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o All results shown at the lectures/exercises can be used without further justification
— but you must state precisely the results you are using.

e You may use the result of one exercise in the solution of another even if you did not
answer the exercise you are using.

e The percentages at each subproblem indicate only approximate weight at grading
and/or only anticipated difficulty/time needed for solving the problem.

1 Induction and SL (40%)

Let £* be the propositional language, relatively to some set of variables ¥, with the
connectives: A, —,—. Call a well-formed formula in this language “positive” if it does not
contain the connective —.

1.1. Define inductively the set of positive formulae P> C L.

1.2. Assume given the usual boolean tables for the three involved connectives. Define
inductively the extension of an assignment V : ¥ — {1, 0}, to all formulae V : £* — {1,0}.

1.3. Let V be the valuation given by V(z) = 1, for all z € ¥. Show by appropriate
induction that then also V(A) = 1, for every positive formula A € P*.

1.4. Give an argument (one, at most two sentences) why {A, —} is not an adequate set.

1.5. Let L be a new constant symbol with the semantic requirement that for every valuation
V : V(L) =0. Show that {—, L} is an adequate set of connectives.

1.6. Write the formula (¢ — —(=bV ¢)) V (-b — —a) in DNF and CNF. (Preferably, in a
shortest possible way.)

2 FOL (40%)

Consider the three following closed formulae (i.e., schemata, where A, B stand for arbitrary

formulae with at most z free):
a) Vz.(A(x) — B(z)) b) (Vz.A(z)) — (Vz.B(z)) c¢) (Fr.A(x)) = (F2.B(x))

2.1. Which of these three formulae imply logically which other ones? For each such impli-
cation give a proof, while for each missing one give a counter-example.

2.2. Write each formula in Prenex Normal form — for b) and ¢) give two such forms.



2.3. Is any of these three formulae valid? Either give a proof (for the formulae for which
the answer is ‘yes’) or provide a counter-example (when the answer is ‘no’).

2.4. Is any of these three formulae implied logically by the formula F': Vz(A(z) — A(x))?
(Give a shortest available answer.)
3 Meta-argument (20%)

Let ¥ be a (not necessarily finite) set and I'y A C ¥ range over its finite subsets. We
consider two axiomatic systems for deriving expressions of the form I' FA:
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3.1. Using appropriate induction(s) show that for any I', A we have: I' =, A iff T A.
3.2. Is the relation -, decidable? Give a precise argument. Is k5 decidable?

3.3. If we allow ', A to be infinite, the equivalence from 3.1. does not hold. Instead,
there is only one-way implication. Say which one and explain why.

3.4. Is the relation -, decidable, when I'; A may be infinite? Give a precise argument.
Good luck!
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Gentzen’s system for FOL
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Problem 1 — solution

1.1. ¥ CPand if A,B € P then also AN B and A — B € P.
1.2. V(z) =V(z) forall z €
V(AAB) = V(A)AV(B) and V(A — B) = V(A)—=V (B), where the underlied symbols
represent the functions from the respective boolean tables.
1.3. V(x) = V(z) = 1 by assumption on V.
V(AANB) =V (A)AV(B) Z1A1 =1
V(A= B)=V(A)=V(B)=1=1=1
1.4. By the prvious point, any formula F' over these two connectives with only a single

variable x will, under the assignment V(z) = 1 evaluate to V(F) = 1. Hence, it cannot
possibly define unary negation.

1.5. Defining —(z) = & — L, we verify easily that we obtain the boolean table for negation.
Since {—, 1} is adequate, so is the set {—, L} which allows to define —.

1.6. (maV (bA=c))V(maVb) & —aV (bA-c)V (—-aVb)

which is in DNF. But since b A =¢ — b, we can simplify to —a V b. This is then both
DNF and CNF.
Problem 2 — solution

2.1. a — b and ¢, which can be verified using Gentzen proofs (and then referring to its
soundness), e.g.:

A(z) = B(

2),A(@) by B()
Vi (A(z) = B(x)), A(z) 5 B(x)
Vz(A(r) = B(r)), A(z) t; 3B(x)
(A(z) = B(z)),3zA(z) t 3zB(z)

b 4 a (as seen many times at the lectures), and neither b — c¢. E.g., the structure M,
with the interpretation domain {a,b}, AM = {a} and BM =), is such that M = b (since
M ¥ VzA(x)), but M £ c. Also, M [~ a.
c + b nor a. To falsfiy implication to a, let M have the domain as above, but with
= {a} and BM = {b}. Then M |= ¢ but M [~ a. To falsify the implication to b, let N
be as M only with an extended AN = {a,b}. Then N |= ¢ but N F b.

2.2. a) is in PNF.

b) JxVy(A(z) — A(y)) or VyIz(A(z) = A(y))

c) JaVy(A(y) — A(z)) or Vydz(A(y) — A(z))
2.3. a and c are not valid by the counter-examples for implications from b and b is not
valid by the one for the implication from c - 2.1.

2.4. Since none of these formulae are valid, none is logically implied by F, since F = X,
ie, VM : M E F — X, would imply validity of X, since VM : M |= F.



Problem 3 — solution

3.1. System , contains no rules, so

la) we show I' by A = I' i A by induction on the total length ! of the I" and A. The
shortest case is [ = 2, i.e.,, {A} k, {A}, which is also an axiom in {A} K {A}. The
induction step for [ + 1 has two cases:

i) We have I' U {A} k, A. Without loss of generality, we may assume that I' k-, A (if
it is A that occurs both in I" and A, we may rewrite it as I U {B} k, A, where
IMu{B} =TU{A} and I'"+, A.) By IH, we have I' ; A and by an application of
rule 1) obtain T'U {A} k A.

ii) We have I' b, AU {A} and, as in i), assume that ' F, A and by IHT' k A. An
application of rule 2), yields I' i AU {A4}.

1b) We show I' iy A = T' i, A by induction on the length [ of the proof. All axioms
{A} ks {A} are obviously in k. For a proof of lenght [+ 1, IH allows us to assume that for
the assumption of the last rule, I' b A, we also have I -, A. This means that TN A # O.
But then also (TU{B})NA # @ and 'N (AU {B}) # @, i.e., both are in k.

3.2. Membership in F;, is decidable. In F, we have two finite sets I' = {g1, g2, ..., g, } and

A ={dy,ds,...,d,}. Take g; and compare it to each element in A. If you find it there,

i.e., find a d; = g1, stop with answer YES. If not, do the same with g5, etc. until you find

one of g;’s in A (then return YES), or else you empty the whole I" — then return NO.
Since -, = k4, this shows that 5 is decidable as well.

3.3. If I', A may be infinite, we only have implication 1b). Since any proof must be finite,
the system B can generate only finite strings, i.e., only finite sets of formulae.

3.4. Take as A the set of codes of pairs (M, w) such that M (w) halts. It is an infinite
set (also, recursively enumerable). Now, if we could decide I' i, A, we also could decide
{{M,w)} k4 A, ie., (M,w) € A, which is the Halting problem. But it is undecidable,
hence so is k.



