Uwe Wolrer

Compiler Construction
Principles and Practice

Kenneth C. Louden

San Jose State University

ﬁ@@
PWS Publishing Company
I(T)P

An International Thomson Publishing Company

Boston < Albany = Bonn * Cincinnati * Detroit London * Madrid * Melbourne * Mex Gty © New York

Pacific Grove © Paris * San Francisco * Singapore * Tokyo © Toronto ° Washington

!

20 Park Plaza, Boston, MA 02116-4324

@ ; PWS PUBLISHING COMPANY

Copyright © 1997 by PWS Publishing Company, a division of
International Thomson Publishing Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or

transmitted, in any form or by any means—electronic, mechanical,

photocopying, recording, or otherwise—without prior written permission of

PWS Publishing Company.

_@12

International Thomson Publishing
The trademark ITP is used under license.

For more information, contact:

PWS Publishing Company
20 Park Plaza
Boston, MA 02116

International Thomson Publishing Europe
Berkshire House 168-173

High Holborn

London WC1V 7AA

England

Thomas Nelson Australia
102 Dodds Street

South Melbourne, 3205
Victoria, Australia

Nelson Canada

1120 Birchmont Road
Scarborough, Ontario
Canada MI1K 5G4

recycled, acid-free paper.

& This book is printed on

International Thomson Editores
Campos Eliseos 385, Piso 7
Col. Polanco

11560 Mexico D.F.. Mexico

International Thomson Publishing GmbH
Konigswinterer Strasse 418
53227 Bonn, Germany

International Thomson Publishing Asia
221 Henderson Road

#05-10 Henderson Building

Singapore 0315

International Thomson Publishing Japan
Hirakawacho Kyowa Building, 31

2-2-1 Hirakawacho

Chiyoda-ku, Tokyo 102

Japan

Library of Congress Cataloging-in-Publication Data

Louden, Kenneth C.

Louden.
p. cm.
Includes bibliographical references and index.
ISBN 0-534-93972-4
1. Compilers (Computer programs) . Title.
QA76.76.C65L68 1997

Compiler construction : principles and practice / Kenneth C.

005.4'53—dc21 9649664
CIp

Sponsoring Editor: David Dietz

Marketing Manager: Nathan Wilbur

Editorial Assistant: Susan Garland

Production Coordinator: Pamela Rockwell
Manufacturing Coordinator: Andrew Christensen

Printed and bound in the United States of America.
01 —109876

Compositor: Better Graphics

Cover/Text Designer: Pamela Rockwell

Cover Printer: Phoenix Color Corporation

Text Printer and Binder: Phoenix Color Corporation

S

i
S

-

.
.
w
N
.

.

For Andreow

Contents

I INTRODUCTION |

,_._<<.r.«no_,:m:m_.mw}m.._m:ﬁmﬁoiM
1.2 Programs Related to Compilers 4
1.3 The Translation Process 7
1.4 Major Data Structures in a Compiler |3
I.5 Other Issues in Compiler Structure 14
1.6 Bootstrapping and Porting 18
1.7 The TINY Sample Language and Compiler 22
- 1.8 C-Minus: A Language for a Compiler Project 26
Exercises 27 Notes and References 29

2 SCANNING 31

2.1 The Scanning Process 32

2.2 Regular Expressions 34

2.3 Finite Automata 47

2.4 From Regular Expressions to DFAs 64

2.5 Implementation of a TINY Scanner 75

2.6 Use of Lex to Generate a Scanner Automatically 81
Exercises 89 Programming Exercises 93
Notes and References 94

J CONTEXT-FREE GRAMMARS AND PARSING 95

3.1 The Parsing Process 96
3.2 Context-Free Grammars 97
3.3 Parse Trees'and Abstract Syntax Trees 106
3.4 Ambiguity |14
3.5 Extended Notations: EBNF and Syntax Diagrams 123
3.6 Formal Properties of Context-Free Languages 128
3.7 Syntax of the TINY Language 133
R Exercises 138 Notes and References 142

CONTENTS

4 TOP-DOWN PARSING

4.1
4.2
43
44
4.5

6 SEMANTIC ANALYSIS

6.1
6.2
6.3
6.4
6.5

143

Top-Down Parsing by Recursive-Descent 144

LL(1) Parsing 152

First and Follow Sets 168

A Recursive-Descent Parser for the TINY Language 180
Error Recovery in Top-Down Parsers 183

Exercises 189 Programming Exercises 193

Notes and References 196

171

Overview of Bottom-Up Parsing 198

Finite Automata of LR(0) ltems and LR(0) Parsing 201
SLR(I) Parsing 210

General LR(1) and LALR(1) Parsing 217

Yacc: An LALR(1) Parser Generator 226

Generation of a TINY Parser Using Yacc 243

Error Recovery in Bottom-Up Parsers 245

Exercises 250 Programming Exercises 254
Notes and References 256
251

Attributes and Attribute Grammars 259
Algorithms for Attribute Computation 270

The Symbol Table 295

Data Types and Type Checking 313

A Semantic Analyzer for the TINY Language 334
Exercises 339 Programming Exercises 342
Notes and References 343

T RUNTIME ENVIRONMENTS 345

7.1
72
7.3
7.4
7.5
7.6

Memory Organization During Program Execution 346
Fully Static Runtime Environments 349

Stack-Based Runtime Environments 352

Dynamic Memory 373

Parameter Passing Mechanisms 381

A Runtime Environment for the TINY Language 386
Exercises 388 Programming Exercises 395
Notes and References 396

vi CONTENTS

§ CODE GENERATION 397

- 8.1 Intermediate Code and Data Structures for Code Generation 398
. - 8.2 Basic Code Generation Techniques 407
4 » 83 Code Generation of Data Structure References 416
84 Code Generation of Control Statements and Logical Expressions 428

v 85 Code Generation of Procedure and Function Calls 436 \ wﬂmﬁ,mﬁm
8.6 Code Generation in Commercial Compilers: Two Case Studies 443
8.7 TM: A Simple Target Machine 453
88 A Code Generator for the TINY Language 459
89 A Survey of Code Optimization Techni 468

~0de Uplimizat]

a
ques

8.10 Simple Optimizations for the TINY Code Generator 481

Exercises 484 Programming Exercises 488 . This book is an introduction to the field of compiler construction. It combines a detailed
Notes and References 489 study of the theory underlying the modern approach to compiler design, together with
many practical examples, and a complete description, with source code, of a compiler
for a small language. It is specifically designed for use in an introductory course on

_ compiler design or compiler construction at the advanced undergraduate level.
EEEE; > A COMPILER _uxo._mm._. 491 However, it will also be of use to professionals joining or beginning a compiler writing
A.l Lexical Conventions of C— 49| project, as it aims to give the reader all the necessary tools and practical experience to

design and program an actual compiler.

A great many texts already exist for this field. Why another one? Because virtually
all current texts confine themselves to the study of only one of the two important
aspects of compiler construction. The first variety of text confines itself to a study of
the theory and principles of compiler design, with only brief examples of the applica-
tion of the theory. The second variety of text concentrates on the practical goal of pro-

: . ducing an actual compiler, either for a real programming language or a pared-down ver-
>E§=n§ w“ TINY ﬁoz_v__.mw _._m._._zm mQN sion omm one, with o:_w small forays into :mvm Mmod\ ::mﬁl%m:mm%m ncMm to explain its
origin and behavior. I have found both approaches lacking. To really understand
>E§=Ex o“ TINY MACHINE SIMULATOR LISTING 545 the practical aspects of compiler design, one needs to have a good understanding of the
theory, and to really appreciate the theory, one needs to see it in action in a real or
ncar-real practical setting.

This text undertakes to provide the proper balance between theory and practice, and
fo'provide enough actual implementation detail to give a real flavor for the techniques
E_._mx 562 without overwhelming the reader. In this text, I provide a complete compiler for a small

language written in C and developed using the different techniques studied in each

chapter. In addition, detailed descriptions of coding techniques for additional language

examples are given as the associated topics are studied. Finally, each chapter concludes

with an extensive set of exercises; which are divided into two sections. The firét con-

tains those of theqmore pencil-and-paper variety involving little programming. The sec?
ond’contains those involving a significant amount of programming.

In writing such a text one must also take into account the different places that a
compiler course occupies in different computer science curricula. In some programs, a
course on automata theory is a prerequisite; in others, a course on programming lan-
guages is a prerequisite; while in yet others no prerequisites (other than data structures)
are assumed. fFhis text makes no assumptions about prerequisites beyond the ustal data

v

vii

A2 Syntax and Semantics of C— 492

A3 Sample Programs in C— 496

A4 ATINY Machine Runtime Environmient for the C— Language 497
A5 Programming Projects Using C—and TM 500

B

Bibliography 558

PREFACE

iStructures course and gfamiliarity with the C language, yet is arranged so that a pre-
requisite such as an automata theory course can be taken into account. Thus, it should
be usable in a wide variety of programs.

A final problem in writing a compiler text is that instructors use many different
classroom approaches to the practical application of theory. Some prefer to study the
techniques using only a series of separate small examples, each targeting a specific con-
cept. Some give an extensive compiler project, but make it more manageable with the
use of Lex and Yacc as tools. Others ask their students to write all the code by hand
(using, say, recursive descent for parsing) but may lighten the task by giving students
the basic data structures and some sample code. This book should lend itself to all of
these scenarios.

Overview and Organization

In most cases each chapter is largely independent of the others, without artificially
restricting the material in each. Cross-references in the text allow the reader or instruc-
tor to fill in any gaps that might arise even if a particular chapter or section is skipped.

Chapter liis a survey of the basic structure of a compiler and the lechniques stud-
ied in later chapters. It also includes a section on porting and bootstrapping.
Chapter 2 studies the theory of finite automata and regular expressions, and then
applies this theory to the construction of a scanner both by hand coding and using
the scanner generation tool Lex.

Chapter 3 studies the theory of context-free grammars as it pertains to parsing, with
particular emphasis on resolving ambiguity. It gives a detailed description of three
common notations for such grammars, BNF, EBNF, and syntax diagrams. It also
discusses the Chomsky hierarchy and the limits of the power of context-free gram-
mars, and mentions some of the important computation-theoretic results concerning
such grammars. A grammar for the sample language of the text is also provided.

Chapter 4 studies top-down parsing algorithms, in particular the methods of recur-
sive-descent and LL(1) parsing. A recursive-descent parser for the sample language
is also presented.

Chapter 5 continues the study of parsing algorithms, studying bottom-up pa
detail, culminating in LALR(1) parsing tables and the use of the Yacc parser gen-
erator tool. A Yacc specification for the sample language is provided.

Chapter 6/is a comprehensive account of static semantic analysis, focusing on
attribute grammars and syntax tree traversals. It gives extensive coverage to the
construction of symbol tables and static type checking, the two primary examples
of semantic analysis. A hash table implementation for a symbol table is also given
and is used to implement a semantic analyzer for the sample language.

Chapter 7 Hiscusses the common forms of runtime environments, from the fully
static environment of Fortran through the many varieties of stack-based environ-
ments to the fully dynamic environments of Lisp-like languages. It also provides an
implementation for a heap of dynamically allocated storage.

Chapter 8' discusses code generation both for intermediate code such as three-
address code and P-code and for executable object code for a simple von Neumann

PREFACE ' ix

architecture, for which a simulator is given. A complete code generator for the sam-
ple language is given. The chapter concludes with an introduction to code opti-
mization techniques.

Three appendices’augment the text. The firsf contains a detailed d8&ription of &
danguage suitable for a class project. together with a Jist of partial projects that can
be used as assignments. The remaining appendices give line-numbered listings of
the source code for the sample compiler and the machine simulator, respectively.

Use as a Text

This text can be used in a one-semester or two-semester introductory compiler course,
either with or without the use of Lex and Yacc compiler construction tools. If an
automata theory course is a prerequisite, then Sections 2.2., 2.3, and 2.4 in Chapter 2
and Sections 3.2 and 3.6 in Chapter 3 can be skipped or quickly reviewed. In a one-
semester course this still makes for an extremely fast-paced course, if scanning, pars-
ing, semantic analysis, and code generation are all to be covered.

One reasonable alternative is, after an overview of scanning, to simply provide a
scanner and move quickly to parsing. (Even with standard techniques and the use of C,
input routines can be subtly different for different operating systems and platforms.)
Another alternative is to use Lex and Yacc to automate the construction of a scanner
and a parser (I do find, however, that in doing this there is a risk that, in a first course,
students may fail to understand the actual algorithms being used). If an instructor
wishes to use only Lex and Yacc, then further material may be skipped: all sections of
Chapter 4 except 4.4, and Section 2.5 of Chapter 2.

If an instructor wishes to concentrate on hand coding, then the sections on Lex and
Yacc may be skipped (2.6, 5.5, 5.6, and 5.7). Indeed, it would be possible to skip all of
Chapter 5 if bottom-up parsing is ignored.

Similar shortcuts may be taken with the later chapters, if necessary, in either a tools-
based course or a hand-coding style course. For instance, not all the different styles of
attribute analysis need to be studied (Section 6.2). Also, it is not essential to study in
detail all the different runtime environments cataloged in Chapter 7. If the students are
to take a further course that will cover code generation in detail, then Chapter 8 may be
skipped.

In a two-quarter or two-semester course it should be possible to cover the en-
tire book.

Internet Availability of Resources

All the code in Appendices B and C is available on the Web at locations pointed to from
my home page (http://www.mathcs.sjsu.edu/faculty/louden/), Additional resources,
such as errata lists and solutions to some of the exercises, may also be available from
me. Please check my home page or contact me by e-mail at louden@cs.sjsu.edu.

Acknowledgments

My interest in compilers began in 1984 with a summer course taught by Alan Demers.
His insight and approach to the field have significantly influenced my own views.

PREFACE

Indeed, the basic organization of the sample compiler in this text was suggested by that
course, and the machine simulator of Appendix C is a descendant of the one he
provided.

More directly, I would like to thank my colleagues Bill Giles and Sam Khuri at San
Jose State for encouraging me in this project, reading and commenting on most of the
text, and for using preliminary drafts in their classes. I would also like to thank the stu-
dents at San Jose State University in both my own and other classes who provided use-
ful input. Further, [would like to thank Mary T. Stone of PWS for gathering a great
deal of information on compiler tools and for coordinating the very useful review
process.

The following reviewers contributed many excellent suggestions, for which I am
grateful:

Jeff Jenness Jerry Potter
Arkansas State University Kent State University
Joe Lambert Samuel A. Rebelsky
Penn State University Dartmouth College
Joan Lukas

University of Masschusetts, Boston

Of course I alone am responsible for any shortcomings of the text. I have tried to make
this book as error-free as possible. Undoubtedly errors remain, and I would be happy to
hear from any readers willing to point them out to me.

Finally, I would like to thank my wife Margreth for her understanding, patience,
and support, and our son Andrew for encouraging me to finish this book.

K.C.L.

e

e

.

L

(hapter 1

Introduction

I.1' 'Why Compilers!? A Brief 1.5 Other Issues in Compiler
History Structure

1.2 Programs Related to I.6 Bootstrapping and Porting
Compilers 1.7 The TINY Sample Language

I.3 The Translation Process and Compiler

1.4 Major Data Structures in a 1.8 C-Minus: A Language for a
Compiler Compiler Project

Compilers are computer programs that translate one language to another. A com-
piler takes as its input a program written in its source language and produces an
equivalent program written in its target language. Usually, the source language is a
high-level language, such as C or C+ +, and the target language is object code
(sometimes also called machine code) for the target machine, that is, code written
in the machine instructions of the computer on which it is to be executed. We can
view this process schematically as follows:

Source
Program

Target

—_— Compiler —_—
Program

A compiler is a fairly complex program that can be anywhere from 10,000 to
1,000,000 lines of code. Writing such a program, or even understanding it, is not a
simple task, and most computer scientists and professionals will never write a com-
plete compiler. Nevertheless, compilers are used in almost all forms of computing,
and anyone professionally involved with computers should know the basic organiza-
tion and operation of a compiler. In addition, a frequent task in computer applica-
tions is the development 6f command interpreters and interface programs, which
are smaller than compilers but which use the same techniques. A knowledge of
these techniques is, therefore, of significant practical use.

It is the purpose of this text not only to provide such basic knowledge but also
to give the reader all the necessary tools and practical experience to design and pro-

