
set restrictions on the order given to LB-treedec, but it is probably as close
we can get.

In the next experiment we use randomly generated graphs, with 1000
vertices. We define the maximal number of edges as n(n − 1)/2. In this
experiment we use 100 graphs that contain from 1% to 100% of the maximum
possible number of edges.

Let us first look at Lex-M in Figure 6.9. Two interesting observations
can be done. The first observation is that the curve of Lex-M is very smooth.
We have some minor changes around 45% fill, but apart from this the curve
seems to be almost perfectly smooth. This indicates that Lex-M is practically
unaffected by the structure of the given graph. The second observation is
that the time used by Lex-M is very close to a straight line. If we now use
the correct constants in (c1 + c2 ∗ nm) = O(nm) then we can get a perfect
match between the line of nm and Lex-M . This gives us the advantage of
being able to compute the running time of Lex-M quite accurate.

74 CHAPTER 6. EXPERIMENTAL RESULTS

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

% Of edges

LB−triang
Lex−M

Figure 6.9: Displaying running time of Lex-M and LB-treedec when the
number of edges range from n(n − 1)/200 to n(n − 1)/2.

Let us now compare Lex-M and LB-treedec . As we can see from Figure
6.9 it is preferable to use Lex-M as long as less than 7% of the edges are
represented in a graph with 1000 vertices. Since the maximal computation in
LB-treedec seems to be depending on n, then it is likely that the intersection
between Lex-M and LB-treedec also depends on the number of vertices. In
the interval from 7% to 100% it is clearly preferable to use LB-treedec . The
area below each of the curves will give us an indication of which algorithm
that is preferable in the general case. We estimate the area below LB-treedec
to 2 ∗ 100 = 200, and the area below Lex-M to 10 ∗ 100 = 1000. If we are
now given a connected graph with 1000 vertices and a random number of
edges between n(n−1)/200 and n(n−1)/2, then Lex-M will approximately
use five times as long time as LB-treedec in average.

An interesting point for further analysis is the intersection between Lex-
M and LB-treedec. Let us now keep the relationship between m and n con-
stant, and let the number of edges range from 100 to 3000 in steps of 100.
Let f = (n(n−1)/2)/m, and let f be set to 0.07 in this experiment meaning
that we use graphs with 7% of the edges represented.

The result in Figure 6.10 is actually quite close to what we should expect
from previous experiments. In Figure 6.4 we followed the maximal value of
LB-treedec as the number of vertices grows, and observed that it was kept
below the 10n line. A natural consequence of this is that LB-treedec improves
compared to Lex-M when we use a fixed value for the percentage of edges
in the graph, and increase the number of vertices. This is the exact behavior

6.3. LEX-M VERSUS LB-TREEDEC 75

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

45

LB−treedec
Lex−M

Figure 6.10: Displays time usage at 7% of maximum possible edges.

we see in Figure 6.10.

6.3.2 Compare fill

In the final experiment we are comparing how much fill the two algorithms
create in general. The fill is defined to be the edges added to achieve the
resulting minimal triangulations. Minimal fill can be far from minimum,
and thus good minimal triangulations, with respect to fill, are desirable.
The computation of minimum fill is NP-hard, and therefore we do not have
any reference value for the minimum triangulation of the different graphs.
But we have two different algorithms, and can compare them against each
other. We have optimal conditions to do this test since we can use the same
input data for both algorithms, and the interesting result is the difference
in fill. But since the size of the fill depends on the ordering of the vertices
then we give LB-treedec a random ordering α of the vertices and we pick
a random vertex from Lex-M to start in. The input graphs are randomly
generated, with the number of vertices fixed at 1000, and the number of
edges range from 1000 to 100,000 in steps of 1000.

In Figure 6.11 we have subtracted the fill created by LB-treedec from
the fill created by Lex-M. Observe that Lex-M only produces less fill in two
cases. Since we do not know the minimum fill we are not able tell whether
or not the algorithms produce good triangulations, but we can clearly see
that Lex-M produces much more fill in general. This indicates that the
strategy of LB-treedec is better than Lex-M in general. It is quite natural
that the difference in fill decreases as the number of edges in the input graph

76 CHAPTER 6. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−1

0

1

2

3

4

5

6
x 10

4

D
iff

er
en

ce
 in

 fi
ll

Nr of edges in input graph

Figure 6.11: Difference in created fill between Lex-M and LB-treedec .

increases. The reason for this is that the number of edges in the minimum
triangulation is getting closer to the maximum possible number of edges, as
the number of edges in the input graph increases. This makes the difference
between the maximum number of edges and minimum triangulation smaller,
and since every triangulation is contained in this gap then it follows that
the difference between triangulations decreases.

Table 6.1 displays the resulting number of edges where we have randomly
created 20 different graphs. The number of edges in the input graph ranges
from 1 to 20 percent of the maximum number of edges, and the number of
vertices are set to 1000. The five first columns give us the number of edges
in the resulting graph using Lex-M where we give Lex-M different starting
points. LB-treedec is used to triangulate the same graph as Lex-M, where
we randomly created five different orderings in which the vertices was made
LB-simplicial. The number of edges in the resulting graph is presented in the
five last columns. We can observe that LB-treedec produces less fill than Lex-
M in general eventhough Lex-M produces less fill in some of the cases. The
difference between LB-treedec and Lex-M is especially large on those graphs
with few edges. This indicates that LB-treedec is preferable on sparse graphs
since the difference in created fill is significant.

6.3. LEX-M VERSUS LB-TREEDEC 77

Lex-M LB-treedec

1 % 274397 273917 278616 281858 282521 241843 237137 245288 242770 243225

2 % 371722 374749 383642 377670 372814 349392 335589 340122 334617 338274

3 % 409777 407773 418479 421156 418136 383997 395973 402198 385406 385904

4 % 432518 434996 435605 433822 438232 414362 418422 413788 420357 419351

5 % 448021 446361 447598 449648 448147 438790 440700 437585 433299 428113

6 % 458513 461172 457904 460316 453492 443779 440557 446028 447645 445575

7 % 456806 461098 465087 461322 463296 456741 450553 461591 455298 450754

8 % 469811 465522 467547 469611 468191 465296 457334 463035 459295 458801

9 % 473206 469407 472269 470549 469337 461957 465112 463173 465288 464324

10 % 473922 476090 477207 475082 473721 462518 468470 470772 470490 473115

11 % 473836 475241 478226 478119 477205 473781 475679 466891 471231 471278

12 % 476795 478323 478943 478162 480894 474309 472237 473944 473485 473385

13 % 482298 479746 479021 483700 480089 478232 476422 471327 475969 472272

14 % 483828 484341 479245 484519 484025 474393 476095 477679 478020 478714

15 % 483590 484876 480854 484817 484031 475437 479936 480047 482473 478012

16 % 486520 483936 484679 485010 486185 477238 484187 481861 482272 480359

17 % 485645 486807 486495 483263 484501 481405 481487 482086 484678 483233

18 % 484465 487625 486876 486711 487478 485095 483306 486973 481656 482968

19 % 488344 487392 488363 489226 487354 484982 481984 485349 485715 485811

20 % 487233 488283 487747 489364 488951 488060 487041 485991 485243 485064

Table 6.1: Number of edges in the resulting minimal triangulations by Lex-M
and LB-treedec on five permutations of 20 graphs.

78 CHAPTER 6. EXPERIMENTAL RESULTS

Chapter 7

Concluding remarks

In this chapter we are summing up the work done in this thesis. Chapters 1 to
3 contain mainly results established prior to our work, to give a background
for the results of this thesis. Chapters 4 to 6 present new theoretical and
practical results. We will summarize this work in the next section. The
open questions section discusses different unanswered questions, and possible
improvements on the LB-treedec algorithm.

7.1 An overview of our results

In Chapter 2 we defined chordal graphs, and described three different char-
acterizations. These characterizations are the main ideas behind most of
the presented algorithms regarding chordal graphs. We did also mention
the clique tree, which is an alternative way to represent a chordal graph.
Elimination game is the first presented algorithm that produces a chordal
supergraph from any given graph. The great advantage of this algorithm is
that it can be implemented to run in O(m′) time, which is optimal. The dis-
advantage is that it can produce arbitrarily much fill, even when the given
graph is chordal. Next we described the Maximum Cardinality Search(MCS)
[19] which is an efficient algorithm for recognizing chordal graphs, and can
also be used to compute a clique tree from a chordal graph.

Rest of the thesis is mainly discussing different aspects of minimal tri-
angulation. First we described the algorithm Lex-M which was introduced
by Rose, Tarjan and Lueker [17] in 1976. This was one of the first presented
algorithms that computed a minimal triangulation in O(nm) time. An in-
teresting contribution of this thesis regarding Lex-M is a class of graphs for
which Lex-M is unable to compute a minimum triangulation regardless of
starting point and local selections, presented in chapter 2.

Chapter 3 contains description of the basic LB-triang algorithm, and
several different algorithms that are based on LB-triang. The basic LB-
triang algorithm does not describe how to store the minimal separators from

79

80 CHAPTER 7. CONCLUDING REMARKS

previous calculations. There does not seem to be an obvious solution to this
problem, which results in the discussion of these different implementations
of LB-triang. We mentioned the LB-list algorithm in special, since this was
the best LB-triang implementation before the work of this theses started.

Chapter 4 presented the LB-treedec algorithm which is the first algo-
rithm to implement LB-triang in O(nm) time, and the main result of this
thesis. The time complexity of LB-triang was conjectured by Berry to be
O(nm), however this remained unproven until our LB-treedec result. Algo-
rithm LB-treedec differs from previous discussed LB-triang implementations
in the way the minimal separators are stored. A tree decomposition repre-
sentation is used, and updated each time a new separator with components
is discovered. The great advantage of this data structure is that it also stores
the relationship between the separators.

The operation of finding the neighborhood of the next vertex causes
algorithms like LB-list to use more than O(nm) time. In order make LB-
treedec keep the time limit of O(nm), we had to prove that the total time
of maintaining the clique tree data-structure is O(nm), and that finding the
neighborhood of the next vertex can be done in O(m) time. The interesting
part is how we computed the neighborhood, since this is the problem in
previously discussed algorithms.

Let x be the next vertex, which forces us to compute NGx(x) = NG(x)∪
U(x). Since the sum of all separators containing x is of size m′, then we
had to compute U(x) in a different way. We used the fact that our tree
data-structure is a tree decomposition, and that every tree-node containing
a vertex v forms a connected subtree Tv. We defined five different classes of
subtrees, depending on their relations to Tx. If Tx and Tv have a common
edge in T , then there exists a separator that contains both x and v. We now
computed U(x) by finding the union between the classes of subtree that has
an edge in common with Tx.

In Chapter 6 we did some practical experiments on LB-treedec, and be-
tween LB-treedec, LB-list and Lex-M. The first experiments were on LB-
treedec, where we have examples of classes of graphs that forces LB-treedec
to use Θ(nm) time, while the algorithm behaved like Θ(n2) on randomly gen-
erated graphs. Secondly we compared LB-list with LB-treedec. They seem
to behave similarly on randomly generated graphs, even though LB-list used
a little more time in general. We were also able to find a graph class which
forces LB-list to use Θ(nm′) time. Finally we compared Lex-M and LB-
treedec. Since these algorithms use different basic approaches to triangulate
the graph, they do not necessarily produce the same result. This enables us
to compare both the size of the fill, and the time used if they compute the
same graph. It turned out that Lex-M behaves in a Θ(nm) fashion also in
practice, and in general creates more fill than LB-treedec.

7.2. OPEN QUESTIONS 81

7.2 Open questions

The LB-treedec algorithm presented in this thesis requires the ordering of
the vertices as an input parameter, while the basic LB-triang algorithm is
on-line. This is the only limitation in LB-treedec compared to the basic LB-
triang. It is an interesting question whether or not the ordering of the vertices
can be given in a on-line fashion without breaking the time and space limits.
This can probably be done if we only focus on either time or space. But it
seems to be a little more difficult to achieve this without breaking either the
space or the time limit.

Regarding how to optimize LB-treedec, it is an interesting question whether
or not we can take advantage of the incomplete clique tree when we do the
component searches in the graph. The reason for this is that if we cross a
separator in the component search, then the rest of the information is avail-
able in the tree T . The really interesting question is whether or not this
gives us a better upper limit of the searches done in the graph. The second
interesting question regarding LB-treedec is how much more space efficient
it is possible to get the algorithm. It is possible to do some improvements
if we process all border edges connected to one tree-node at once. This will
enable us to remove the counter variable and the variable containing the
stage number. Even after including this improvement, it will be interesting
to know whether or not the space constant can be reduced even more.

There exist several algorithms that produce a minimal triangulation in
O(nm) time, but no known algorithm has a better time complexity than
this. A natural question for further work will be whether or not this is the
lower limit for minimal triangulation. The fact that there exist at least three
different O(nm) algorithms, imply that this might be a limit, if not it seems
at least to be much harder to find such an algorithm. The lower limit is
clearly O(m′) since this is the size of the result. Algorithm Elimination game
can be implemented to triangulate a graph in O(m′) time given the ordering
of the vertices. From this we can conclude that finding an ordering that gives
us a minimal triangulation is the task that causes us most problems, and
not the part of adding the edges and constructing the graph.

82 CHAPTER 7. CONCLUDING REMARKS

Bibliography

[1] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Com-
plexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete
Methods, 8(2):277–284, 1987.

[2] Philip A. Bernstein and Nathan Goodman. Power of natural semijoins.
SIAM J. Comput., 10(4):751–771, 1981.

[3] A. Berry. A wide-range efficient algorithm for minimal triangulation.
In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, 1999.

[4] Anne Berry, Jean-Paul Bordat, and Pinar Heggernes. Recognizing
weakly triangulated graphs by edge separability. Nordic J. Comput.,
7(3):164–177, 2000.

[5] Anne Berry, Jean-Paul Bordat, Pinar Heggernes, Simonet Genevieve,
and Yngve Villanger. A wide-range algorithm for minimal triangulation
from an arbitray ordening. In Preparation for journal submition.

[6] Jean R. S. Blair and Barry Peyton. An introduction to chordal graphs
and clique trees. In Graph theory and sparse matrix computation, pages
1–29. Springer, New York, 1993.

[7] G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg,
25:71–76, 1961.

[8] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval
graphs. Pacific J. Math., 15:835–855, 1965.

[9] Fănică Gavril. The intersection graphs of subtrees in trees are exactly
the chordal graphs. J. Combinatorial Theory Ser. B, 16:47–56, 1974.

[10] Pinar Heggernes and Yngve Villanger. Efficient implementation of a
minimal triangulation algorithm. In To be presented at European Sym-
posium on Algorithms, Rome, Italy, 2002.

83

84 BIBLIOGRAPHY

[11] Chin Wen Ho and R. C. T. Lee. Counting clique trees and computing
perfect elimination schemes in parallel. Inform. Process. Lett., 31(2):61–
68, 1989.

[12] Ton Kloks, Dieter Kratsch, and Jeremy Spinrad. Treewidth and path-
width of cocomparability graphs of bounded dimension, 1993.

[13] Ton Kloks, Dieter Kratsch, and Jeremy Spinrad. On treewidth and
minimum fill-in of asteroidal triple-free graphs. Theoret. Comput.
Sci., 175(2):309–335, 1997. Orders, algorithms and applications (Lyon,
1994).

[14] C. G. Lekkerkerker and J. Ch. Boland. Representation of a finite graph
by a set of intervals on the real line. Fund. Math., 51:45–64, 1962/1963.

[15] Tatsuo Ohtsuki, Lap Kit Cheung, and Toshio Fujisawa. Minimal trian-
gulation of a graph and optimal pivoting order in a sparse matrix. J.
Math. Anal. Appl., 54(3):622–633, 1976.

[16] S. Parter. The use of linear graphs in Gauss elimination. SIAM Rev.,
3:119–130, 1961.

[17] Donald J. Rose, R. Endre Tarjan, and George S. Lueker. Algorithmic
aspects of vertex elimination on graphs. SIAM J. Comput., 5(2):266–
283, 1976.

[18] Michael Sipser. Introduction to the Theory of Computation. PWS Pub-
lishing Company, 1997.

[19] Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algo-
rithms to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs. SIAM J. Comput., 13(3):566–
579, 1984.

[20] Mihalis Yannakakis. Computing the minimum fill-in is NP-complete.
SIAM J. Algebraic Discrete Methods, 2(1):77–79, 1981.

