
Visualization vs. specification in diagrammatic
notations: A case study with the UML

Full version of 4pp. poster published in Diagrammatic Representation and Inference. 2nd Int.
Conf. on the theory and applications of diagrams, Diagrams’2002. Eds. M. Hegarty, B. Meyer,

N. Hari Narayanan. Springer LNAI No.2317, 2002, pp. 112-115

Zinovy Diskin�

Frame Inform Systems, Ltd., Riga, Latvia
Shulman & Kaufman, Inc., Detroit, USA

zdiskin@acm.org

Abstract. It is useful to see a notation as a visualization on the top of specification
core. The latter deals with semantic meaning of notational constructs while the
former is about its presentation (a user interface to specification). In the paper,
this general paradigm is applied to a few major constructs used in the UML class
diagrams: various sorts of associations between classes, including multi-ary and
qualified.

A key peculiarity of the approach is that semantic meaning of notational constructs
is also specified in a graphical (yet formal) language – the language of generalized
sketches adapted from category theory. Then an UML class diagram appears as
a visual abbreviation of semantic sketch hidden in it. By comparing two graphi-
cal images – the diagram and the sketch – one can analyze the UML notational
mechanism and correct it towards better presentation of the intended semantic
meaning.

1 Introduction

It was noted in [6] that

discussions among computer scientists about notation can be more heated and
protracted than discussions about issues usually considered more substantive.
This suggests there may be more to notation than is admitted in phrases like
”mere” syntax and ”syntactic sugar”.

And indeed, good notation is an invaluable means to communicate and discuss a problem
and, moreover, to reason about the problem. Correspondingly, poor notation blocks these
possibilities and enforces one to struggle with peculiarities of the notation rather then
the problem. And even worse, poor notation can damage the conceptual framework used
in the problem area and thus mislead one into a ”linguistic swamp” of pseudo-problems
caused by use of improper language: they at once disappear with a proper formulation
(an illustrating example will be demonstrated in the paper).

Software engineering is really saturated with diagrammatic notations: they are in-
vented, grow and expanded, mature (and begin to struggle between themselves). Never-
theless, despite a lot of attention, notation design is still an art rather than technology
and it seems that making it more technological would be helpful. However, it is a highly
non-trivial issue, as non-trivial as any other attempt to bring technology in an area very
much determined by psychological and sociological factors.

� Supported by Grants 93.315 and 96.0316 from the Latvia Council of Science

So, the first step on this way might be very modest: to collect a certain amount of
notational samples approved and used by experts, and try to view them in some systematic
way, at least try to objectify why a notational construct should be considered good or
bad. To do that, we need some scale, or template, against which notational samples might
be evaluated and compared. In fact, we need a system of templates in correspondence
with a system of factors – technical, psychological, social, cultural, which any complex
notation features. Among these templates, a major one should be a semantic template on
which notational constructs are to be evaluated w.r.t. how well they present the intended
semantic meaning. After all, a minimal must of a notational construct is to present –
denote! – some intended meaning well.

So, let D be a diagrammatic construct, M(D) its intended semantic meaning and the
question is how to evaluate the quality of D as a presentation of M(D). A major problem
here is that M(D) is often defined in informal and far non-elementary terms making
decomposition and analysis of M(D), and correspondingly D, a very difficult task. In
other words, M(D) and D appear as holistic entities difficult to analyze and reason, and
D serves as a sort of illustrated M(D)’s definition rather than M(D)’s representation.

A treatment for the problem could consist in building a formal semantics for D, that
is, describing M(D) in abstract terms of some formal language and thus viewing M(D)
as composed from elementary blocks offered by the language. So, M(D) is described by
some formal specification S having a certain structure against which D can be evaluated
as a representation of this structure. For example, we can evaluate the quality of D w.r.t.
of how much of that structure is preserved in D, or how adequately it is represented,
or how suggestive is D for recovering specification S hidden in it. Thus, S appears as a
semantic invariant of M(D) while D is its changeable user-oriented representation, a user
interface to S.

The idea itself is clear enough, and actually was tried not once in the literature.
However, it turned out hardly effective for diagrammatic notational mechanisms. The
point is that popular formal languages normally used for building formal semantics –
first-order logic and the like, Z, OCL [8] and others – are string-based formalisms so that
S is a set of linear logical formulas (strings). Then correlations between a diagrammatic
visual representation D and the underlying specification S are so fancy that one can hardly
extract much useful information from their comparison.

The situation principally changes when for formalizing M(D) we use the framework of
arrow diagram logic (ArrDL) and specify M(D) in terms of abstract sets and mappings.
Then the formal specification S is also graphical and can be arranged in a special graph-
based format of sketch. The latter is, roughly, a directed graph some fragments of which
are marked with predicate symbols taken from a predefined signature. (The term sketch
and methodology of specifying structures by sketches are taken from categorical logic
[1], see also [4] for a brief presentation). The result is that we have two diagrammatic
specifications: the diagram D and the sketch S, which can be related logically and visually.
Moreover, for a reasonable D we might even expect some graphical similarity between D
and S1 so that D appears as a sort of visual abbreviation of S. On this base we can start
to analyze D and reason about its quality as a representation.

What was just described may sound too hypothetical, and it is indeed so without
examples. The goals of the present paper are thus two-fold. On one hand, we will see how
the general schema above works in a particular case of diagrammatic notations really used
in practice, and take for this a few major UML’s constructs as samples to analyze. On the
other hand, analyzing the UML notational mechanism is important by itself. The UML

1 at least, it was observed in practice of applying sketches to software engineering problems

2

is an industrial standard in active development2 and concrete recommendations towards
improving the UML’s notational mechanism, which we will derive from its sketch analysis,
are valuable as such.

Sketching semantics, that is,
its ArrDL-formalization in

terms of sets and mappings

formalization

ske

UML diagram, D

M [D]

Sketch of D, S = ske M [D]

Associations, Aggregations,
Compositions, Qualifications,

….. ……

[inverse]
[1-1]

- Sets / Variable sets,
- Mappings,

- Diagram predicates

ArrDL’s universe:

Visualizing sketch
(concrete syntax)

Sketching diagram
(abstract syntax)

Graphic
presentation

M [D]

Semantic
meaning

vis

Semantics of
sketches

UML’s universe:

Fig. 1. Sketching UML-diagrams: general schema

The general schema of our work in the paper is presented on Fig. 1. We start with an
UML diagrammatic construct D having a clear (yet informal) semantic meaning M(D).
Then we formalize M(D) in terms of abstract sets and mappings – we will say sketch
M(D), and specify our formal refinement M of M(D) by a graphical image, sketch S. Then
we compare the diagram and the sketch and get some recommendations on improving
notation towards better presenting the sketch, that is, the intended semantic meaning of
D. Finally, we try to think out the lesson of D-S comparison in more general terms and
formulate some general principles of a reasonable notational design.

Remark. A crucial question to the schema on Fig. 1 is whether the sketch language is
sufficiently expressive to capture the meaning of the UML’s constructs. The answer is
affirmative (and, in view of extreme brevity of the sketch pattern, somewhat surprising):
it was proven in CT that any formal construction can be specified by a sketch and thus,
as soon as the meaning of an UML diagram is somehow formalized, it can be specified
by a sketch as well. Of course, this principle possibility does not give any clue to how
to formalize semantic meaning of a particular UML’s construct and in each case some
heuristic elaboration is needed.

The main work here was performed in [3], where an adequate formal semantics for
each sort of association constructs used in the UML is built. It is shown in [3] that a really

2 preparing the next version, UML 2.0, qualitatively enhancing the standard, is currently a hot
issue for the community

3

adequate semantics for associations can be built only in the framework of variable sets,
that is, sets whose extent changes with time. Nevertheless, in the present paper we will
work in the world of ordinary sets and mappings – the static projection of the variable set
world. It is sufficient for our goals of outlining a methodology of analyzing diagrammatic
notations in general, and, on the other hand, does allow us to see a few important ideas
on improving the UML’s notation in particular.

The rest of the paper is organized as follows. In the next section we consider a very
simple example of sketching an UML diagram and consequent notational analysis – just
to show how our methodology can work. Section 3 is central, their a few types of asso-
ciation diagrams in the UML are examined along the lines we described. Two important
consequences of the examination are (i) the solution of the infamous problem of multi-
plicities for N-ary associations and (ii) specifying constraints to qualified association, they
are considered in sect. 4. Some attempt to summarize the results towards a more general
view on the issue is outlined in conclusion.

2 Sketching UML diagrams: Getting started.

The notion of association between object classes appears to be a major construct in any
reasonable language of conceptual modelling. As stated in [10],

Associations are the glue that ties a system together. Without associations, there
are nothing but isolated classes that don’t work together.

Similarly, mappings between sets form a key ingredient of the sketch view on the world.
And even more, there is nothing in the world seeing through the sketch pattern apart sets
and mappings. So, we begin with entering some notation and terminology for mappings.

2.1 Mappings between sets: notation and terminology

Given sets X,Y , we assume a general mapping between them f : X → Y to be partially-
defined and multi-valued. The domain of f is the set Dom(f) ⊆ X of all x ∈ X for which
x.f is defined, and if x ∈ Dom(f) then x.f is a non-empty subset of Y . Here we write x.f
for the value of f at the argument x, we will also write f(x) and sometimes f.x for that.
If f is a priori known to be single-valued then we consider x.f an element of Y rather
than a singleton subset of Y . The sets X and Y will be called the source and the target
of f and denoted by �f and f� respectively. We call an arrow f totally-defined or just
total if Dom(f) = �f .

Table 1. Properties of a general mapping f : X → Y . Mapping g : Y → X is its inverse.

Semantics
f is partial and
multi-valued

1

f is single-
valued

2

f is total (hence,
g is covering)

3

f is covering
(hence, g is total)

4

f is injective
(hence, g too)

5

f is a total single-
valued cover

6

Sketch
notation

1

UML
notation

2
*

g

1..* 0..1

g

**

[inv]
g

f

g

f
X Y X Y

f
X Y

f
X Y

g g

f
X Y

X Y
fgf

0..1

f

[1-1]

[1-1]

**X Y
fg

1..**X Y
fg

X Y
g

0..1

X Y

X Y
fg

1
X Y

fg
1..*

Dually to the notion of domain, the range of f , Rg(f), is defined to be the set of all
y ∈ Y s.t. y ∈ x.f for some x ∈ Dom(f). Sometimes we will also write f(X) for Rg(f)

4

and call it the image of X under f . We will call f a cover if Rg(f) = f�, this property
is dual to being totally-defined.

A single-valued mapping is called injective or 1-1 if for any two different x, x′ ∈ Domf ,
x.f and x′.f are also different.

Finally, if we have two mappings f : X → Y and g : Y → Z such that f� = �g, then
f and g can be composed into a mapping (f ; g) : X → Z defined in an evident way: for
any x ∈ domf , x.(f ; g) ⊂ Z is defined to be the union of all sets y.g for y running over
x.f ∩ Dom(g).

To denote properties of mappings just described, we need some consistent notation,
a suitable variant is presented in Table 1 in cells (1,1)...(1,5). The mapping g inverse to
f is also shown, its properties are derived from f ’s properties. We will discuss this arrow
notation in detail later.

2.2 Sketching a simple UML universe.

Consider the UML diagram D1 in the 1st row of Table 2. Nodes denote object classes
and the line segment between them denotes a binary associations; note also multiplicity
constraints on the association ends (we use [10] as a standard reference to the UML:
notation, terminology and explanations). Names on nodes and association ends make
semantics of the diagram (in the static set framework) clear, and its abstract specification
is presented on the right by sketch S1. We have two abstract sets Person and Company,
and two mutually inverse mappings between them. Since some multiplicity constraints
are supposed to hold for the association as specified on the UML diagram, the mappings
have special properties denoted by the corresponding special tails and heads explained in
Table 1.

The fact that the two mappings constituting the association are mutually inverse is
expressed by declaring the corresponding predicate [inverse] for them. Such a declaration
is visualized by ”hanging” the predicate label [inv] on the diagram of the two arrows (see
[4] for precise meaning of ”hanging” a marker onto a diagram). Note also that special arrow
heads, tails and bodies used in the sketch are nothing but predicate markers/labels hung
on the arrows. So, sketch S1 consists of two nodes, two arrows and three diagram predicate
declarations: [total](employs), [cover](worksFor) and [inverse](employs,worksFor).

2.3 Visualization vs. specification

Compare diagram D1 and sketch S1 in Table 2: the former appears as a special visual
abbreviation of the sketch specification.

This abbreviation seems to be apt: it replaces three items (two arrows and the marker)
by one item in a natural and clear-how-to-deabbreviate way, the more so that the UML
allows (and encourages) naming association ends – these names are nothing but names
of the arrows hidden in the association. Note, however, that if we consider composition
of associations, then the absence of arrows could be a disadvantage.

An important aspect of the construct is how multiplicity constraints are denoted.
The UML notation for them is clear and unambiguous, still a few (somewhat speculative)
points could be discussed.3 Note, first of all, that such properties of mappings / association
ends as being total or covering are qualitative while in the UML they are denoted by
numbers. A result is that the user should make (a quite trivial yet) computation to recover

3 It seems that some flavor of speculation is difficult to avoid in discussing notation: too much
in the issue is determined by too subjective factors like one’s habits, preferences, cultural
background etc.

5

the meaning and so a great advantage of diagrammatic notations – their gestalt-like
perception – is weakened. It seems reasonable to denote mappings’ qualitative properties
somehow qualitatively, for example, like it is done in our notation introduced on Table 1.

An additional benefit of our visualization is that dual arrow properties of being total
and covering are visualized somewhat dually too. If we enter some hypothetic duality
predicate [><] , we may write this property of our visualization quasi-formally:

P1

S
[><] P2 implies (visP1)

V
[><] (visP2),

where Pi, i = 1, 2, denote the predicates in question and
S

[><] ,
V

[><] are realizations
of the duality predicate in spaces S and V of, respectively, specification and visualization
items. Further we will omit superscripts S, V in similar formulas.

Also, with our choice of visualization means, a combination of arrow properties taken
form the set {total, cover, single-valued} is visualized by the corresponding combination
of visualizations (example is in cell (1,5) of Table 1). So, a useful principle of visual
superposition holds: visualization of predicate superposition P1 + . . .+Pn is superposition
of the corresponding visualizations:

vis(P1 + . . . + Pn) = visP1 + . . . + visPn.

3 The Construct of Key: A Key Construct for the UML Class
Diagrams.

Though less frequently than binary associations, multi-ary associations between object
classes often appear in visual models. The importance of the construct was emphasized
and explicitly designated so early as in the basic entity-relationship model [2] under the
name of relationship. Since that a lot was written about multi-ary associations but still
their proper general treatment – via the arrow diagram predicate of separating family of
mappings or a key (see below) – is not known to the community.

3.1 General Format

Let’s consider a family of single-valued mappings, fi : X −→ Yi, (i = 1, . . . , n) with a
common source set X. We will call such a configuration (n-)span with X the source of
the span and fi its legs. Sometime we will refer to a span by calling only its source if the
legs are clear from the context.

A span is called separating, or a key (to set X), or else [1-1]-span, if all the mappings
fi are total and separate the elements of X in the following sense:

[1-1] for any x, x′ ∈ X, x �= x′ implies x.fi �= x′.fi for some i.

Any span (not necessarily separating) determines a tuple-mapping

f = [f1 . . . fn] : X −→ Y1 × · · · × Yn,

that sends an element x ∈ ⋂
Domfi to the tuple [x.f1, . . . , x.fn] ∈ Y1×· · ·×Yn. Now it is

easy to see that a family (f1, . . . , fn) is separating iff the mapping f = [f1 . . . fn] is total
and one-one. This explains notation [1-1] for the condition above.

6

What we have just described can be graphically specified in the sketch language with
the machinery of diagram operations, as shown on Fig. 2. Briefly, a diagram operation is
an operation whose input and output are diagrams (configurations) of nodes and arrows.
To distinguish basic items form derived, the former are shown with a filler and solid lines
while the latter are not filled and drawn with dashed lines.4 In addition, names of derived
items are typed by grey color and prefixed with slash (this latter convention is borrowed
from the UML).

Marker [1-1] hung on a span means that the
span is separating. Marker [prod> denotes
the diagram operation of taking

Cartesian product: its input consist of a set of nodes
(the sets Yi in our case) and output is a [1-1]-span
whose legs go into the input sets.

The characteristic property of Cartesian products is
specified by another diagram operation, [tuple>. Its
input consists of a Cartesian span, (Y1×…× Yn;
/p1,…,/pn) in our case, and another span (X; f1,…,fn),
whose legs have the same targets. The output is an
arrow from X into the source of Cartesian span. In
addition, if the span X is [1-1], then the arrow derived
by the operation [tuple> is one-one.

/[f1…fn]

/pn/p1

……

f1 fn

Y1 Yn

[1-1]

[1-1]

/(Y1 ×…× Yn)

prod

…

…

X

[1-1]
tuple

Fig. 2. Key spans and their characteristic property.

So, if a set X is equipped with a key (separating family), its elements are uniquely
identified by tuples and thus, X may be considered as a relation over sets Y1, ..., Yn up to
isomorphism. Conversely, if R ⊂ Y1, . . . , Yn is a relation, then the family of its projection
mappings is separating. Thus, in a sense, the notions of relation and set with a key are
equivalent.

3.2 . . . and its applications.

In the left column of Table 2 there are examples of simple UML-diagrams. Their meaning
is clear yet informal. In the right column are precise sketch specifications where the key-
predicate plays a really key role. We will consequently discuss each row of the table.

3.2.1 Association classes (row 2). As we have seen in sect. 2, an UML’s association is
nothing but a pair of mutually inverse mappings (row 1). These mappings have a common
graph that consists of pairs of objects linked by the mappings. Given an association, one
can build its graph, and even make it a class – the class of association – but anyway the
graph will appear as a derived item in the model (diagram). In contrast, the diagram D2

describes a situation when an association is considered a class with its own attributes and
operations from the very beginning. It means, first of all, that the set of links determined
by the association-as-a-pair-of-mappings is now of interest on its own, in other words, the
graph of the mappings becomes a basic rather than derived item with its own attributes
attached. This is exactly the contents of the sketch S2: all its items are basic and subjected
to the three (apart multiplicities) diagram predicate declarations: [inv], [1-1] and [graph].

As explained in sect. 3.1, the marker [1-1] induces that the objects of the class Job
can be identified with pairs (binary links) (C,P) with C a company and P a person. In
4 The mnemonics behind ”filled vs. blank” convention is as follows. In the database context,

extent of a basic node has to be stored while extent of a derived node can be computed and
thus does not need to be stored.

7

Table 2. Association diagrams as abbreviations of sketches

seat

[proj23;map>

duties

S5

S1

employs

[1-1]

[inv]

/sale

/xxx

/tshow psale

employee

[1-1]

duties

/d
oe

s

/d
on

eB
y

[inv]

D4: ternary association

D2: association class

S3

1 1

Company Person

employer

D3: reified association

Job

payment: Float
duties: String

/salary: Salary

[m
ap

>

[inv]

/worksFor

/employs

[float] [string]

/salary

employee

[p
ro

j>

payment

[1-1]

/Employment
employer

PersonCompany

Job

/worksFor

employer

/employs

[p
ro

j 1
2;

m
ap

>

Company Person

Job
payment: Float

Work

duties

payment

employee

S4

[inv]

[float]

[1-1]

Person

WorkJob

Company

{an instance J of
Job is uniquely
determined by the
triple (J.employer,
J.employee,
J.duties)}

/proj

employeeemployer

xxx

show

[1-1]

[1-1]

[inv]

date

Show

date: Date
seat: Integer

Ticket
sale0..1

1
[int]

Performance[date]

D5: qualified association

Ticket

Show

[1-1]

/tdate perf

Show
[date]
[int]×

×
/tdate = perf ; date
/tshow = perf ; show

[1-1]

tuple

prod

worksFor

∗ 1..∗
Company Person

salary: Float

Job

employs
[inv]

worksFor

employs

[graph]

[float]
salary

employeeemployer

S2

[1-1]

Company Person

Job

[inv]

worksFor

Company Person
worksFor

∗ 1..∗
Company Person

employs

D1: binary association

[1-1]

8

other words, the set Job is a binary relation over sets Company and Person. The marker
[graph] states that this relation is the graph of (either of) the mappings: employs and
worksFor.

3.2.2 Value domains. Note in sketch S2 the oval node labelled by [float]. This label is
not the name of the node but a predicate marker hung on it (i.e., on the diagram consisting
of the node only). This marker constrains the extent of any node on which it is hung to
be the same predefined set – value domain – of Float-numbers (and hence the name of
the node becomes non-interesting and can be suppressed). In fact, we can consider value
domains as 0-ary diagram operations producing nodes of known extent from empty input
diagrams.5 Attributes of a class are nothing but its mappings into value domains.

3.2.3 Reified and multi-ary associations (rows 3 and 4). Diagram D3 presents a
construct that is called reified association in the UML ([10]). An adequate semantics to
the construct can be given only in the variable set framework (see Remark at the end
of introduction) . As for its projection into the static sets world (our semantic universe
for the present paper), reified associations differ from ordinary association classes by that
they allow occurring the same link more than once into the class, that is, are multi-
relations (bags, cf. [10, p.159]). For example, if a Job-object J is uniquely determined by
the triple (J.employer , J.employee, J.duties), then the same pair (J.employer , J.employee)
may appear more than once in the class Job.

The corresponding abstract semantic specification is presented by sketch S3 where all
that we need is done by the marker [1-1] hung on the 3-span as shown. Then set Job
appear as a ternary relation over Company × Person × [string]. In addition, one can
extract from this ternary relation its binary projection on Company × Person (note the
marker [proj〉 of the corresponding diagram operation), and then present it by a pair of
mutually inverse mappings for which the relation is the graph (note the diagram operation
marker [map〉). One can also derive an attribute /salary of class Employment: for each of
its objects, E, the value E./salary is computed by adding payments for all jobs merged
into E.

Sketching diagram D4 is clear. A new object class Work appears on the stage and the
mapping duties becomes a reference rather than an attribute. The triple (employer,employee,duties)
remains to be a key to the class Job so that the latter again can be considered as a ternary
relation. In addition, two derived binary associations are presented in the sketch, they
can be computed as it was explained above.

3.2.4 Qualified associations (row 5). The UML diagram in the bottom row of the
table is taken from the book [10, p.48]. The association between classes Show and Ticket is
considered qualified because of the two attributes (qualifiers) framed in a smaller rectangle
attached to the corresponding association end. The intended meaning of the construct is
as follows. Any object from the class at the qualified end of am association, a Show-object
S in our case, together with a list of qualifiers’ values, say, d : Date and n : Integer ,
determines not more than one object at the other end of the association. That is, while
the value of S.sale is a set of Ticket-objects, expression S.sale[d, n] refers to only one (if
any) Ticket-object.

Sketch S5 specifies semantics in more detail. As it’s seen from the sketch specification,
actually we have two qualifications specified by key-predicates: Performance-objects are
identified by Shows qualified by dates and Tickets are identified by Performances qualified
by seats. By composing arrows as shown on the sketch (in the Ticket-box), we get two
5 In mathematical logic such empty-ary operations are usually called constants. Thus, value

domains are constants in a predefined signature of diagram predicates.

9

derived mappings going out of class Ticket. Evidently, the family (/tshow,/tdate,seat) is
also separating – note the derived predicate marker [1-1] declared for the 3-span. Owing
to that, mapping

/xxx = [/tshow , /tdate, seat] : Ticket → Show × [date] × [int]

is one-one (sect. 3.1) and, hence, its inverse sale is also one-one but is partially defined.
Now, comparing the diagram and the sketch we can see that the UML diagram actually
presents a view to sketch S5: it can be mapped into some fragment of S5’s augmentation
with derived items.

3.3 Visualization vs. specification.

We will begin with an on-the-surface analysis of Table 2 and then, in sect. 3.3.4, will try
to formulate some more general view.

3.3.1 Binary association class: lost arrows. Diagram D2 is a more or less direct
abbreviation of sketch S2. It has however some flaw in that two essential specification
items – projection arrows employer and employee – are suppressed and the user cannot
refer to them (simply because the diagram has no their names). This gap can lead to
specificational problems in more complex cases when, for example, an association class
participates in other associations and some constraints are imposed on the entire con-
figuration (unfortunately, space limitations does not allow us to consider an illustrating
example).

3.3.2 Attributes: arrows vs. strings. Another problem with the UML notation for
association classes is caused by specifying their attributes by listing them in the class node-
box. It is also an abbreviation since, as we have seen, an attribute is actually a mapping
from the class to a value domain. No doubts, it is a reasonable notational tip which
presents a set of attributes in a clear and compact way, much more compact than drawing
a bundle of arrows and their value-domain nodes. However, thinking semantically, an
attribute is an arrow and it may happen that some diagram predicate involves association
arrows and attribute arrows too, just what we have in the situation of sketch S3. In such
a case, explicit arrow presentation of the attributes involved becomes a must for a proper
visualization. This consideration shows that the same specification item can be visualized
differently (within the same notational system) in function of context in which the item
is visualized.

3.3.3 Qualified association: lost configuration. The bottom row of Table 2 presents
a far too strong abbreviation. Sketch S5 contains three basic nodes and five arrows while
the UML diagram D5 has only two nodes and four names for mappings involved: node
Performance with arrow show are missed in the diagram. It is difficult to discuss diagram
D5 as a visualization of sketch S5 because of their essential graphical dissimilarity. In
fact, as it was already said above, the diagram presents a view to the sketch and can be
mapped into not the sketch itself but into its augmentation with derived items.

One might argue that despite our critique, we were able to recover an actual specifica-
tion hidden in the diagram. However, it was possible only due to the fact that semantics
of the situation was clear from the very beginning owing to the names of the items in the
diagram. Problems of the UML’s way of visualizing qualified associations become explicit
when we consider possible constraints that might be added to qualifications. We will see
that in sect. 4.2 below.

10

3.3.4 Dissimilar visualizations of similar specifications. Comparison of the left
and right columns of Table 2 is extremely instructive. The right column is logically and
visually homogeneous, in fact, it presents a few variations of the same theme – identifying
objects by a [1-1]-family of mappings. In contrast, in the left column we have externally
different modelling constructs with quite different visualizations. Especially striking in
this sense is comparison of the 3rd and 4th rows. The only difference between sketches
S3 and S4 is that the target of arrow duties is a value domain in S3 and an object class
in S4. However, the visualizations D3 and D4 of these semantically very similar situations
are quite different.

An analogous situation we have with rows 2 and 4. Semantic specifications are similar
and differ only quantitatively: 2-ary association in S2 vs. 3-ary in S4. However, their
visualizations are essentially different: diagram D4 shows projection arrows of the relation
while diagram D2 does not present them, instead, mappings of the relation considered as
a graph are shown. This visualization ”twist” was so unfortunate that created a whole
(in)famous pseudo-problem of multiplicities for multi-ary associations, we will specially
consider it below in sect. 4.1.

Considerations above might be formulated in our quasi-formal language of vis-ske
mappings as vis’s incompatibility with some hypothetic similarity relations on the nota-
tional constructs: S3 ∼ S4 but visS3 �∼ visS4 and S2 ≈ S4 but visS2 �≈ visS4. However, this
material can be seen from a different perspective. One might argue that minor changes
in specification, say, when passing from sketch S3 to sketch S4, are nevertheless essen-
tial since they change the context. Correspondingly, if the UML diagrams visualize not
only specifications but also their context, the essential differences in them become more
understandable and justified.

We may even go further and try to make the notion of context more technical. For
example, the context of an item can mean occurrence of the item into some other speci-
fication construct, and that affects this item’s visualization. For instance, an attribute of
a class is specified and visualized by putting the corresponding string into the class’ node
frame-box unless it occurs into some diagram predicate. In the latter case, the attribute
must be visualized by an arrow going out of the class’ node. So, a specification appears to
be not a flat set of specificational items, rather, it is a complex system of specificational
substructures. (Actually, it is just a particular illustration of a major semiotic thesis that
signs always appear in sign systems, see [7] for a discussion). A proper visualization mech-
anism should smoothly map this complex system into a similar system of visualization
items.

4 Two characteristic examples of specification problems caused
by improper visualization.

As we have seen above, a few UML’s modeling constructs appear as just different visual
presentations of essentially the same semantic construction – a [1-1]-family of mappings.
However, it turned out that in some situations these visualizations obscure a quite clear
semantic picture and generate serious problems in understanding of visualized specifica-
tions. We will consider two characteristic examples.

4.1 Multiplicities for n-ary associations: Much ado about nothing.

The problem in the title appeared on the stage right after Peter Chen entered ER-diagrams
into the world of visual modeling, and since then until now is still discussed (sometimes
in a rather heated way) in the literature of both theoretical and industrial orientations.

11

Briefly, each of the ends of an N-ary association (each of the edges of an N-ary relationship)
is supposed to be attached with a pair of integers (m,n) (including * as a possible value)
specifying the potential number of values at the end when the values at the other n−1 ends
are fixed [9, p. 3-73]. This definition is compatible with binary multiplicity but the precise
meaning of the constraint for N ≥ 3 is not clear. More accurately, a few interpretations
were proposed, each having its own pluses and minuses, and what is the right concept of
the constraints is still a question debated in the literature.

The most complete survey of the problem can be found in [5], which refers to more
than ten recent papers specially devoted to the problem and to eight basic monographs
on conceptual modelling and OOA&D touching the problem. The authors of [5] carefully
analyze the existing approaches and on this base try to solve the problem. However, as
they themselves state in the conclusion, the problem still remains unsolved and present
an essential flaw in the UML 1.3.

There is nothing surprising in that failure. As soon as one has precise sketch specifica-
tion, the entire problem becomes at once understandable as a typical case of a ”linguistic
game” with ill-formed terms. In other words, the problem of multiplicities for N-ary asso-
ciations is actually a pseudo-problem caused by using an unsuitable specification language
rather than the subject matter as such.

Indeed, as soon as we specify an N-ary association by the corresponding arrow span
(the top row in Table 3), it becomes clear that multiplicity properties of the association
are nothing but multiplicity properties of its projection mappings. The latter are ordinary
mappings for which multiplicities have their ordinary meaning, and multiplicities of the
i-th projection are not anyhow related to multiplicities of the j-th. In addition, projec-
tion mappings are always totally defined and single-valued so that the only qualitatively
important property that can be declared for a projection arrow is whether it is covering.
The latter is indeed important: we have seen above that covering properties of projections
determine multiplicity properties of the binary associations between component classes
(see sketch S4 in Table 2 and its derived components). So, it is a must to specify covering
properties of projection arrows in visual models of N-ary associations. However, with the
UML’s way of specifying N-ary associations, one cannot express such properties (see, eg,
2nd row in Table 3).

Another aspect of N-ary associations which is also included into their multiplicity
properties actually have quite another nature. The point is that for a given N-ary asso-
ciation, that is, separating N-span (p1, . . . , pN), some combination of its projections, say,
pi1 , . . . , pik

, 1 ≤ i1 ≤ ik ≤ N , can also have the separation property (in the relational data
model terminology, the entire N-tuple of projections is then a superkey). For example,
the actual meaning of UML-diagram D3 in Table 3 is specified by sketch S3 (compare
it with sketch S1). However, the conventional approach (inherited by the UML) to this
type of constraints fails in a little bit more complicated situations. Consider, for exam-
ple, sketches S4A and S4B : they specify essentially different associations6 whose UML’s
representations coincide (diagram D4). In other words, the UML’s visualization cannot
separate two different specifications and the mapping vis is not one-one.

4.2 Constraints for qualified associations: As you like it.

As we have seen in sect. 3.2.4, an UML qualification diagram can be considered as a
very special visual abbreviation of sketch specification. The major problem with this
abbreviation is that semantically meaningful node and arrow are hidden and thus the
entire semantic picture is deformed. These hidden items may well have a substantial

6 S4B entails S4A but not the converse

12

Table 3. Multiplicities for N-ary associations

UML diagram Sketch with [1-1]-span predicate

*

D3

[1-1]

*

*
A

* 0..1
A

*

?

*

* *
A

A

[1-1]

A

[1-1]

A

S1

S3

S2

D1

D2

[1-1]

A S4B

[1-1]

A S4A

[1-1]

0..1
A

**

0..1
D4

?

semantic meaning rather than to play just an auxiliary role to explain what is qualification.
Also, they may play an important role in specifying additional constraints to qualified
associations, and without them such specifications become awkward – we will see that
below in the section.

In the left column of Table 4 there are UML’s qualification diagrams with various
additional constraints (these examples, besides D4, are taken from [10, pp.402-404]). The
intended meaning of the constraints is explained in the text-boxes between the columns
(also taken from [10]) . The precise semantics is specified by sketches in the right column.

As is well seen from the 1st row, the UML qualification diagram hides a semantically
substantial node (class) Entry and this obscures the semantic picture. Indeed, consider
the constraints C1 and C2. Their UML presentation involves a constraint ”same” with
unclear semantics; and probably this semantics will be different for diagrams D1 and D2.
At the same time, sketches S1 and S2 clearly show that the constraints in question are
nothing but multiplicity declarations for derived arrows obtained by arrow composition:
/fdir = entry ; dir and /fname = entry ;name. In the general situation, these mappings
should be multivalued (as is shown on sketch S0) since mapping entry is multivalued.
The message of sketches S1 and S2 is just to state that, respectively, /fdir is single-valued
or /fname is single-valued, that is, the constraint C1 or C2 holds. Also, sketch S2 shows
that the line segment ”same” on diagram D1 denotes, in fact, the operation of composing
association links (one of which is now shown on the diagram !), which produces the right-
hand-side association between nodes Directory and File. But even with sketch S2 it is
difficult to figure out semantics of ”same” in diagram D2.

13

Note, constraints C1 and C2 (as they are formulated textually) are very similar, and
their similarity is explicated by the pair of sketch specifications (S1, S2). In these sketches,
we have the same constraint (single-valuedness of a mapping) declared for a derived arrow
obtained in the same way by arrow composition as specified above. Not surprisingly that
sketches S1 and S2 are geometrically similar. In contrast, diagrams D1 and D2 are both
semantically and geometrically different. So, we again have the situation of S1 ≈ S2 but
visS1 �≈ visS2.

The situation becomes even worse when we consider the constraints C3 and C4. For
example, the intended meaning of C3 as it is explained in [10] is that a file may appear
only once within a directory. This is precisely expressed in sketch S3 which states that
the pair (E.dir , E.file) identifies an entry E in a unique way. Then (sect. 3.1), any pair
(D : Directory , F : File) either determines a unique entry (D,F).[dir ,file]−1 ∈ Entry , or
does not determine an entry at all. In the former case, the pair (D,F) determines also a
unique name (D,F).[dir ,file]−1.name ∈ [name]. Similarly, if a file may appear only once
under some name but may have different names in different directories (or even the same
directory), this is expressed by sketch S4 symmetrically to sketch S3.

As for the UML representation of these semantic situations, diagram D3 is taken from
[10] while D4 is built specially for the present paper because the situation C4 is not
considered in [10].7 Thus, constraints C3 and C4 are similar but the corresponding UML
diagrams are visually quite different. In addition, understanding semantics of diagram D3

seems to be not an easy issue.
In general, it is difficult to avoid a feeling that textual descriptions of the constraints

C1...C4 are much more clear than the corresponding UML diagrams, especially D2 and
D3. It looks like that these diagrams have resulted from an attempt to put quite clear
and simple semantic pictures into an unsuitable syntactical framework. Incidentally, [10,
p.404] itself states that

In practice, however, it is usually satisfactory to state the constraint textually,
with the qualified association shown graphically.8

At the same time, the sketch specifications in the right column of Table 4 show that
constraints to qualified associations can be quite naturally represented graphically, and in
an elegant and transparent way. The problems with UML’s representations are caused by
the fact that the constraints in question are essentially diagram predicates. In contrast,
their UML diagrammatic representations appear as a sort of graphic interfaces to string-
based logical statements. Here we have a particular case of a general phenomenon: a
graphic diagram visualizes a string-based statement. Such visualizations may be apt but
often they are awkward or/and obscure semantics.

5 Conclusion.

In the paper we have considered a few samples of examination of a pair D-S with D a
basic UML’s diagrammatic construct and S a sketch specifying (a formal refinement of)
D’s intended semantic meaning. We have observed a certain graphical similarity between
D and S, which allowed us to consider and analyze D as a visual abbreviation of S.

The results of our analysis are two-fold. On one hand, we have obtained a few im-
portant recommendations on improving the UML’s notation. The major one is that the
7 It seems to be not accidental. Though constraint C4 is symmetric to C3, and it is well seen from

comparison of sketches S3 and S4, this symmetry is obscured when one thinks of the situation
syntactically (as the UML enforces) rather than semantically (as suggested by sketches).

8 And, we’d add, the former is caused by that the latter is a poor notation.

14

Table 4. Constraints for qualification

Constraint C4:
file many (dir, filename)
file many directories
(file, name) 0 or 1 dir

Constraints C1:
file many (dir, filename)
file 1 directory
file many filenames

1

*

[inv]

0..1

1..*

0..1

1..*

1..*

0..1

*

0..1

0..1

1..*

D3

\fdir

Directory

File

filename: Name

1..*

0..1

Directory

File

filename: Name

Directory

File
filename: Name

filename: Name
{sam

e}

[name]

[inv]

[1-1]

[name]

[name]

<comp]

dir name

file entry

dir name

entryfile

dir name

file entry

[1-1]

[1-1]

\fname

[inv]

[comp>

Qualification
dir many files but
(dir, filename) 0 or 1file

without constraints:
file many (dir, filename)
file many dirs
file many filenames

Constraint C2:
file many (dir, filename)
file many directories
file 1 filename

{same}

D0 S0

D1 S1

D2 S2

Directory

Directory

Directory

Entry

Entry

Entry

File

File

Constraints C3:
file many directories,
file many filename,
(file, dir) 0 or 1 filename.

fname:Name

Directory

filename: Name

{same}

*

1

[1-1]

[inv]

[1-1]

dir name

file entry

[name]

File

Directory

File

Entry

Directory

filename: Name

1

[inv]

[1-1]

dir name

file

[name]

entry

File
D4

File

filename: Name

S4

[1-1]

Directory

Entry

S3

\fdir

\fname

File

15

UML will benefit greatly from adopting the basic notions of diagram predicate and dia-
gram operation. In particular, the predicate of [1-1] arrow span is invaluable for specifying
associations between classes.

On the other hand, we have tried to extract from our analysis some general notion
of notational mechanism as a visualization mapping vis : S → V between spaces S and V
of, respectively, specification and visualization items. Actually we have not specified V in
detail, and have specified only S’s components rather than S’s organization (while our
analysis has shown that V and S are hierarchically organized structures rather than flat
sets of items). So, this side of our considerations was very fragmentary and approximate.
However, we believe that it can be a starting point of future theoretical development.

Very likely that our results could be well interpreted and refined, and even formalized,
in terms of Goguen’s algebraic semiotics: spaces S and V are to be arranged as sign
systems and vis as a sign system morphism [7]. At any rate, viewing a diagram D as a
user interface to the underlying specification S – the viewpoint that algebraic semiotic
would suggest – is in perfect match with what we did in the paper. Then certain theoretical
foundations for the intentions we declared are already created and it remains only to apply
them. Anyway, it’s a theme of future research beyond the goals of the present paper.

References

1. M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall International
Series in Computer Science, 1995.

2. P.P. Chen. The entity-relationship model – Towards a unified view of data. ACM
Trans.Database Syst., 1(1):9–36, 1976.

3. Z. Diskin and B. Kadish. Variable set semantics for keyed generalized sketches: Formal
semantics for object identity and abstract syntax for conceptual modeling (55pp). To appear
in Data and Knowledge Engineering.

4. Z. Diskin, B. Kadish, F. Piessens, and M. Johnson. Universal arrow foundations for visual
modeling. In M. Anderson, P. Cheng, and V. Haarslev, editors, Diagrams’2000: 1st Int.
Conf. on the Theory and Applications of Diagrams, volume 1889 of Springer Lect.Notes in
AI, pages 345–360, 2000.

5. G. Génova, J. Llorens, and P. Mart́ınez. Semantics of the minimum multiplicity in ternary
associations in uml. In ”UML” 2001 – The Unified Modeling Language. Proc. 4th Int. Con-
ference, Toronto, Canada, 2001, volume 2185 of Springer Lect.Notes in Comp.Sci., pages
329–341, 2001.

6. J. Goguen. On notation. In TOOLS 10: Technology of Object-Oriented Languages and
Systems. Prentice-Hall, 1993.

7. J. Goguen. An introduction to algebraic semiotics, with applications to user in-
terface design. In C. Nehaniv, editor, Computation for Metaphors, Analogy and
Agents, pages II: 54–79. Univertsity of Aizu, 1998. The latest version is available at
http://ww-cse.ucsd.edu/users/goguen.

8. IBM. OCL Document Set, 1997. Available from URL:
http://www-4.ibm.com/software/ad/library/standards/ocl.html.

9. Object management group, OMG, OMG’s web-page, http://www.omg.org/library/schedule/Technology-Adoptio
UML Document Set, 1997.

10. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

16

