Example 2.20

CHAPTER 2 / SCANNING

To properly understand how Lex interprets such an input file, we must keep in mind
that some parts of the file will be regular expression information that Lex uses to guide
its construction of the C output code, while other parts of the file will be actual C code
that we are supplying to Lex, and that Lex will insert verbatim in the output code at the
appropriate location. The precise rules Lex uses for this will be given after we have dis-
cussed each of the three sections and given a few examples.

The definition section occurs before the first %%. It contains two things. First; any
C code that must be inserted external to any function should appear in this section
between the delimiters %{ and %}. (Note the order of these characters!) Second; names
for regular expressions must also be defined in this section, A name is defined by writ-
ing it on a separate line starting in the first column and following it (after one or more
blanks) by the regular expression it 3@88:;

The second section contains th
1S ¢

1ne second cien: contd

g

0 be executed when the corresponding reg-
ular nx_unmmaoz is matched.

The third and final sectiop contains C code for any auxiliary routines that are called
in.the second section and not defined elsewhere. This section may also contain a main
program, if we want to compile the Lex output as a standalone program. This section
can also be missing, in which case the second %% need not be written. (The first %% is
always necessary.)

We give a series of examples to illustrate the format of a Lex input file.

The following Lex input specifies a scanner that adds line numbers to text, sending its
output to the screen (or a file, if redirected):-

%{
/* a Lex program that adds line numbers
to lines of text, printing the new text
to the standard output
*/
#include <stdio.h>
int lineno = 1;
%)
line .*\n
%%
{line} { printf("%5d %s", lineno++,yvtext); }
%%
main ()
{ yylex(); return 0;)
For example, running the program obtained from Lex on this input file itself gives the
following output:

1 %{
2 /* a Lex program that adds line numbers

of a sequence of regular

2.6 Use of Lex to Generate a Scanner Automatically 85

3 to lines of text, printing the new text
4 to the standard output

5 */

6 #include <stdio.h>

7 int lineno = 1;

8 %)

9 line .*\n

10 %%

11 {line} { printf("%5d %s",lineno++,yytext); }
12 %%

13 main()

14 { yvlex(); returm 0; }

We comment on this Lex input file using these line numbers. First, lines | through
8 are between the delimiters %{ and %}. This causes these lines to be inserted directly
into the C code produced by Lex, external to any procedure. In particular, the comment
in lines 2 through 5 will be inserted near the beginning of the program, and the
#include directive and the definition of the integer variable 1ineno on lines 6 and
7 will be inserted externally, so that 1ineno becomes a global variable and is initial-
ized to the value 1. The other definition that appears before the first %% is the definition
of the name line which is defined to be the regular expression ".*\n", which
matches O or more characters (not including a newline), followed by a newline. In other
words, the regular expression defined by Line matches every line of input. Following
the %% on line 10, line 11 comprises the action section of the Lex input file. In this case
we have written a single action to be performed whenever a 1ine is matched (1ine
is surrounded by curly brackets to distinguish it as a name, according to the Lex con-
vention). Following the regular expression is the action, that is, the C code that is to be
executed whenever the regular expression is matched. In this example, the action con-
sists of a single C statement, which is contained within the curly brackets of a C block.
(Keep in mind that the curly brackets surrounding the name 1ine have a completely
different function from the curly brackets that form a block in the C code of the fol-
lowing action.) This C statement is to print the line number (in a five-space field, right
justified) and the string yytext, after which 1ineno is incremented. The name
yytext is the internal name Lex gives to the string matched by the ammc_mn expression,
which in this case consists of each line of input (including the newline).” Finally, the C
code after the second double percent (lines 13 and 14) is inserted as is at the end of the
C code produced by Lex. In this example, the code consists of the definition of amain
procedure that calls the function yyles. This allows the C code produced by Lex to be
compiled into an executable program. (yylesgis the name given to the procedure con-
structed by Lex that implements the DFA associated with ihe regular expressions and
actions given in the action section of the input file.) §

5. We list the Lex internal names that are discussed in this scction in a table at the end of the
section.

86

Example 2.21

Example 2.22

CHAPTER 2 / SCANNING

Consider the following Lex input file:

%{

/* a Lex program that changes all numbers
from decimal to hexadecimal notation,
printing a summary statistic to stderr

*,

#include <stdlib.h>

#include <stdio.h>

int count = 0;

{number} { int n = atoi(yytext);
printf ("%x", n);
if (n > 9) count++; }
%%
main ()
{ yylex();
fprintf (stderr, "number of replacements = %d",
count) ;
return 0;

}

It is similar in structure to the previous mxm‘BEP except that the main procedure prints
the count of the number of replacements to stderxr after calling yylex. This exam-
ple is also different in that not all text is matched. Indeed, only numbers are matched in
the action section, where the C code for the action first converts the matched string

(ywtext)to.an integer n, then prints it in hexadecimal form (printf ("%x", ...).,

and finally increments count if the number is greater than 9. (If the number is smaller
than or equal to 9, then it looks no different in hex.) Thus, the only action specified is
for strings that are sequences of digits. Yet Lex generates a program that also matches
all nonnumeric characters, and passes them through to the output. This is an example
of a default action by Lex. If a character or string of characters matches none of the
regular expressions in the action section, Lex will match it by default and echo it to the
output. (Lex can also be forced to generate a runtime error, but we will not study this
here.) The default action can also be specifically indicated through the Lex internally
defined macro ECHO. (We study this use in the next example.) §

Consider the following Lex input file:

%{

/* Selects only lines that end or
begin with the letter 'a'.
Deletes everything else.

!

Example 2.23

16 Use of Lex to Generate a Scanner Automatically 87

#include <stdio.h>
%}

ends_with_a .*a\n
begins_with_a a.*\n
%%

{ends_with_a} ECHO;
{begins_with_a} ECHO;
«*\n ;

%%

main()

{ yvlex(); return 0; }

This Lex input causes all input lines that begin or end with the character a to be writ-
ten to the output. All other input lines are suppressed. The suppression of the input is
caused by the rule below the ECHO rules. In this rule the “empty” actios is specified for
the regular expression . *\n by writing a semicolon for the C action code.

There is an additional feature of this Lex input that is worth noting. The listed rules
are ambiguous in that a string may match more than one rule. In fact, any input line
matches the expression . *\n, regardless of whether it is part of a line that begins or
ends with an a. Lex has a priority system for resolving such ambiguities. First; Lex
always matches the longest possible substring (so Lex always generates a scanner that
follows the longest substring principle). Then, if the longest substring still matches two
or more rules, Lex picks the first rule in the order they are listed in the action section,
It is for this reason that the above Lex input file lists the ECHO actions first. If we had
listed the actions in the following order,

.*\n ;
{ends_with_a} ECHO;
{begins_with_a} ECHO;

then the program produced by Lex would generate no output at all for any file, since
every line of input will be matched by the first rule. §

In this example, Lex generates a program that will convert all uppercase letters to low-
ercase, except for letters inside C-style comments (that is, anything inside the delim-
iters /*...%/):

%{

/* Lex program to convert uppercase to
lowercase except inside comments

*/

#include <stdio.h>

#ifndef FALSE

#idefine FALSE 0

#endif

#ifndef TRUE

f#idefine TRUE 1

88

CHAPTER 2 / SCANNING

#endif
%}
%%
[A-Z] {putchar(tolower (yytext[0]));
/* yytext[0] is the single
uppercase char found */
}
"/*» { char c;
int done = FALSE;
ECHO;
do-
{ while ((c=input())i='*")
putchar(c);
putchar(c);
while ((c=input())=='*")
putchar(c);
putchar(c);
if (¢ == '/') done = TRUE;
} while (!dome);

%%
void main(void)
{ yylex();}

This example shows how code can be written to sidestep difficult regular expressions
and implement a small DFA directly as a Lex action. Recall from the discussion in
Section 2.2.4 that a regular expression for a C comment is extremely complex to write
down. Instead, we write down a regular expression only for the string that begins a C
comment—that is, " /*"—and then supply action code that will look for the ending
string ** /", while providing the appropriate action for other characters within the
comment (in this case to just echo them without further processing). We do this by imi-
tating the DFA from Example 2.9 (see Figure 2.4, page 53). Once we have recognized
the string " /*", we are in state 3, so our code picks up the DFA there. The first thing
we do is cycle through characters (echoing them to the output) until we see an asterisk
(corresponding to the other loop in state 3), as follows:

while ((c=input())!='*"') putchar(c);

Here we have used yet another Lex internal procedure called input; The use of this
procedure, rather than a direct input using getchax, ensures that the Lex input buffer
is used, and that the internal structure of the input string is preserved. (Note, however,
that we do use a direct output procedure putchax. This will be discussed further in
Section 2.6.4.)

The next step in our code for the DFA corresponds to state 4. We loop again until
we do not see an asterisk, and then, if the character is a forward slash, we exit; other-
wise, we return to state 3. §

Table 2.3

26 Use of Lex to Generate a Scanner Automatically 89

We end this subsection with a summary of the Lex conventions we have introduced
in the examples.

AMBIGUITY RESOLUTION:

Lex’s output will always first match the longest possible substring to a rule. If two
or more rules cause substrings cf equal length to be matched, then Lex's output will
pick the rule listed first in the action scction. If no rule matches any nonempty sub-
string, then the default action copies the next character to the output and continues.

INSERTION OF C CODE :

(1Y Any text written between %{ and %} in the definition section will be copied
directly to the output program external to any procedure. (2) Any text in the auxil-
fary procedures section will be copied directly to the output program at the end of
the Lex code. (3) Any code that follows a regular expression (by at least one space)
in the action section (after the first %%) will be inserted at the appropriate place in
the recognition procedure yylex and will be executed when a match of the corre-
sponding regular expression oceurs. The C code representing an action may be
either a single C statement or a compound C statement consisting of any declara-
tions and statements surrounded by curly brackets.

INTERNAL NAMES 7
Table 2.3 lists the Lex internal names that we discuss in this chapter. Most of these
have been discussed in the previous examples.

Some Lex internal names

Lex Internal Name Meaning/Use

lex.yy.c or lexyy.c Lex output file name

yylex Lex scanning routine

yytext string matched on current action

yyin Lex input file (default: stdin)

yyout Lex output file (default: stdout)

input Lex buffered input routine

ECHO Lex default action (print yytext to yyout)

We note one feature from this table not mentioned previously, which is that Lex has
its own internal names for the files from which it takes input and to which it sends
output: yyin and yyout. Using the standard Lex input routine input will auto-
matically take input from the file yyin. However, in the foregoing examples,
we have bypassed the internal output file yyout and just written to the stan-
dard output using print£ and putchar. A better implementation, allowing the
assignment of output to an arbitrary file, would replace these uses with
fprintf (yyout, ...) and putc(...,yyout).

90

CHAPTER 2 / SCANNING

263 A TINY Scanner Using Lex

Appendix B gives a listing of a Lex input file tiny. 1 that will generate a scanner for
the TINY language, whose tokens were described in Section 2.5 (see Table 2.1). In the
following we make a few remarks about this input file (lines 3000-3072).

First, in the definitions section, the C code we insert directly into the Lex output
consists of three #include directives (globals.h,util .h, and scan.h) and the
definition of the tokenStxing attribute. This is necessary to provide the interface
between the scanner and the rest of the TINY compiler.

The further contents of the definition section comprise the definitions of the names
for the regular expressions that define the TINY tokens. Note that the definition of
numbex uses the previously defined name digit, and the definition of identi-
£ier uses the previously defined letter. The definitions also distinguish between
newlines and other white mvmnm (blanks and tabs, lines 3019 and 3020), since a newline
will cause 1lineno to be incremented.

The action section of the Lex input consists of listing the various tokens, together
with a return statement that returns the appropriate token as defined in globals.h.
In this Lex definition we have listed the rules for reserved words before the rule for an
identifier. Had we listed the identifier rule first, the ambiguity resolution rules of Lex
would cause an identifier to always be recognized instead of a reserved word. We could
also write code as in the scanner of the previous section, in which only identifiers are
recognized, and then reserved words are looked up in a table. This would indeed be
preferable in a real compiler, since separately recognized reserved words cause the size
of the tables in the scanner code generated by Lex to grow enormously (and hence the
size of memory used by the scanner). .-

One quirk of the Lex input is that we have to write code to recognize comments to
ensure that Lineno is updated correctly, even though the regular expression for TINY

comments is easy to write. Indeed, the regular expression is

wiuw[A\}] R}

(Note the use of the backslash inside the square brackets to remove the metacharacter
meaning of right curly bracket—quotes will not work here.)®

We note also that there is no code written to return the EOF token on encountering
the end of the input file. The Lex procedure yylex has a default behavior on encoun-
tering EOF—it returns the value O. It is for this reason that the token ENDFILE was
written first in the definition of TokenType in globals.h (line 179), so that it will
have value 0.

Finally, the tiny.1 file contains a definition of the getToken procedure in the
auxiliary procedures section (lines 3056-3072). While this code contains some ad hoc
initializations of Lex internals (such as yyin and yyout) that would be better per-
formed directly in the main program, it does permit us to use the Lex-generated scan-
ner directly, without changing any other files in the TINY compiler. Indeed, after gen-

6. Some versions of Lex have an internally defined variable yylineno that is automatically
updated. Use of this variable instead of 1ineno would make it possible to eliminate the special
code.

Exercises 91

erating the C scanner file lex.yy.c (or lexyy.c), this file can be compiled and
linked directly with the other TINY source files to produce a Lex-based version of the
compiler. However, this version of the compiler lacks one service of the earlier version,
in that no source code echoing with line numbers is provided (see Exercise 2.35).

EXERCISES

2.1 Write regular expressions for the following character sets, or give reasons why no regular
expression can be written:
a. All strings of lowercase letters that begin and end in a.
b. All strings of lowercase letters that either begin or end in a (or both).
c. All strings of digits that contain no leading zeros.
d. All sirings of digits that represent even numbers.
e. All strings of digits such that all the 2’s occur before all the 9's.
f. All strings of @’s and bs that contain no three consecutive b’s.
g. All strings of @’s and b’s that contain an odd number of «’s or an odd number of b’s
(or both).
All strings of a’s and b's that contain an even number of a's and an even number of

&F

b’s.
i. Al strings of @’s and b’s that contain exactly as many a’s as b’s.

2.2 Write English descriptions for the languages generated by the following regular expres-
sions:

a. (a|b)*a(a|b]e)
b. (a]|B|...|z)(a|b|...|2)*

. (aa|b)*(a|bb)*

. (0]1]...|9]|a|B|C|D|E|F)+(x]X)

2.3 a. Many systems contain a version of grep (global regular expression print), a regular
expression search program originally written for Unix.” Find a document describing
your local grep, and describe its metasymbol conventions.

. If your editor accepts some sort of regular expressions for its string searches, describe
its metasymbol conventions.

2.4 In the definition of regular expressions, we described the precedence of the operations, but
not their associativity. For example, we did not specify whether a|b| e meant (a|b) |c
oral (b}e) and similarly for concatenation. Why was this?

2.5 Prove that L(r*¥) = L(r¥) for any regular expression r.

2.6 In describing the tokens of a programming language using regular expressions, it is not
necessary to have the metasymbols & (for the empty set) or & (for the empty string). Why
is this?

2.7 Draw a DFA corresponding to the regular expression d.

2.8 Draw DFAs for each of the sets of characters of (a)-(i) in Exercise 2.1, or state why no
DFA exists.

2.9 Draw a DFA that accepts the four reserved words case, char, const, and continue
from the C language.

a n

=2

s

7. There are actually three versions of grep available on most Unix systems: “regular” grep,
egrep (extended grep), and fgrep (fast grep).

92

CHAPTER 2 / SCANNING

2.10

2,11
2.12

2.16

Rewrite the pscudocode for the implementation of the DFA for C comments (Section

2.3.3) using the input character as the outer case test and the state as the inner case test.

Compare your pseudocade to that of the text. When would you prefer to use this organi-

zation for code implementing a DFA?

Give a mathematical definition of the e-closure of a set of states of an NFA,

a. Use Thompson's construction to convert the regular expression (a|b) *a(a|b]|&)
into an NFA.

b. Convert the NFA of part (a) into a DFA using the subset construction.

a. Use Thompson's construction to convert the regular expression (aa|b) * (a|bb) *
into an NFA.

b. Convert the NFA of part (a) into a DFA usi

Convert the NFA of Example 2.10 (Section 2.3.2) into a DFA using the subset construe-

tion.

In Section 2.4.1 a simplification to Thompson's construction for concatenation was men-

sition between the two NFAs of the regular expressions

simplification needed the fact there

g the subset construction.

tioned that eliminates the e-tr
being concatenated. It was also mentioned that th
were no transitions out of the accepting state in the other steps of the construction. Give

an example (o show why this is so. (Hint: Consider a new NFA construction for repeti-
tion that eliminates the new start and accepting states, and then consider the NFA for

X

Programming Exercises 93

2,17

2.18

2.19

Pascal comments allow two distinct comment conventions: curly bracket pairs

{ ... }(asin TINY) and parentheses-asterisk pairs (* ... *). Writc a DFA

that recognizes both styles of comment.

a. Write out a regular expression for C comments in Lex notation. (Hint: See the dis-
cussion in Section 2.2.3.)

b. Prove your answer in part (a) is correct.

The following regular expression has been given as a Lex definition of C comments (see
Schreiner and Friedman [1985, p. 25]):

wywnn g na([any] _ n)..u:\:__.»..H>\H~:._t...=-\..

Show that this expression is incorrect. (Hint: Consider the string /*%_/*% /)

PROGRAMMING
EXERCISES

2.20
221

2.23

2.24

2.25

2.26
2,27

2.30

2.31

Write a program that capitalizes all comments in a C program.

Write a program that capitalizes all reserved words outside of comments in a C program.

(A list of the reserved words of C can be found in Kernighan and Ritchie [1988.

p. 192])

Write a Lex input file that will produce a program that capitalizes all comments in a C

program.

Write a Lex input file that will produce a program that capitalizes all reserved words

outside of comments in a C program (see Exercise 2.21).

Write a Lex input file that will produce a program that counts characters, words, and

lines in a text file and reports the counts. Define a word to be any sequence of letters

and/or digits, without punctuation or spaces. Punctuation and white space do not count
as words.

The Lex code of Example 2.23 (Section 2.6.2) can be shortened by using a global flag

inComment to distinguish behavior inside comments from behavior elsewhere. Rewrite

the code of the example to do this.

Add nested C comments to the Lex code of Example 2.23.

a. Rewrite the scanner for TINY to use binary search in the lookup of reserved words.

b. Rewrite the scanner for TINY to use a hash table for the lookup of reserved words.

Remove the 40-character limit on identifiers in the TINY scanner by dynamically allo-

cating space for tokenString.

a. Test the behavior of the TINY scanner when the source program has lines that
exceed the buffer size of the scanner, finding as many problems as you can.

b. Rewrite the TINY scanner to remove the problems that you found in part (a) (or at
least improve its behavior). (This will require rewriting the getNextChar and
ungetNextChar procedures.)

An alternative to the use of the ungetNextChaxr procedure in the TINY scanner to

implement nonconsuming transitions is to use a Boolean flag to indicate that the current

character is to be consumed, so that no backup in the input is required. Rewrite the

TINY scanner to implement this method, and compare it to the existing code.

Add nested comments to the TINY scanner by using a counter called nestLevel.

CHAPTER 2 / SCANNING

232 Add Ada-style comments to the TINY scanner. (An Ada comment begins with two
dashes and continues to the end of the line.)

2.33 Add the lookup of reserved words in a table to the Lex scanner for TINY (you may usc
lincar search as in the handwritten TINY scanner or either of the search methods sug-
gested in Exercise 2.27).

2.34 Add Ada-style comments to the Lex code for the TINY scanner. (An Ada comment
begins with two dashes and continues to the end of the line.)

2.35 Add source code line echoing (using the EchoSource flag) to the Lex code for the
TINY scanner, so that, when the flag is set, each line of source code is printed to the
ing file with the line number. (This requires more extensive knowledge of Lex internals
than we have studied.)

NOTES AND
REFERENCES

The mathematical theory of regular expressions and finite automata is discussed in
detail in Hopceroft and Ullman [1979], where some references to the historical devel-
opment of the theory can be found. In particular, one can find there a proof of the equiv-
alence of finite automata and regular expressions (we have used only one direction of
the equivalence in this chapter). One can also find a discussion of the pumping lemma
there, and its consequences for the limitations of regular expressions in describing pat-
terns. A more detailed description of the state minimization algorithm can also be found
there, together with a proof of the fact that such DFAs are essentially unique. The
description of a one-step construction of a DFA from a regular expression (as opposed
to the two-step approach described here) can be found in Aho, Hopcroft, and Ullman
[1986]. A method for compressing table$ in a table-driven scanner is also given there.
A description of Thompson's construction using rather different NFA conventions from
those described in this chapter is given in Sedgewick [1990], where descriptions of
table lookup algorithms such as binary search and hashing for reserved word recogni-
tion can be found. (Hashing is also discussed in Chapter 6.) Minimal perfect hash func-
tions, mentioned in Section 2.5.2, are discussed in Cichelli [1980] and Sager [1985]. A
utility called gperf is distributed as part of the Gnu compiler package. It can quickly
generate perfect hash functions for even large sets of reserved words. While these are
generally not minimal, they are still quite useful in practice. Gperf is described in
Schmidt [1990].

The original description of the Lex scanner generator is in Lesk [1975], which is
still relatively accurate for more recent versions. Later versions, especially Flex
(Paxson [1990]), have solved some efficiency problems and are competitive with even
finely tuned handwritten scanners (Jacobson [1987]). A useful description of Lex can
also be found in Schreiner and Friedman [1985], together with more examples of sim-
ple Lex programs to solve a variety of pattern-matching tasks. A brief description of the
grep family of pattern matchers (Exercise 2.3) can be found in Kernighan and Pike
[1984], and a more extensive discussion in Aho [1979]. The offside rule mentioned in
Section 2.2.3 (a use of white space to provide formatting) is discussed in Landin [1966]
and Hutton [1992].

Chapter 3

Context-Free Grammars and Parsing

3.1 The Parsing Process 3.5 Extended Notations: EBNF and

3.2 Context-Free Grammars Syntax Diagrams

3.3 Parse Trees and Abstract 3.6 Formal Properties of Context-
Syntax Trees Free Languages

3.4~ Ambiguity 3.7 Syntax of the TINY Language

Parsing is the task of determining the syntax, or structure, of a program. For this
reason, it is also called syntax analysis. The syntax of a programming language is
usually given by the grammar rules of a context-free grammar, in a manner
similar to the way the lexical structure of the tokens recognized by the scanner is
given by regular expressions. Indeed, a context-free grammar uses naming conven-
tions and operations very similar to those of regular expressions. The major differ-
ence is that the rules of a context-free grammar are: recursive. For instance, the
structure of an if-statement must in general allow other if-statements to be nested
inside it, something that is not allowed in regular expressions. The consequences of
this seemingly elementary change to the power of the representation are enormous.
The class of structures recognizable by context-free grammars is increased signifi-
cantly over those of regular expressions. The algorithms used to recognize these
structures are also quite different from scanning algorithms, in that they must use
recursive calls or an explicitly managed parsing stack. The data structures used to
represent the syntactic structure of a language must now also be recursive rather
than linear (as they are for lexemes and tokens). The basic structure used is usually
some kind of tree, called a parse tree or syntax tree.

In a similar manner to the previous chapter, we need to study the theory of con-
text-free grammars before we study parsing algorithms and the details of actual
parsers using these algorithms. However, contrary to the situation with scanners,
where there is essentially only one algorithmic method (represented by finite
automata), parsing involves a choice from among a number of different methods,
each of which has distinct properties and capabilities. There are in fact two general

oK

