CHAPTER 2 / SCANNING

We have added a new start state and a new accepting state and connected them as
shown using e-transitions. Clearly, this machine accepts the language Lr|s) =
L(r) U L(s).

Repetition 'We want to construct a machine that corresponds to r*, given a machine that
corresponds to r. We do this as follows:

Here again we have added two new states, a start state and an accepting state. The rep-
etition in this machine is afforded by the new e-transition from the accepting state of
the machine of r to its start state. This permits the machine of r to be traversed one or
more times. To ensure that the empty string is also accepted (corresponding to zero rep-
etitions of r), we must also draw an e-transition from the new start state to the new
accepting state.

This completes the description of Thompson’s construction. We note that this con-
struction is not unique. In particular, other constructions are possible when translating
regular expression operations into NFAs. For example, in expressing concatenation rs,
we could have eliminated the e-transition between the machines of r and s and instead
identified the accepting state of the machine of r with the start state of the machine of
s, as follows:

O £ O > O

Example 2.12

Figure 2.8

NFA for the regular
expression ab|a using
Thompson’s construction

Example 2.13

14 From Regular Expressions to DFAs 67

(This simplification depends, however, on the fact that in the other constructions, the
accepting state has no transitions from it to other states—see the exercises.) Other sim-
plifications are possible in the other cases. The reason we have expressed the transla-
tions as we have is that the machines are constructed according to very simple rules.
First, each state has at most two transitions from it, and if there are two transitions, they
must both be e-transitions, Second; no states are deleted once they are constructed, and
no transitions are changed except for the addition of transitions from the accepting
state. These properties make it very easy to automate the process.
We conclude the discussion of Thompson’s construction with a few examples.

We translate the regular expression ab | a into an NFA according to Thompson’s con-
fir for the basic reguiar expressions a and b:

struction. We first form th
) Q) ;

We then form the machine for the concatenation ab:

s o Ve o b
N N

O

Now we form another copy of the machine for a and use the construction for choice to
get the complete NFA for ab | a, which is shown in Figure 2.8.

a_)= /o
/ N

We form the NFA of Thompson’s construction for the regular expression
letter(letter|digit)*. As in the previous example, we form the machines for
the regular expressions letter and digit:

/ L

68

Figure 2.9

NFA for the reg-

ular expression
letter(letter |
digit)* using
Thompson's construction

CHAPTER 2 / SCANNING

We then form the machine for the choice letter|digit:

letter
E
€
digit

-

Now we form the NFA for the repetition (letter|digit)* as follows:

Example 2.14

Finally, we construct the machine for the concatenation of letter with
(letter|digit)* to get the complete NFA, as shown in Figure 2.9.

24 From Regular Expressions to DFAs 69

As a final example, we note that the NFA of Example 2.11 (Section 2.3.2) is ex-
actly that corresponding to the regular expression (a|c)*b under Thompson’s
construction.

242 From an NFA to a DFA

We now wish to describe an algorithm that, given an arbitrary NFA, will construct an
equivalent DFA (i.c., one that accepts precisely the same strings). To do this we will
need some method for eliminating both e-transitions and multiple transitions from a
state on a single input character. Eliminating e-transitions involves the construction of
s-closures, an e-closure being the set of all states reachable by e-transitions from a
state or states. Eliminating multiple transitions on a single input character involves
keeping track of the set of states that are reachable by matching a single character. Both
these processes lead us to consider sets of states instead of single states. Thus, it is not
surprising that the DFA we construct has as its states sets of states of the original NFA.
Thus, this algorithm is called the subset construction. We first discuss the e-closure in
a little more detail and then proceed to a description of the subset construction.

The &-Closure of a Set of States We define the e-closure of a single state s as the set of
states reachable by a series of zero or more e-transitions, and we write this set as 5. We
leave a more mathematical statement of this definition to an exercise and proceed
directly to an example. Note, however, that the e-closure of a state always contains the
state itself.

Consider the following NFA corresponding to the regular expression a* under
Thompson’s construction:

[0}

In this NFA, we have I = {1,2,4},2 = {2},3 = {2, 3,4}, and 4 = {4]. §

We now define the e-closure of a set of states to be the union of the s-closures of
each individual state. In symbols, if S is a set of states, then we have

wu..Cw

70

Example 2.15

Example 2.16

CHAPTER 2 / SCANNING

For instance, in the NFA of Example 2.14, {1,3} = | U3 = {1,2,4} U {2,3,4) =
{1,2,3,4}.

The Subset Construction We are now in a position to describe the algorithm for construct-
ing a DFA from a given NFA M, which we will call M. We first compute the e-closure
of the start state of M; this becomes the start state of M. For this set, and for each sub-
sequent set, we compute transitions on characiers a as follows. Given a set S of states
and a character a in the alphabet, compute the set S;'= { r | for some s in S there is a
transition from s to t on a }. Then, compute S, the s-closure of . This defines a new
state in the subset construction, together with a new transition § —— S’ Continue with
this process until no new states or transitions are created. Mark as accepting those states
constructed in this manner that contain an accepting state of M. This is the DFA M. It
contains no e-transitions because every state is constructed as an e-closure. It con-
tains at most one transition from a state on a character a because each new state is
constructed from all states of M reachable by transitions from a state on a single char-
acter a.

We illustrate the subset construction with a number of examples.

Consider the NFA of Example 2.14. The start state of the corresponding DFA is | =
{1, 2, 4}. There is a transition from state 2 to state 3 on a, and no transitions from states
1 or 4 on a, so there is a transition on a from {1, 2, 4} to {1, 2, 4}, = Alﬁ.ﬂ ={2,3,4).
Since there are no further transitions on a character from any of the states 1, 2, or 4,
we turn our attention to the new state {2, 3, 4}. Again, there is a transition from 2 to 3
on a and no a-transitions from either 3 or 4, so there is a transition from {2,3,4} to
{2, 3,4}, = {3} = {2, 3, 4). Thus, there is an a-transition from {2, 3, 4} 1o itself.
We have run out of states to consider, and so we have constructed the entire DFA. It
only remains to note that state 4 of the NFA is accepting, and since both {1,2,4} and
{2, 3, 4} contain 4, they are both accepting states of the corresponding DFA. We draw
the DFA we have constructed as follows, where we name the states by their subsets:

(oo
N

(Once the construction is complete, we could discard the subset terminology if we
wished.) §

Consider the NFA of Figure 2.8, to which we add state numbers:

Example 2.17

14 From Regular Expressions to DFAs 71

The DFA subset construction has as its start state {1} = {1, 2, 6}. There is a transi-
tion on « from state 2 to state 3, and also from state 6 to state 7. Thus, {1, 2, 6}, =
Qﬂ = {3, 4,7, 8}, and we have {1, 2, 6}—>{3, 4. 7, 8}. Since there are no
other character transitions from 1, 2, or 6, we go on to {3, 4, 7, 8}. There is a transi-
tion on b from 4 to 5 and {3, 4, 7, 8}, = {5} = {5, 8}, and we have the transition
{3, 4,7, 8)—>(5, 8). There are no other transitions. Thus, the subset construction
yields the following DFA equivalent to the previous NFA:

e : ‘ . ‘

Consider the NFA of Figure 2.9 (Thompson’s construction for the regular expression
letter (letter|digit)*):

letter

The subset construction proceeds as follows. The start state is {1} = {1}. There
is a transition on letterto {2} = {2, 3, 4,5, 7, 10}. From this state there is a transi-
tion on letter to a = {4,5,6,7,9, 10} and a transition on digit to {8) =
{4, 5, 7, 8, 9, 10}. Finally, each of these states also has transitions on lettex
and digit, either to itself or to the other. The complete DFA is given in the follow-

ing picture:

CHAPTER 2 / SCANNING

{4.5,6,7,9, 10} Jetces
letter
letter e . - letter
digit
digit
{4.5,7,8,9, 10} aigit
§
243 Simulating an NFA Using the :
Subset Construction m

In the last section we briefly discussed the possibility of writing a program to simulate
an NFA, a question that requires dealing with the nondeterminacy, or nonalgorithmic
nature, of the machine. One way of simulating an NFA is to use the subset construc-
tion, but instead of constructing all the states of the associated DFA, we construct only
the state at each point that is indicated by the next input character. Thus, we construct
only those sets of states that will actually occur in a path through the DFA that is taken
on the given input string. The advantage to this is that we may not need to construct the
entire DFA. The disadvantage is that a state may be constructed many times, if the path
contains loops.

For instance, in Example 2.16, if we have the input string consisting of the single
character a, we will construct the start state {1,2, 6} and then the second state {3, 4, 7,
8} to which we move and match the a. Then, since there is no following b, we accept
without ever generating the state {5, 8}.

On the other hand, in Example 2.17, given the input string r2d2, we have the fol-
lowing sequence of states and transitions:

(11-55(2,3,4,5,7, 10)—2-{4,5,7, 8,9, 10}
—2,(4,5,6,7,9, 10}—25(4,5,7, 8, 9, 10}

If these states are constructed as the transitions occur, then all the states of the DFA
have been constructed and the state {4, 5, 7, 8,9, 10} has even been constructed twice.
Thus, this process is less efficient than constructing the entire DFA in the first place.
For this reason, simulation of NFAs is not done in scanners. It does remain an option
for pattern matching in editors and search programs, where regular expressions can be
given dynamically by the user.

244 Minimizing the Number of States
in a DFA
The process we have described of deriving a DFA algorithmically from a regular

expression has the unfortunate property that the resulting DFA may be more complex
than necessary. For instance, in Example 2.15 we derived the DFA

24 From Regular Expressions to DFAs - 73

O—
Nt
for the regular expression a*, whereas the DFA

—
will do as well. Since efficiency is extremely important in a scanner, we would like to
be able to construct, if possible, a DFA that is minimal in some sense. In fact, an impor-
tant result from automata theory states that, given any DFA, there is an equivalent DFA
eontaining a minimum number of states, and that this minimum-state DFA is unique
(except for renaming of states). It is also possible to directly obtain this minimum-state
DFA from any given DFA, and we will briefly describe the algorithm here, without
proof that it does indeed construct the minimum-state equivalent DFA (it should be
easy for the reader to be informally convinced of this by reading the algorithm).

H:oxw_moanr& proceeds by creating sets of states to be unified into single states. It
begins with the most optimistic assumption possible: it creates two sets, one consisting
of all the accepting states and the other consisting of all the nonaccepting states. Given
this partition of the states of the original DFA, consider the transitions on each charac-
ter a of the alphabet. If all accepting states have transitions on « to accepting states, then
this defines an a-transition from the new accepting state (the set of all the old accept-
ing states) to itself. Similarly, if all accepting states have transitions on @ to nonaccept-
ing states, then this defines an a-transition from the new accepting state to the new
nonaccepting state (the set of all the old nonaccepting states). On the other hand., if there
aretwo accepting states s and ¢ that have transitions on a that land in different sets, then
no a-transition can be defined for this grouping of the states. We say that a distin-
guisheg the states s and ¢. In this case, the set of states under consideration (i.e., the set
of all accepting states) must be split according to where their a-transitions land. Similar
statements hold, of course, for each of the other sets of states, and once we have con-
sidered all characters of the alphabet, we must move on to them. Of course, if any fur-
ther sets are split, we must return and repeat the process from the beginning. We con-
tinue this process of refining the partition of the states of the original DFA into sets until
either all sets contain only one element (in which case, we have shown the original
DFA to be minimal) or until no further splitting of sets occurs.

For the process we have just described to work correctly, we must also consider
error transitions to an error state that is nonaccepting. That is, if there are accepting
states s and £ such that s has an a-transition to another accepting state, while ¢ has no
a-transition at all (i.e., an error transition), then a distinguishes s and 1. Similarly. if a
nonaccepting state s has an a-transition to an accepting state, while another nonaccept-
ing state ¢ has no a-transition, then « distinguishes s and in this case too.

We conclude our discussion of state minimization with a couple of examples.

74 CHAPTER 2 / SCANNING

Example 2.18 Consider the DFA we constructed in the previous example, corresponding to the regu-
lar expression letter(letter|digit)*. It had four states consisting of the start
state and three accepting states. All three accepting states have transitions to other
accepting states on both letter and digit and no other (nonerror) transitions. Thus,
the three accepting states cannot be distinguished by any character, and the minimi-
zation algorithm results in combining the three accepting states into one, leaving the
following minimum-state DFA (which we have already seen at the beginning of
Section 2.3):

letter
3 letter ((m\
~— NT— digit
§
Example 2.19 Consider the following DFA, which we gave in Example 2.1 (Section 2.3.2) as equiv-

alent to the regular expression (a|g)b*:

In this case, all the states (except the error state) are accepting. Consider now the char-
acter b. Each accepting state has a b-transition to another accepting state, so none of the
states are distinguished by b. On the other hand, state 1 has an a-transition to an accept-
ing state, while states 2 and 3 have no a-transition (or, rather, an error transition on a
to the error nonaccepting state). Thus, a distinguishes state 1 from states 2 and 3, and
we must repartition the states into the sets {1} and {2, 3}. Now we begin over. The set
{1} cannot be split further, so we no longer consider it. Now the states 2 and 3 cannot
be distinguished by either a or b. Thus, we obtain the minimum-state DFA:

L5 Implementation of a TINY Scanner 75

15 IMPLEMENTATION OF A TINY SCANNER

We want now to develop the actual code for a scanner to illustrate the concepts studied
so far in this chapter. We do this for the TINY language that we introduced informally
in Chapter 1 (Section 1.7). We then discuss a number of practical implementation
issues raised by this scanner.

251 Implementing a Scanner for the
Sample Language TINY

In Chapter | we gave only the briefest informal introduction to the TINY language. Our
task here is to specify completely the lexical structure of TINY, that is, to define the
tokens and their attributes. The tokens and token classes of TINY are summarized in
Table 2.1.

The tokens of TINY fall into three typical categories: reserved words, special sym-
bols, and “other” tokens. There are eight reserved words, with familiar meanings
(though we do not need to know their semantics until much later). There are 10 special
symbols, giving the four basic arithmetic operations on integers, two comparison oper-
ations (equal and less than), parentheses, semicolon, and assignment. All special sym-
bols are one character long, except for assignment, which is two.

Table 21

Tokens of the TINY language ~ Reserved Words Special Symbols ~ Other
if + number
then - (1 or more
else * digits)
end /
repeat =
until < identifier
read ((1 or more
write) letters)

The other tokens are numbers, which are sequences of one or more digits, and identi-
fiers, which (for simplicity) are sequences of one or more letters.

In addition to the tokens, TINY has the following lexical conventions. Comments
are enclosed in curly brackets {. ..} and cannot be nested; the code is free format; white
space consists of blanks, tabs, and newlines; and the principle of longest substring is
followed in recognizing tokens.

In designing a scanner for this language, we could begin with regular expressions
and develop NFAs and DFAs according to the algorithms of the previous section.
Indeed regular expressions have been given previously for numbers, identifiers, and
comments (TINY has particularly simple versions of these). Regular expressions for the
other tokens are trivial, since they are all fixed strings. Instead of following this route,

76

CHAPTER 2 / SCANNING

we will develop a DFA for the scanner directly, since the tokens are so simple. We do
this in several steps.

First, we note that all the special symbols except assignment are distinct single char-
acters, and a DFA for these symbols would look as follows:

return PLUS

return MINUS

return SEMI

In this diagram, the different accepting states distinguish the token that is to be returned
by the scanner. If we use some other indicator for the token to be returned (a variable
in the code, say), then all the accepting states can be collapsed into one state that we
will call DONE. If we combine this two-state DFA with DFAs that accept numbers and
identifiers, we obtain the following DFA:

[other]

letter

Note the use of the square brackets to indicate lookahead characters that should not be
consumed.

We need to add comments, white space, and assignment to this DFA. White space
is consumed by a simple loop from the start state to itself. Comments require an extra
state, reached from the start state on left curly bracket and returning to it on right curly
bracket. Assignment also requires an intermediate state, reached from the start state on
semicolon. If an equal sign immediately follows, then an assignment token is generated.
Otherwise, the next character should not be consumed, and an error token is generated.

-

Figure 210
DFA of the TINY scanner

15 Implementation of a TINY Scanner 77

digit

white
space

[other]

letter

In fact, all single characters that are not in the list of special symbols, are not white
space or comments, and are not digits or letters, should be accepted as errors, and we
lump these in with the single-character symbols. The final DFA for our scanner is given
in Figure 2.10.

We have not included reserved words in our discussion or in the DFA of Figure
2.10. This is because it is easiest from the point of view of the DFA to consider reserved
words to be the same as identifiers, and then to look up the identifiers in a table of
reserved words after acceptance. Indeed, the principle of the longest substring guaran-
tees that the only action of the scanner that needs changing is the token that is returned.
Thus, reserved words are considered only after an identifier has been recognized.

We turn now to a discussion of the code to implement this DFA, which is contained
in the scan.h and scan.c files (see Appendix B). The principal procedure is
getToken (lines 674-793), which consumes input characters and returns the next
token recognized according to the DFA of Figure 2.10. The implementation uses the
doubly nested case analysis we have described in Section 2.3.3, with a large case list
based on the state, within which are individual case lists based on the current input
character. The tokens themselves are defined as an enumerated type in globals.h
(lines 174-186), which include all the tokens listed in Table 2.1, together with the
bookkeeping tokens ENDFILE (when the end of the file is reached) and ERROR (when
an erroneous character is encountered). The states of the scanner are also defined as an
enumerated type, but within the scanner itself (lines 612-614).

A scanner also needs in general to compute the attributes, if any, of each token, and
sometimes also take other actions (such as inserting identifiers into a symbol table). In
the case of the TINY scanner, the only attributc that is computed is the lexeme, or string
value of the token recognized, and this is placed in the variable tokenString. This
variable, together with getToken are the only services offered to other parts of the
compiler, and their definitions are collected in the header file scan. h (lines 550-571).
Note that tokenString is declared with a fixed length of 41, so that identifiers, for
example, cannot be more than 40 characters (plus the ending null character). This is a
limitation that is discussed later.

78

Figure 211
Sample program in the TINY
language

CHAPTER 2 / SCANNING

The scanner makes use of three global variables: the file variables source and
listing, and the integer variable 1ineno, which are declared in globals.h, and
allocated and initialized in main.c.

Additional bookkeeping done by the getToken procedure is as follows. The table
reservedWords (lines 649-656) and the procedure reservedLookup (lines
658-666) perform a lookup of reserved words after an identifier is recognized by the
principal loop of getToken, and the value of currentToken is changed accord-
ingly. A flag variable save is used to indicate whether a character is to be added to
tokenString; this is necessary, since white space, comments, and nonconsumed
lookaheads should not be included.

Character input to the scanner is provided by the getNextChar function (lines
627-642), which fetches characters from 1ineBuf, a 256-character buffer internal to
the scanner, If the buffer is exhausted, getNextChaxr refreshes the buffer from the
source file using the standard C procedure £gets, assuming each time that a new
source code line is being fetched (and incrementing 1ineno). While this assumption
allows for simpler code, a TINY program with lines greater than 255 characters will
not be handled quite correctly. We leave the investigation of the behavior of
getNextcChar in this case (and improvements to its behavior) to the exercises.

Finally, the recognition of numbers and identifiers in TINY requires that the transi-
tions to the final state from INNUM and INID be nonconsuming (see Figure 2.10). We
implement this by providing an ungetNextChar procedure (lines 644-647) that
backs up one character in the input buffer. Again, this does not quite work for programs
having very long source lines, and alternatives are explored in the exercises.

As an illustration of the behavior of the TINY scanner, consider the TINY program
sample.tny in Figure 2.11 (the same program that was given as an example in
Chapter 1). Figure 2.12 shows the listing output of the scanner, given this program as
input, when TraceScan and EchoSouxce are set.

The remainder of this section will be devoted to an elaboration of some of the
implementation issues raised by this scanner implementation.

{ sample program
in TINY language -
computes factorial
}
read x; { input an integer }
if 0 < x then { don’t compute if x <= 0 }

fact := 1;

repeat
fact := fact * =x;
x s= x - 1

until % = 0;
write fact { output factorial of x }
end

Figure 212

Output of scanner given the
TINY program of Figure .11
as input

15 implementation of a TINY Scanner

TINY COMPILATION:

1:
2:
3:

10:

1i:

12:

13:

{ sample program
in TINY language -
computes factorial

}
read

x; { input an integer }

5: reserved word:

5: I
S: 3

if 0 < x then { don’t compute if x <= 0 }

6:

D, name= x

eserved woxd:

6: NUM, val= 0

6: <
6: I

D, name= X

6: reserxrved woxd:
fact := 1;

sample.tny

read

if

then

7: ID, name= fact
7: :=
7: NUM, val= 1
7:
repeat
8: reserved word: repeat

fact := fact *
D, name= fact

D, name= fact

ID, name= x

NUM, val= 1

until x = 0;
11: reserved word:
11: ID, mname= x
11: =
1i: NUM, val= 0
11: ;

write fact { output factorial of x }

12:
12:
end
13:
14:

resexrved word:
ID, name= fact

resexrved word:
EOF

x;

until

write

end

79

80

CHAPTER 2 / SCANNING

252 Reserved Words Versus Identifiers

Our TINY scanner recognizes reserved words by first considering them as identifiers
and then looking them up in a table of reserved words. This is a common practice in
scanners, but it means that the efficiency of the scanner depends on the efficiency of
the lookup process in the reserved word table. In our scanner we have used a very sim-
ple method—linear search—in which the table is searched sequentially from beginning
to end. This is not a problem for very small tables such as that for TINY, with only eight
reserved words, but it becomes an unacceptable situation in scanners for real languages,
which commonly have between 30 and 60 reserved words. In this case a faster lookup
is required, and this can require the use of a better data structure than a linear list. One
possibility is a binary search, which we could have applied had we written the list of
reserved words in alphabetic order. Another possibility is to use a hash table. In this
case we would like to use a hash function that has a very small number of collisions.
Such a hash function can be developed in advance, since the reserved words are not
going to change (at least not rapidly), and their places in the table will be fixed for every
run of the compiler. Some research effort has gone into the determination of minimal
perfect hash functions for various languages, that is, functions that distinguish each
reserved word from the others, and that have the minimum number of values, so that a
hash table no larger than the number of reserved words can be used. For instance, if
there are only eight reserved words, then a minimal perfect hash function would always
yield a value from 0 to 7, and each reserved word would yield a different value. (See
the Notes and References section for more information.)

Another option in dealing with reserved words is to use the same table that stores
identifiers, that is, the symbol table. Before-processing is begun, all reserved words are
entered into this table and are marked reserved (so that no redefinition is allowed). This
has the advantage that only a single lookup table is required. In the TINY scanner, how-
ever, we do not construct the symbol table until after the scanning phase, so this solu-
tion is not appropriate for this particular design.

253 Allocating Space for Identifiers

A further flaw in the design of the TINY scanner is that token strings can only be a
maximum of 40 characters. This is not a problem for most of the tokens, since their
string sizes are fixed, but it is a problem for identifiers, since programming languages
often require that arbitrarily long identifiers be allowed in programs. Even worse, if we
allocate a 40-character array for each identifier, then much of the space is wasted, since
most identifiers are short. This doesn’t happen in the code of the TINY compiler, since
token strings are copied using the utility function copyString, which dynamically
allocates only the necessary space, as we will see in Chapter 4. A solution to the size
limitation of tokenString would be similar: only allocate space on an as needed
basis, possibly using the realloc standard C function. An alternative is to allocate an
initial large array for all identifiers and then to perform do-it-yourself memory alloca-
tion within this array. (This is a special case of the standard dynamic memory manage-
ment schemes discussed in Chapter 7.)

2.6 Use of Lex to Generate a Scanner Automatically 81

16 USE OF Lex TO GENERATE A
SCANNER AUTOMATICALLY

In this section we repeat the development of a scanner for the TINY language carried
out in the previous section, but now we will use the Lex scanner generator to generate
a scanner from a description of the tokens of TINY as regular expressions. Since there
are a number of different versions of Lex in existence, we confine our discussion to
those features that are common to all or most of the versions. The most popular version
of Lex is called flex (for Fast Lex). It is distributed as part of the Gnu compiler pack-
age produced by the Free Software Foundation, and is also freely available at many
Internet sites.

LexZis a program that takes as its input a text file containing regular expressions,
together with the actions to be taken when each expression is matched. Lex produces
an output file that contains C source code defining a procedure yylex that is a table-
driven implementation of a DFA corresponding to the regular expressions of the input
file, and that operates like a getToken procedure. The Lex output file, usually called
lex.yy.c or lexyy.c, is then compiled and linked to a main program to get a run-
ning program, just as the scan.c file was linked with the tiny.c file in the previ-
ous section.

In the following, we first discuss the Lex conventions for writing regular expres-
sions and the format of a Lex input file. We then discuss the Lex input file for the TINY
scanner given in Appendix B.

281 Lex Conventions for Regular Expressions

Lex conventions are very similar to those discussed in Section 2.2.3. Rather than list all
of Lex’s metacharacters and describe them individually, we will give an overview and
then give the Lex conventions in a table.

Lex allows the matching of single characters, or strings of characters, simply by
writing the characters in sequence, as we did in previous sections. Lex also allows
metacharacters to be matched as actual characters by surrounding the characters in
quotes. Quotes can also be written around characters that are not metacharacters, where
they have no effect. Thus, it makes sense to write quotes around all characters that are
to be matched directly, whether or not they are metacharacters. For example, we can
write either 1€ or "1 £" to match the reserved word if that begins an if-statement. On
the other hand, to match a left parenthesis, we must write " (*, since it is a metachar-
acter. An alternative is to use the backslash metacharacter \, but this works only for sin-
gle metacharacters: to match the character sequence (* we would have to write \ (*,
repeating the backslash. Clearly, writing " (*" is preferable. Also using the backslash
with regular characters may have a special meaning. For example, \n matches a new-
line and \t matches a tab (these are typical C conventions, and most such conventions
carry over into Lex).

Lex interprets the metacharacters *, 4, (,), and | in the usual way. Lex also uses
the question mark as a metacharacter to indicate an optional part. As an example of the

82

CHAPTER 2 / SCANNING

Lex notation discussed so far, we can write a regular expression for the set of strings of
a’s and b’s that begin with either aa or bb and have an optional ¢ at the end as

(aa|bb) (a|b) *c?

or as

(vraan® _ "pbb") (van _ npw)kuany

The Lex convention for character classes (sets of characters) is to write them
between square brackets. For example, [abxz] means any one of the characters a, b,
X, or z, and we could write the previous regular expression in Lex as

(aa|bb) [abl *c?

Ranges of characters can also be written in this form using a hyphen. Thus, the expres-
sion [0-91 means in Lex any of the digits zero through nine. A period is a metachar-
acter that also represents a set of characters: it represents any character except a new-
line. Complementary sets—that is, sets that do not contain certain characters—can also
be written in this notation, using the carat 4 as the first character inside the brackets.
Thus, [#0-9abc] means any character that is not a digit and is not one of the letters
a, b, orc.

As an example, we write a regular expression for the set of signed numbers that may
contain a fractional part or an exponent beginning with the letter E (this expression was
written in slightly different form in Section 2.2.4):

P

A:+=__.|..vaOIWH+A=..._”o..wu.fvw:m::.‘...

“)?[0-9]+)?

One curious feature in Lex is that inside square brackets (representing a character
class), most of the metacharacters lose their special status and do not need to be quoted.
Even the hyphen can be written as a regular character if it is listed first. Thus, we could
have written [-+] instead of (*+"|"-") in the previous regular expression for num-
bers (but not [+-] because of the metacharacter use of - to express a range of char-
acters). As another example, [."?] means any of the three characters period, quota-
tion mark, or question mark (all three of these characters have lost their metacharacter
meaning inside the brackets). Some characters, however, are still metacharacters even
inside the square brackets, and to get the actual character, we must precede the charac-
ter by a backslash (quotes cannot be used as they have lost their metacharacter mean-
ing). Thus, [\~\\] means either of the actual characters » or \.

A further important metacharacter convention in Lex is the use of curly brackets to

denote names of regular expressions. Recall that a regular expression can be given a
name, and that these names can be used in other regular expressions as long as there are
no recursive references. For example, we defined signedNat in Section 2.2.4 as fol-
lows:

nat = [0-9]+
signedNat = ("+"|"-")? nat

Table 2.2

2.6 Use of Lex to Generate a Scanner Automatically 83

In this and other examples, we used italics to distinguish names from ordinary
sequences of characters. Lex files, however, are ordinary text files, so italics are not
available. Instead, Lex uses the convention that previously defined names are sur-
rounded by curly brackets. Thus, the previous example would appear as follows in Lex
(Lex also dispenses with the equal sign in defining names):

nat [0-9]+
signedNat (+|-)?{nat}

Note that the curly brackets do not appear when a name is defined, only when it is used.

Table 2.2 contains a summary list of the metacharacter conventions of Lex that
we have discussed. There are a number of other metacharacter conventions in Lex
that we will not use and we do not discuss them here (see the references at the end

of the chapter).

Metacharacter conventions
in Lex

Pattern Meaning
a the character a
wan the character a, even if a is a metacharacter
\a the character @ when « is a metacharacter
a* zero or more repetitions of a
a+ one or more repetitions of a
a? an optional a
alb aorb
(a) a itself
[abc] any of the characters a, b, or ¢
[a-d] any of the characters a, b, ¢, or d
[~ab} any character except ¢ or b
. any character except a newline
{soex} the regular expression that the name x.xx represents

262 The Format of a Lex Input File

A Lex input file consists of three parts, a collection of definitions, a collection of rules,
and a collection of auxiliary routines or user routines. The three sections are sepa-
rated by double percent signs that appear on separate lines beginning in the first col-
umn. Thus, the layout of a Lex input file is as follows:

{definitions}

%%

{rules}

%%

{auxiliaxry routines)

