Universitetet i Bergen

Det matematisk-naturvitenskapelige fakultet

Examination in : INF-227 Introduction to logic

Date : 26 May 2009 Time : 9:00 - 12:00

No. of pages : 2 Auxialiary materials : None

- All results shown at the lectures/exercises can be used without further justification
 but you must state precisely the results you are using.
- You may use the result of one exercise in the solution of another even if you did not answer the exercise you are using.
- The percentages at each subproblem indicate only approximate weight at grading and/or only anticipated difficulty/time needed for solving the problem.

1 Induction and SL (40%)

Let \mathcal{L}^{Σ} be the propositional language, relatively to some set of variables Σ , with the connectives: $\wedge, \rightarrow, \neg$. Call a well-formed formula in this language "positive" if it does not contain the connective \neg .

- **1.1.** Define inductively the set of positive formulae $\mathcal{P}^{\Sigma} \subset \mathcal{L}^{\Sigma}$.
- **1.2.** Assume given the usual boolean tables for the three involved connectives. Define inductively the extension of an assignment $V: \Sigma \to \{1,0\}$, to all formulae $\overline{V}: \mathcal{L}^{\Sigma} \to \{1,0\}$.
- **1.3.** Let V be the valuation given by $V(x) = \mathbf{1}$, for all $x \in \Sigma$. Show by appropriate induction that then also $\overline{V}(A) = \mathbf{1}$, for every positive formula $A \in \mathcal{P}^{\Sigma}$.
- **1.4.** Give an argument (one, at most two sentences) why $\{\land, \rightarrow\}$ is not an adequate set.
- **1.5.** Let \bot be a new constant symbol with the semantic requirement that for every valuation $V : \overline{V}(\bot) = \mathbf{0}$. Show that $\{ \to, \bot \}$ is an adequate set of connectives.
- **1.6.** Write the formula $(a \to \neg(\neg b \lor c)) \lor (\neg b \to \neg a)$ in DNF and CNF. (Preferably, in a shortest possible way.)

Consider the three following closed formulae (i.e., schemata, where A, B stand for arbitrary formulae with at most x free):

a)
$$\forall x.(A(x) \to B(x))$$
 b) $(\forall x.A(x)) \to (\forall x.B(x))$ c) $(\exists x.A(x)) \to (\exists x.B(x))$

- **2.1.** Which of these three formulae imply logically which other ones? For each such implication give a proof, while for each missing one give a counter-example.
- **2.2.** Write each formula in Prenex Normal form for b) and c) give two such forms.

- **2.3.** Is any of these three formulae valid? Either give a proof (for the formulae for which the answer is 'yes') or provide a counter-example (when the answer is 'no').
- **2.4.** Is any of these three formulae implied logically by the formula $F : \forall x (A(x) \to A(x))$? (Give a shortest available answer.)

3 Meta-argument

(20%)

Let Σ be a (not necessarily finite) set and $\Gamma, \Delta \subseteq \Sigma$ range over its finite subsets. We consider two axiomatic systems for deriving expressions of the form $\Gamma \vdash \Delta$:

	system \mathcal{A}	$\operatorname{system} \mathcal{B}$
AXIOMS	$\Gamma \vdash_{\mathcal{A}} \Delta \text{iff } \Gamma \cap \Delta \neq \emptyset$	$\{A\} \vdash_{\mathcal{B}} \{A\} \text{iff } A \in \Sigma$
Rules		1) $\frac{\Gamma \vdash_{\mathcal{B}} \Delta}{\Gamma \cup \{B\} \vdash_{\mathcal{B}} \Delta}$ for any $B \in \Sigma$
		2) $\frac{\Gamma \vdash_{\mathcal{B}} \Delta}{\Gamma \vdash_{\mathcal{B}} \Delta \cup \{B\}}$ for any $B \in \Sigma$

- **3.1.** Using appropriate induction(s) show that for any Γ, Δ we have: $\Gamma \vdash_{\mathcal{A}} \Delta$ iff $\Gamma \vdash_{\mathcal{B}} \Delta$.
- **3.2.** Is the relation $\vdash_{\mathcal{A}}$ decidable? Give a precise argument. Is $\vdash_{\mathcal{B}}$ decidable?
- **3.3.** If we allow Γ, Δ to be infinite, the equivalence from **3.1.** does not hold. Instead, there is only one-way implication. Say which one and explain why.
- **3.4.** Is the relation $\vdash_{\mathcal{A}}$ decidable, when Γ, Δ may be infinite? Give a precise argument.

Good luck! Michał Walicki

Gentzen's system for FOL _

1. $Axioms: \Gamma \vdash_{g} \Delta \quad whenever \quad \Gamma \cap \Delta \neq \emptyset$

Problem 1 – solution

- **1.1.** $\Sigma \subset \mathcal{P}$ and if $A, B \in \mathcal{P}$ then also $A \wedge B$ and $A \to B \in \mathcal{P}$.
- **1.2.** $\overline{V}(x) = V(x)$ for all $x \in \Sigma$

 $\overline{V}(A \wedge B) = \overline{V}(A) \underline{\wedge} \overline{V}(B)$ and $\overline{V}(A \to B) = \overline{V}(A) \underline{\to} \overline{V}(B)$, where the underlied symbols represent the functions from the respective boolean tables.

1.3.
$$\overline{V}(x) = V(x) = \mathbf{1}$$
 by assumption on V . $\overline{V}(A \wedge B) = \overline{V}(A) \triangle \overline{V}(B) \stackrel{\mathbb{H}}{=} \mathbf{1} \triangle \mathbf{1} = \mathbf{1}$ $\overline{V}(A \to B) = \overline{V}(A) \triangle \overline{V}(B) \stackrel{\mathbb{H}}{=} \mathbf{1} \triangle \mathbf{1} = \mathbf{1}$

- **1.4.** By the prvious point, any formula F over these two connectives with only a single variable x will, under the assignment $V(x) = \mathbf{1}$ evaluate to $\overline{V}(F) = \mathbf{1}$. Hence, it cannot possibly define unary negation.
- **1.5.** Defining $\neg(x) = x \to \bot$, we verify easily that we obtain the boolean table for negation. Since $\{\to, \neg\}$ is adequate, so is the set $\{\to, \bot\}$ which allows to define \neg .
- **1.6.** $(\neg a \lor (b \land \neg c)) \lor (\neg a \lor b) \Leftrightarrow \neg a \lor (b \land \neg c) \lor (\neg a \lor b)$

which is in DNF. But since $b \wedge \neg c \to b$, we can simplify to $\neg a \vee b$. This is then both DNF and CNF.

Problem 2 – solution

2.1. $a \to b$ and c, which can be verified using Gentzen proofs (and then referring to its soundness), e.g.:

$$\vdots$$

$$A(x) \to B(x), A(x) \vdash_{\mathcal{G}} B(x)$$

$$\forall x (A(x) \to B(x)), A(x) \vdash_{\mathcal{G}} B(x)$$

$$\forall x (A(x) \to B(x)), A(x) \vdash_{\mathcal{G}} \exists x B(x)$$

$$\forall x (A(x) \to B(x)), \exists x A(x) \vdash_{\mathcal{G}} \exists x B(x)$$

b $\not\rightarrow$ a (as seen many times at the lectures), and neither b \rightarrow c. E.g., the structure M, with the interpretation domain $\{a,b\}$, $A^M=\{a\}$ and $B^M=\emptyset$, is such that $M\models b$ (since $M\not\models \forall xA(x)$), but $M\not\models c$. Also, $M\not\models a$.

 $c \not\to b$ nor a. To falsfiy implication to a, let M have the domain as above, but with $A^M = \{a\}$ and $B^M = \{b\}$. Then $M \models c$ but $M \not\models a$. To falsify the implication to b, let N be as M only with an extended $A^N = \{a, b\}$. Then $N \models c$ but $N \not\models b$.

- **2.2.** a) is in PNF.
 - b) $\exists x \forall y (A(x) \rightarrow A(y))$ or $\forall y \exists x (A(x) \rightarrow A(y))$
 - c) $\exists x \forall y (A(y) \rightarrow A(x))$ or $\forall y \exists x (A(y) \rightarrow A(x))$
- **2.3.** a and c are not valid by the counter-examples for implications from b and b is not valid by the one for the implication from c 2.1.
- **2.4.** Since none of these formulae are valid, none is logically implied by F, since $F \Rightarrow X$, i.e., $\forall M : M \models F \rightarrow X$, would imply validity of X, since $\forall M : M \models F$.

Problem 3 – solution

- **3.1.** System $\vdash_{\mathcal{A}}$ contains no rules, so
- 1a) we show $\Gamma \vdash_{\mathcal{A}} \Delta \Rightarrow \Gamma \vdash_{\mathcal{B}} \Delta$ by induction on the total length l of the Γ and Δ . The shortest case is l = 2, i.e., $\{A\} \vdash_{\mathcal{A}} \{A\}$, which is also an axiom in $\{A\} \vdash_{\mathcal{B}} \{A\}$. The induction step for l + 1 has two cases:
 - i) We have $\Gamma \cup \{A\} \vdash_{\mathcal{A}} \Delta$. Without loss of generality, we may assume that $\Gamma \vdash_{\mathcal{A}} \Delta$ (if it is A that occurs both in Γ and Δ , we may rewrite it as $\Gamma' \cup \{B\} \vdash_{\mathcal{A}} \Delta$, where $\Gamma' \cup \{B\} = \Gamma \cup \{A\}$ and $\Gamma' \vdash_{\mathcal{A}} \Delta$.) By IH, we have $\Gamma \vdash_{\mathcal{B}} \Delta$ and by an application of rule 1) obtain $\Gamma \cup \{A\} \vdash_{\mathcal{B}} \Delta$.
 - ii) We have $\Gamma \vdash_{\mathcal{A}} \Delta \cup \{A\}$ and, as in i), assume that $\Gamma \vdash_{\mathcal{A}} \Delta$ and by IH $\Gamma \vdash_{\mathcal{B}} \Delta$. An application of rule 2), yields $\Gamma \vdash_{\mathcal{B}} \Delta \cup \{A\}$.
- 1b) We show $\Gamma \vdash_{\mathcal{B}} \Delta \Rightarrow \Gamma \vdash_{\mathcal{A}} \Delta$ by induction on the length l of the proof. All axioms $\{A\} \vdash_{\mathcal{B}} \{A\}$ are obviously in $\vdash_{\mathcal{A}}$. For a proof of length l+1, IH allows us to assume that for the assumption of the last rule, $\Gamma \vdash_{\mathcal{B}} \Delta$, we also have $\Gamma \vdash_{\mathcal{A}} \Delta$. This means that $\Gamma \cap \Delta \neq \emptyset$. But then also $(\Gamma \cup \{B\}) \cap \Delta \neq \emptyset$ and $\Gamma \cap (\Delta \cup \{B\}) \neq \emptyset$, i.e., both are in $\vdash_{\mathcal{A}}$.
- **3.2.** Membership in $\vdash_{\mathcal{A}}$ is decidable. In $\vdash_{\mathcal{A}}$ we have two finite sets $\Gamma = \{g_1, g_2, \ldots, g_n\}$ and $\Delta = \{d_1, d_2, \ldots, d_m\}$. Take g_1 and compare it to each element in Δ . If you find it there, i.e., find a $d_i = g_1$, stop with answer YES. If not, do the same with g_2 , etc. until you find one of g_i 's in Δ (then return YES), or else you empty the whole Γ then return NO.

Since $\vdash_{\mathcal{A}} = \vdash_{\mathcal{B}}$, this shows that $\vdash_{\mathcal{B}}$ is decidable as well.

- **3.3.** If Γ , Δ may be infinite, we only have implication 1b). Since any proof must be finite, the system \mathcal{B} can generate only finite strings, i.e., only finite sets of formulae.
- **3.4.** Take as Δ the set of codes of pairs $\langle M, w \rangle$ such that M(w) halts. It is an infinite set (also, recursively enumerable). Now, if we could decide $\Gamma \vdash_{\mathcal{A}} \Delta$, we also could decide $\{\langle M, w \rangle\} \vdash_{\mathcal{A}} \Delta$, i.e., $\langle M, w \rangle \in \Delta$, which is the Halting problem. But it is undecidable, hence so is $\vdash_{\mathcal{A}}$.