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PREFACE

iStructures course and gfamiliarity with the C language, yet is arranged so that a pre-
requisite such as an automata theory course can be taken into account. Thus, it should
be usable in a wide variety of programs.

A final problem in writing a compiler text is that instructors use many different
classroom approaches to the practical application of theory. Some prefer to study the
techniques using only a series of separate small examples, each targeting a specific con-
cept. Some give an extensive compiler project, but make it more manageable with the
use of Lex and Yacc as tools. Others ask their students to write all the code by hand
(using, say, recursive descent for parsing) but may lighten the task by giving students
the basic data structures and some sample code. This book should lend itself to all of
these scenarios.

Overview and Organization

In most cases each chapter is largely independent of the others, without artificially
restricting the material in each. Cross-references in the text allow the reader or instruc-
tor to fill in any gaps that might arise even if a particular chapter or section is skipped.

Chapter liis a survey of the basic structure of a compiler and the lechniques stud-
ied in later chapters. It also includes a section on porting and bootstrapping.
Chapter 2 studies the theory of finite automata and regular expressions, and then
applies this theory to the construction of a scanner both by hand coding and using
the scanner generation tool Lex.

Chapter 3 studies the theory of context-free grammars as it pertains to parsing, with
particular emphasis on resolving ambiguity. It gives a detailed description of three
common notations for such grammars, BNF, EBNF, and syntax diagrams. It also
discusses the Chomsky hierarchy and the limits of the power of context-free gram-
mars, and mentions some of the important computation-theoretic results concerning
such grammars. A grammar for the sample language of the text is also provided.

Chapter 4 studies top-down parsing algorithms, in particular the methods of recur-
sive-descent and LL(1) parsing. A recursive-descent parser for the sample language
is also presented.

Chapter 5 continues the study of parsing algorithms, studying bottom-up pa
detail, culminating in LALR(1) parsing tables and the use of the Yacc parser gen-
erator tool. A Yacc specification for the sample language is provided.

Chapter 6/is a comprehensive account of static semantic analysis, focusing on
attribute grammars and syntax tree traversals. It gives extensive coverage to the
construction of symbol tables and static type checking, the two primary examples
of semantic analysis. A hash table implementation for a symbol table is also given
and is used to implement a semantic analyzer for the sample language.

Chapter 7 Hiscusses the common forms of runtime environments, from the fully
static environment of Fortran through the many varieties of stack-based environ-
ments to the fully dynamic environments of Lisp-like languages. It also provides an
implementation for a heap of dynamically allocated storage.

Chapter 8' discusses code generation both for intermediate code such as three-
address code and P-code and for executable object code for a simple von Neumann
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architecture, for which a simulator is given. A complete code generator for the sam-
ple language is given. The chapter concludes with an introduction to code opti-
mization techniques.

Three appendices’augment the text. The firsf contains a detailed d8&ription of &
danguage suitable for a class project. together with a Jist of partial projects that can
be used as assignments. The remaining appendices give line-numbered listings of
the source code for the sample compiler and the machine simulator, respectively.

Use as a Text

This text can be used in a one-semester or two-semester introductory compiler course,
either with or without the use of Lex and Yacc compiler construction tools. If an
automata theory course is a prerequisite, then Sections 2.2., 2.3, and 2.4 in Chapter 2
and Sections 3.2 and 3.6 in Chapter 3 can be skipped or quickly reviewed. In a one-
semester course this still makes for an extremely fast-paced course, if scanning, pars-
ing, semantic analysis, and code generation are all to be covered.

One reasonable alternative is, after an overview of scanning, to simply provide a
scanner and move quickly to parsing. (Even with standard techniques and the use of C,
input routines can be subtly different for different operating systems and platforms.)
Another alternative is to use Lex and Yacc to automate the construction of a scanner
and a parser (I do find, however, that in doing this there is a risk that, in a first course,
students may fail to understand the actual algorithms being used). If an instructor
wishes to use only Lex and Yacc, then further material may be skipped: all sections of
Chapter 4 except 4.4, and Section 2.5 of Chapter 2.

If an instructor wishes to concentrate on hand coding, then the sections on Lex and
Yacc may be skipped (2.6, 5.5, 5.6, and 5.7). Indeed, it would be possible to skip all of
Chapter 5 if bottom-up parsing is ignored.

Similar shortcuts may be taken with the later chapters, if necessary, in either a tools-
based course or a hand-coding style course. For instance, not all the different styles of
attribute analysis need to be studied (Section 6.2). Also, it is not essential to study in
detail all the different runtime environments cataloged in Chapter 7. If the students are
to take a further course that will cover code generation in detail, then Chapter 8 may be
skipped.

In a two-quarter or two-semester course it should be possible to cover the en-
tire book.

Internet Availability of Resources

All the code in Appendices B and C is available on the Web at locations pointed to from
my home page (http://www.mathcs.sjsu.edu/faculty/louden/), Additional resources,
such as errata lists and solutions to some of the exercises, may also be available from
me. Please check my home page or contact me by e-mail at louden@cs.sjsu.edu.
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Compilers are computer programs that translate one language to another. A com-
piler takes as its input a program written in its source language and produces an
equivalent program written in its target language. Usually, the source language is a
high-level language, such as C or C+ +, and the target language is object code
(sometimes also called machine code) for the target machine, that is, code written
in the machine instructions of the computer on which it is to be executed. We can
view this process schematically as follows:

Source
Program

Target

—_— Compiler —_—
Program

A compiler is a fairly complex program that can be anywhere from 10,000 to
1,000,000 lines of code. Writing such a program, or even understanding it, is not a
simple task, and most computer scientists and professionals will never write a com-
plete compiler. Nevertheless, compilers are used in almost all forms of computing,
and anyone professionally involved with computers should know the basic organiza-
tion and operation of a compiler. In addition, a frequent task in computer applica-
tions is the development 6f command interpreters and interface programs, which
are smaller than compilers but which use the same techniques. A knowledge of
these techniques is, therefore, of significant practical use.

It is the purpose of this text not only to provide such basic knowledge but also
to give the reader all the necessary tools and practical experience to design and pro-



