46

CHAPTER 2 / SCANNING

word that cannot also be an identifier. Second, when a string can be a single token or a

sequence of several tokens, the single-token interpretation is typically preferred. This

preference is often referred to as the principle of longest substring: the longest string
of characters that could constitute a single token at any point is assumed to represent
the next token.’

An issue that arises with the use of the principle of longest substring is the question
of token delimiters, or characters that imply that a longer string at the point where they
appear cannot represent a token. Characters that are unambiguously part of other tokens
are delimiters. For example, in the string xtemp=ytemp, the equal sign delimits the
identifier sstemp, since = cannot appear as part of an identifier. Blanks, newlines, and
tab characters are generally also assumed to be token delimiters: while x ... is
:Ef ::QGR:& as containing the two tokens E?n enting the reserved Eoz_ while

ntifier with mamao es

Qinon < v—) Atar ot
IS Wil namc x, Sincc

s the two character st

h
=

m@.:F:Q

nl
situation it is omg helpful to define a white mvmnm pseudotoken, similar to the comment
pseudotoken, which simply serves the scanner internally to distinguish other tokens.
Indeed, comments themselves usually serve as delimiters, so that, for example, the C
code fragment

do/**/if

represents the two reserved words do and if rather than the identifier doi£.
A typical definition of the white space pseudotoken in a programming language is

whitespace = (newline|blank|tab|comment)+

where the identifiers on the right stand for the appropriate characters or strings. Note
that, other than acting as a token delimiter, white space is usually ignored. Languages
that specify this behavior are called free format. Alternatives to free format include the
fixed format of a few languages like FORTRAN and various uses of indentation, such
as the offside rule (see the Notes and References section). A scanner for a free-format
language must discard white space after checking for any token delimiting effects.

Delimiters end token strings but they are not part of the token itself. Thus, a scan-
ner must deal with the problem of Jookahead: when it encounters a delimiter, it must
arrange that the delimiter is not removed from the rest of the input, either by returning
it to the input string (“backing up”) or by looking ahead before removing the character
from the input. In most cases, it is only necessary to do this for a single character
(“single-character lookahead™). For example, in the string xtemp=yt emp, the end of
the identifier xtemp is found when the = is encountered, and the = must remain in
the input, since it represents the next token to be recognized. Note also that lookahead
may not be necessary to recognize a token. For example, the equal sign may be the only
token that begins with the = character, in which case it can be recognized immediately
without consulting the next character.

Sometimes a language may require more than single-character lookahead, and the
scanner must be prepared to back up possibly arbitrarily many characters. In that case,
buffering of input characters and marking places for backtracking become issues in the
design of a scanner. (Some of these questions are dealt with later on in this chapter.)

3. Sometimes this is called the principle of “maximal munch.”

23 Finite Automata 47

FORTRAN is a good example of a language that violates many of the principles we
have just been discussing. FORTRAN is a fixed-format language in which white space
is removed by a preprocessor before translation begins. Thus, the FORTRAN line

IF (X2 .EQ. 0) THEN

would appear to a compiler as

IF(X2.EQ.0)THEN

so white space no longer functions as a delimiter. Also, there are no reserved words in
FORTRAN, so all keywords can also be identifiers, and the position of the character
string in each line of input is important in determining the token to be recognized. For
example, the following line of code is perfectly correct FORTRAN:

IF(IF.EQ.0) THENTHEN=1,0

The first IF and THEN are keywords, while the second IF and THEN are identifiers
representing variables. The effect of this is that a FORTRAN scanner must be able to
backtrack to arbitrary positions within a line of code. Consider, for concreteness, the
following well-known example:

DO99I=1,10

This initiates a loop comprising the subsequent code up to the line whose number is 99,
with the same effect as the Pascal for i := 1 to 10.On the other hand, chang-
ing the comma to a period

DO99I=1.10

changes the meaning of the code completely: this assigns the value 1.1 to the variable
with name DO99I. Thus, a scanner cannot conclude that the initial DO is a keyword
until it reaches the comma (or period), in which case it may be forced to backtrack to
the beginning of the line and start over.

FINITE AUTOMATA

Finite automata, or finite-state machines. are a mathematical way of describing partic-
ular kinds of algorithms (or “machines™). In particular, finite automata can be used to
describe the process of recognizing patterns in input strings, and so can be used to con-
struct scanners. There is also, of course, a strong relationship between finite automata
and regular expressions, and we will see in the next section how to construct a finite
automaton from a regular expression. Before we begin the study of finite automata
proper, however, let us consider an elucidating example.

The pattern for identifiers as commonly defined in programming languages is given
by the following regular definition (we assume that letter and digit have been
already defined):

identifier = letter(letter|digit)*

48

Figure 21
A finite automaton for
identifiers

CHAPTER 2 / SCANNING

This represents a string that begins with a letter and continues with any sequence of let-
ters and/or digits. The process of recognizing such a string can be described by the dia-
gram of Figure 2.1.

letter

D letter
< digit

In that diagram, the circles numbered 1 and 2 represent states, which are locations in
the process of recognition that record how much of the pattern has already been seen.
The arrowed lines represent transitions that record a change from one state to another
upon a match of the character or characters by which they are labeled. In the sample
diagram, state | is the start state, or the state at which the recognition process begins.
By convention, the start state is indicated by drawing an unlabeled arrowed line to it
coming “from nowhere.” State 2 represents the point at which a single letter has been
matched (indicated by the transition from state | to state 2 labeled Z1etter). Once in
state 2, any number of letters and/or digits may be seen, and a match of these returns us
to state 2. States that represent the end of the recognition process, in which we can
declare success, are called accepting states, and are indicated by drawing a double-line
border around the state in the diagram. There may be more than one of these. In the
sample diagram state 2 is an accepting state, indicating that, after a letter is seen, any
subsequent sequence of letters and digits (including none at all) represents a legal
identifier. g

The process of recognizing an actual character string as an identifier can now be
indicated by listing the sequence of states and transitions in the diagram that are used
in the recognition process. For example, the process of recognizing xtemp as an iden-
tifier can be indicated as follows:

5 -Hs D B b B 5. Meh Py

In this diagram, we have labeled each transition by the letter that is matched at
each step.

231 Definition of Deterministic
:__:m Automata

Diagrams such as the one we have discussed are useful descriptions of finite automata,
since they allow us to visualize easily the actions of the algorithm. Occasionally, how-
ever, it is necessary to have a more formal description of a finite automaton, and so we
proceed now to give a mathematical definition. Most of the time, however, we will not
need so abstract a view as this, and we will describe most examples in terms of the dia-
gram alone. Other descriptions of finite automata arc also possible, particularly tables,
and these will be useful for turning the algorithms into working code. We will describe
them as the need arises.

23 Finite Automata 49

We should also note that what we have been describing are deterministic finite
automata: automata where the next state is uniquely given by the current state and the
current input character. A useful generalization of this is the nondeterministic finite
automaton, which will be studied later on in this section.

7
7
7
.

A DFA (deterministic finite automaton) M consists of an alphabet %, a set of states S,
a transition function 7% § X.3 — S, a start state sy € S, and a set of accepting states
A C §. The language accepted by M, written L(M). is defined to be the set of strings
of characters ¢,c,. . .c, with each ¢; € 3, such that there exist states s1 = T(sg,),
$2 = T(sy, €2)y ooy 8, = T(s,—, ¢,) with s, an element of A (i.e., an accepting state).

We make the following notes about this definition. § X 3 refers to the Cartesian or
cross product-of §and 3: the set of pairs (s, ¢), where s € S and ¢ € 3. The function

T records the transitions: T(s. ¢) = s if there is a transition from state s to state s’
labeled by ¢. The corresponding piece of the diagram for M looks as follows:

Acceptance as the existence of a sequence of states 5, = T(so. 1)y 82 = T(sy, ca), . ..,
sy = T(s, -1, ¢,) with s, an accepting state thus means the same thing as the diagram

oy I ¢
DSy S e S s, s Sn

We note a number of differences between the definition of a DFA and the diagram
of the identifier example. First, we used numbers for the states in the identifier diagram,
while the definition does not restrict the set of states to numbers. Indeed, we can use
any system of identification we want for the states, including names. For example, we
could write an equivalent diagram to that of Figure 2.1 as

letter

@ letter

digit

where we have now called the states start (since it is the start state) and in_id (since
we have seen a letter and will be recognizing an identifier after any subsequent letters
and numbers). The set of states for this diagram now becomes {start, in_id} instead
of {1,2}.

A second difference between the diagram and the definition is that we have not
labeled the transitions with characters but with names representing a set of characters.

50 CHAPTER 2 / SCANNING

For instance, the name lettexr represents any letter of the alphabet according to the
following regular definition:

letter = [a-zA-Z]

This is a convenient extension of the definition, since it would be cumbersome to draw
52 separate transitions, one for each lowercase letter and one for each uppercase letter.
We will continue to use this extension of the definition in the rest of the chapter.

A third and more essential difference between the definition and our diagram is that
the definition represents transitions as a function T: S X 3 — S. This means that 7(s, c)
must have a value for every s and c. But in the diagram we have 7(start, ¢) defined only
if ¢ is a letter, and T(in_id, ¢) is defined only if ¢ is a letter or a digit. Where are the
missing transitions? The answer is that they represent errors—that s, in recognizing an
identifier we cannot accept any characters other than letters from the start state and
letters or numbers after that.* The convention is that these error transitions fe not
drawn in the diagram‘but are simply assumed to always exist. If we were to draw them,
the diagram for an identifier would look as in Figure 2.2.

Figure 2.2
’ . letter
A finite automaton for >
N . letter
identifiers with error start
digit
othexr other .
any

In that figure, we have labeled the new state error (since it represents an erroneous
occurrence), and we have labeled the error transitions other. By convention, other
represents any character not appearing in any other transition from the state where it
originates. Thus, the definition of other coming from the start state is

other = ~letter

and the definition of othex coming from the state in_id is

other = ~(letter|digit)

4. In reality. these nonalphanumeric characters mean either that we do not have an identifier
at all (if we are in the start state) or that we have encountered a delimiter that ends the recogni-
tion of an identifier (if we are in an accepting state). We will see how to handle these situations
later in this section.

-

.6

0.7

2.8

13 Finite Automata 51

Note also that all transitions from the error state go back to itself (we have labeled these
transitions any to indicate that any character results in this transition). Also, the error
state is nonaccepting. Thus, once an error has occurred, we cannot escape from the error
state, and we will never accept the string.

We now turn to a series of examples of DFAs, paralleling the examples of the pre-
vious section.

The set of strings that contain exactly one b is accepted by the following DFA:

notb notb

b

<t
Note that we have not bothered to label the states. We will omit labels when it is not
necessary to refer to the states by name. §

The set of strings that contain at most one b'is accepted by the following DFA:

notb notb

b

AN

Note how this DFA is a modification of the DFA of the previous example, obtained by
making the start state into a second accepting state. §

In the previous section we gave regular definitions for numeric constants in scientific
notation as follows:

nat = [0-9]+

signedNat = (+|-)? nat

number = signedNat("." nat)?(E signedNat)?
4

We would like to write down DFAs for the strings matched by these definitions, but it
is helpful to first rewrite them as follows:

digit = [0-9]

nat = digit+

signedNat = (+|-)? nat

number = gignedNat("." nat)?(E signedNat)?

52 CHAPTER 2 / SCANNING

It is easy to write down a DFA for nat as follows (recall that a+ = aa* for any a):

digit

A signedNat is a little more difficult because of the optional sign. However, we may
note that a signedNat begins either with a digit or a sign and a digit and then write
the following DFA:

digit

Ian.TUQ digit @ . Q digit Q

Note that we have kept both accepting states, reflecting the fact that the fractional part
is optional.

Finally, we need to add the optional exponential part. To do this, we note that the
exponential part must begin with the letter E and can occur only after we have reached
either of the previous accepting states. The final diagram is given in Figure 2.3.

.

Figure 23 A finite automaton for floating-point numbers

digit / digit

digit
+ i +
digit ZA\\./ . /7 \digit O E M u&.ﬁn

Y / N\
digit m

Example 2.9 Unnested comments can be described using DFAs. For example, comments surrounded

by curly brackets are accepted by the following DFA:

)’ A on”mn.
_/ N

-

R

S

R

Figure 24
A finite automaton for
Cstyle comments

13 Finite Automata 53

In this case other means all characters except the right curly bracket. This DFA cor-
responds to the regular expression { (~})*}, which we wrote down previously in
Section 2.2.4.

We noted in that section that it was difficult to write down a regular expression for
comments that are delimited by a sequence of two characters, such as C comments,
which are of the form /*...(no */s8)...*/. Itis actually easier to write down a
DFA that accepts such comments than it is to write a regular expression for them. A
DFA for such C comments is given in Figure 2.4.

O P s &0 s &

e - — O~ Nt
other

In that figure the other transition from state 3 to itself stands for all characters except
while the other transition from state 4 to state 3 stands for all characters except *
and /. We have numbered the states in this diagram for simplicity, but we could
have given the states more meaningful names, such as the following (with the corre-
sponding numbers in parentheses): start (1); entering_comment (2); in_comment (3);
exiting_comment (4); and finish (5). §

232 Lookahead, Backtracking, and
Nondeterministic Automata

We have studied DFAs as a way of representing algorithms that accept character strings
according to a pattern. As the reader may have already guessed, there is a strong rela-
tionship between a regular expression for a pattern and a DFA that accepts strings
according to the pattern. We will explore this relationship in the next section. But, first,
we need to study more closely the precise algorithms that DFAs represent, since we
want eventually to turn these algorithms into the code for a scanner.

We have already noted that the diagram of a DFA does not represent everything a
DFA needs but gives only an outline of its operation. Indeed, we saw that the mathe-
matical definition implies that a DFA must have a transition for every state and char-
acter, and that those transitions that result in errors are usually left out of the diagram
for the DFA. But even the mathematical definition does not describe every aspect of
behavior of a DFA algorithm. For example, it does not specify what happens when an
error does occur. It also does not specify the action that a program is to take upon reach-
ing an accepting state, or even when matching a character during a transition.

A typical action that occurs when making a transition is to move the character from
the input string to a string that accumulates the characters belonging to a single token
(the token string value or lexeme of the token). A typical action when reaching an
accepting state is to return the token just recognized, along with any associated attri-
butes. A typical action when reaching an error state is to either back up in the input
(backtracking) or to generate an error token.

Our original example of an identifier token exhibits much of the behavior that we
wish to describe here, and so we return to the diagram of Figure 2.4. The DFA of that

54

Figure 2.5

Finite automaton for an
identifier with delimiter and
return value

CHAPTER 2 / SCANNING

figure does not exhibit the behavior we want from a scanner for several reasons. First,
the error state is not really an error at all, but represents the fact that either an identifier
is not to be recognized (if we came from the start state) or a delimiter has been seen and
we should now accept and generate an identifier token. Let us assume for the moment
(which will in fact be correct behavior) that there are other transitions representing the
nonletter transitions from the start state. Then we can indicate that a delimiter has been
seen from the state in__id, and that an identifier token should be generated, by the dia-
gram of Figure 2.5:

letter

\\\I// letter . {other]
start { in_id =

return ID

In the diagram we have surrounded the ot her transition with square brackets to indi-
cate that the delimiting character should be considered lookahead, that is, that it should
be returned to the input string and not consumed. In addition, the error state has become
the accepting state in this diagram and there are no transitions out of the accepting state.
This is what we want, since the scanner should recognize one token at a time and should
begin again in its start state after each token is recognized.

This new diagram also expresses the principle of longest substring described in
Section 2.2.4: the DFA continues to match letters and digits (in state in_id) until a
delimiter is found. By contrast the old diagrdm allowed the DFA (o accept at any point
while reading an identifier string, something we certainly do not want to happen.

We turn our attention now to the question of how to arrive at the start state in the
first place. In a typical programming language there are many tokens, and each token
will be recognized by its own DFA. If each of these tokens begins with a different char-
acter, then it is easy to tic them together by simply uniting all of their start states into a
single start state. For example, consider the tokens given by the strings :=, <=, and =
Each of these is a fixed string, and DFAs for them can be written as follows:

>

O O

return ASSIGN

return LE

return EQ

O OO
O O C

Since each of these tokens begins with a different character, we can simply identify
their start states to get the following DFA:

R

13 Finite Automata 55

return ASSIGN

« N
return LE

raeturn EQ

a
<
o]
g
&
5
3
Q
w
)
ri

r, supp d several tokens that begin with the same character, such as <,
<=, m:a <>. Now we cannot simply write the following diagram, since it is not a
DFA (given a state and a character, there must always be a unique transition to a sin-
gle new state):

a
na
we

return LE

Aﬁ\ e
<

return LT

Instead, we must arrange it so that there is a unique transition to be made in each state,
such as in the following diagram:

return LE

return NE

@

{other]

return LT

In principle, we should be able to combine all the tokens into one giant DFA in this
fashion. However, the complexity of such a task becomes enormous, especially if it is
done in an unsystematic way.

56

CHAPTER 2 / SCANNING

A solution to this problem is to expand the definition of a finite automaton to
include the case where more than one transition from a state may exist for a particular
character, while at the same time developing an algorithm for systematically turning
these new, generalized finite automata into DFAs. We will describe these generalized
automata here, while postponing the description of the translation algorithm until the
next section. ;

The new kind of finite automaton is called a nondeterministic finite automaton,
or'NFA for short. Before we define it, we need one more generalization that will be use-
ful in applying finite automata to scanners: the concept of the e-transition.

An g-transition is a transition that may occur without consulting the input string .

(and without consuming any characters). It may be viewed as a “match” of the empty

-string, which we have previously written as €. In a diagram an e-transition is written as

though & were «:..:u_:__.a\ a character:

though € actuall charact

This should not be confused with a match of the character & in the input: if the alpha-
bet includes such a character, it must be distinguished from the use of & as a metachar-
acter to represent an e-transition.

e-transitions are somewhat counterintuitive, since they may occur “spontaneously,”
that is, without lookahead and without change to the input string, but they are useful in
two ways. First, they can express a choice of alternatives in a way that does not involve
combining states. For example, the choice of the tokens :=, <=, and = can be
expressed by combining the automata for each token as follows:

)
oJoJe

This has the advantage of keeping the original automata intact and only adding a new
start state to connect them, The second advantage to e-transitions is that they can
explicitly describe a match of the empty string:

O

a
L

i

Definition

23 Finite Automata 57

Of course, this is equivalent to the following DFA, which expresses that acceptance
should occur without matching any characters:

But it is useful to have the previous, explicit notation.

We now proceed to a definition of a nondeterministic automaton. It is quite similar
to that of a DFA, except that, according to the above discussion, we need to expand the
alphabet X to include &. We do this by writing 2 U {&} (the union of 3 and &) where
we used 3 before (this as mber of X)) so need
to expand the definition of T (the transition function) so that each character can lead to
more than one state. We do this by letting the value of T be a set of states rather than a

single state. For example, given the diagram

e
SN

we have T(1, <) = {2, 3}. In other words, from state | we can move to either state 2
or state 3 on the input character <, and T becomes a function that maps state/symbol
pairs to sets of states. Thus, the range of T is the power set of the set S of states (the set
of all subsets of S); we write this as g(S) (script p of §). We now state the definition.

ic 1oinally o o We a1
mes that ¢ is not originally a member of X). We als

neea

O ©

An NFA (nondeterministic finite automaton) M consists of an alphabet 3, a set of states
S, a transition function 7% § X (S U {g]) — £(S), a start state sy from S, and a set of
accepting states’/A from S. The language accepted by M, written L(M), is defined to be
the set of strings of characters ¢ c». . .c,, with each ¢; from 2 U { &} such that there exist
states s; in T(sg, 1), 52 in 7(sy, ¢2), . . ., 8, in T(s,—y, ¢,,) with s,, an element of A.

Again, we need to note a few things about this definition. Any of the c¢; in
€1€a. . .c, may be g, and the string that is actually accepted is the string ¢,c». . .c,
with the &’s removed (since the concatenation of s with ¢ is s itself). Thus, the string

58

Example 2.10

CHAPTER 2 / SCANNING

€1¢3. . .c, may actually have fewer than n characters in it. Also, the sequence of states
1, .« ., S are chosen from the sers of states (s, ¢;), . . ., 7(5,,—_y, ¢,), and this choice
will not always be uniquely determined. This is, in fact, why these automata are called
nondeterministic: the sequence of transitions that accepts a particular string is not deter-
mined at each step by the state and the next input character. Indeed, arbitrary numbers
of &’s can be introduced into the string at any point, corresponding to any number of &-
transitions in the NFA. Thus, an NFA does not represent an algorithm. However, it can
be simulated by an algorithm that backtracks through every nondeterministic choice, as
we will see later in this section.
First, however, we consider a couple of examples of NFAs.

Consider the following diagram of an NFA.

A a \me
L N
{

The string abb can be accepted by either of the following sequences of transitions:

B3 Pgy £.5 B4

>1-2,3-%,94 8,9 2,4 8,9 b,y

Indeed the transitions from state 1 to state 2 on a, and from state 2 to state 4 on b, allow
the machine to accept the string ab, and then, using the e-transition from state 4 to state
2, all strings matching the regular expression ab+. Similarly, the transitions from state
1 to state 3 on @, and from state 3 to state 4 on &, enable the acceptance of all strings
matching ab¥*. Finally, following the e-transition from state 1 to statc 4 enables the
acceptance of all strings matching b*. Thus, this NFA accepts the same language as
the regular expression ab+ | ab* | b*. A simpler regular expression that generates the
same language is (a|€)b*. The following DFA also accepts this language:

)

=

Example 2.11

23 Finite Automata 59

Consider the following NFA:

In fact, it is not hard to see that this NFA accepts the same language as that generated
by the regular expression (a|¢) *b. §

233 Implementation of Finite Automata
in Code

There are several ways to translate either a DFA or an NFA into code, and we will sur-
vey these in this section. Not all these methods will be useful for a compiler scanner,
however, and the last two sections of this chapter will demonstrate the coding aspects
appropriate for scanners in more detail.

Consider, again, our original example of a DFA that accepts identifiers consisting
of a letter followed by a sequence of letters and/or digits, in its amended form that
includes lookahead and the principle of longest substring (see Figure 2.5):

letter

D letter 2 [other]
/

digit
The first and easiest way to simulate this DFA is to write code in the following form:

{ starting in state 1 }
if the next character is a letrer then
advance the input;
{ now in state 2 }
while the next character is a letter or a digit do

advance the input; { stay in state 2 } (continued)

60

CHAPTER 2 / SCANNING

end while;
{ o to state 3 without advancing the input }
aceept;
else
{ error or other cases }
end if;

Such code uses the position in the code (nested within tests) to maintain the state
implicitly, as we have indicated by the comments. This is reasonable if there are not too
many states (requiring many levels of nesting), and if loops in the DFA are small. Code
like this has been used to write small scanners. But there are two drawbacks to this
method. The first is that it is ad hoc—that is, each DFA has to be treated slightly dif-
ferently, and it is difficult to state an algorithm that will translate every DFA to code in
this way. The second is that the complexity of the code increases dramatically as the
number of states rises or, more specifically, as the number of different states along arbi-
trary paths rises. As one simple example of these problems, we consider the DFA from
Example 2.9 as given in Figure 2.4 (page 53) that accepts C comments, which could be
implemented by code in the following form:

{ state 1}
if the next character is “/” then
advance the input; { state 2 }
if the next character is then
advance the input; { state 3 }
done := false;
while not done do
while the next input character is riot “*" do
advance the input;
end while;
advance the input; { state 4)
while the next input character is
advance the input;
end while;
if the next input character is “/”' then
done := true;
end if;
advance the input;
end while;
accept; { state 5}
else { other processing }
end if;
else { other processing }
end if}

do

Notice the considerable increase in complexity, and the need to deal with the loop
involving states 3 and 4 by using the Boolean variable done.

A substantially better implementation method is obtained by using a variable to
maintain the current state and writing the transitions as a doubly nested case statement
inside a loop, where the first case statement tests the current state and the nested sec-
ond level tests the input character, given the state. For example, the previous DFA for
identifiers can be translated into the code scheme of Figure 2.6.

s

Figure 2.6

Implementation of identifier
DFA using a state variable
and nested case tests.

13 Finite Automata 61

state := 1; { start }
while state = 1 or 2 do
case state of
1. case input character of
letter : advance the input;

state := 2;
else state := . .. { error or other };
end case;

2: case input character of
letter, digit: advance the input;
state := 2; { actually unnecessary }
else srate := 3;
end case;
end case;
end while;
if state = 3 then accepr else error ;

Notice how this code reflects the DFA directly: transitions correspond to assigning a
new state to the state variable and advancing the input (except in the case of the “non-
consuming” transition from state 2 to state 3).

Now the DFA for C comments (Figure 2.4) can be translated into the more readable
code scheme of Figure 2.7. An alternative to this organization is to have the outer case
based on the input character and the inner cases based on the current state (see the exer-
cises).

In the examples we have just seen, the DFA has been “hardwired” right into the
code. It is also possible to express the DFA as a data structure and then write “generic”
code that will take its actions from the data structure. A simple data structure that is
adequate for this purpose is a transition table. or two-dimensional array, indexed by
state and input character that expresses the values of the transition function 7T

Characters in the alphabet ¢

States States representing
s transitions
1(s, c)

As an example, the DFA for identifiers can be represented as the following transition
table:

input char letter digit other
state

62

Figure 2.7
Implementation of DFA of
Figure 2.4

CHAPTER 2 / SCANNING

state 1= 1; { start }
while state = 1,2, 3 or 4 do
case state of
1: case input character of
“I” : advance the input;
state := 2;
else state := . . . { error or other };
end case;
2: case input character of
¥ advance the input;
state 1= 3;
else state := . . . { error or other };
end case;
3: caseinput character of

g,

: advance the input;

state := 4;
else advance the input { and stay in state 3 };
end case;

4: case input character of
“I"* advance the input;
state 1= §;
“*¥: advance the input; { and stay in state 4 }
else advance the input;
state := 3;
end case;
end case;
end while;
if state = 5 then accept else error ;

In this table, blank entries represent transitions that are not shown in the DFA diagram
(i.e., they represent transitions to error states or other processing). We also assume that
the first state listed is the start state. However, this table does not indicate which states
are accepting and which transitions do not consume their inputs. This information can
be kept either in the same data structure representing the table or in a separate data
structure. If we add this information to the above transition table (using a separate col-
umn to indicate accepting statcs and brackets to indicate “noninput-consuming” transi-
tions), we obtain the following table:

input char letter digit other Accepting
state ,
| 2 no
2 2 2 31 no
3 yes

S

13 Finite Automata 63

As a second example of a transition table, we present the table for the DFA for C
comments (our second example in the foregoing):

input char / * other Accepting
state
| 2 no
2 3 no
3 3 4 3 no
4 5 4 3 no
5 yes

Now we can write code in a form that will implement any DFA, given the appro-
priate data structures and entries. The following code schema assumes that the transi-
tions are kept in a transition array T indexed by states and input characters; that transi-
tions that advance the input (i.e., those not marked with brackets in the table) are given
by the Boolean array Advance, indexed also by states and input characters; and that
accepting states are given by the Boolean array Accept, indexed by states. Here is the
code scheme:

state := 1,

ch 1= next input character;

while not Accepi[state] and not error(state) do
newstate := Tlstate,ch];
if Advance[state,ch] then ch := next input char;
state .= newstate;

end while;

if Accept]state] then accept;

Algorithmic methods such as we have just described are called table driven, since
they use tables to direct the progress of the algorithm. Table-driven methods have cer-
tain advantages: the size of the code is reduced, the same code will work for many dif-
ferent problems, and the code is easier to change (maintain). The disadvantage is that
the tables can become very large, causing a significant increase in the space used by the
program. Indeed, much of the space in the arrays we have just described is wasted.
Table-driven methods, therefore, often rely on table-compression methods such as
sparse-array representations, although there is usually a time penalty to be paid for such
compression, since table lookup becomes slower. Since scanners must be efficient,
these methods are rarely used for them, though they may be used in scanner generator
programs such as Lex. We will not study them further here.

Finally, we note that NFAs can be implemented in similar ways to DFAs, except
that since NFAs are nondeterministic, there are potentially many different sequences of
transitions that must be tried. Thus, a program that simulates an NFA must store up
transitions that have not yet been tried and backtrack to them on failure. This is very
similar to algorithms that attempt to find paths in directed graphs, except that the input
string guides the search. Since algorithms that do a lot of backtracking tend to be inef-

64

CHAPTER 2 / SCANNING

ficient, and a scanner must be as efficient as possible, we will not describe such algo-
rithms further. Instead, the problem of simulating an NFA can be solved by using the
method we study in the next section that converts an NFA into a DFA. We thus pro-
ceed to that section, where we will return briefly to the question of simulating an NFA.

24 FROM REGULAR EXPRESSIONS TO DFAs

In this section we will study an algorithm for translating a regular expression into a
DFA. There also exists an algorithm for translating a DFA into a regular expression, so
that the two notions are equivalent. However, because of the compactness of regular
expressions, they are usually preferred to DFAs as token descriptions, and so scanner
generation commonly begins with regular expressions and proceeds through the con-
struction of a DFA to a final scanner program. For this reason, our interest will be only
in an algorithm that performs this direction of the equivalence.

The simplest algorithm for translating a regular expression into a DFA proceeds via
an intermediate construction, in which an NFA is derived from the regular expression,
and then the NFA is used to construct an equivalent DFA. There exist algorithms that
can translate a regular expression directly into a DFA, but they are more complex, and
the intermediate construction is also of some interest. Thus, we concentrate on describ-
ing two algorithms, one that translates a regular expression into an NFA and a second
that translates an NFA into a DFA. Combined with one of the algorithms to translate a
DFA into a program described in the previous section, the process of constructing a
scanner can be automated in three steps, as illustrated by the following picture:

regular
expression

program

241 From a Regular Expression
to an NFA

The construction we will describe is known as Thompson’s construction, after its
inventor. It uses &-transitions to “glue together” the machines of each piece of a regu-
lar expression to form a machine that corresponds to the whole expression. Thus, the
construction is inductive, and it follows the structure of the definition of a regular
expression: we exhibit an NFA for each basic regular expression and then show how
each regular expression operation can be achieved by connecting together the NFAs of
the subexpressions (assuming these have already been constructed).

Basic Regular Expressions; A basic regular expression is of the form a, €, or ¢, where a
represents a match of a single character from the alphabet, € represents a match of the
empty string, and ¢ represents a match of no strings at all. An NFA that is equivalent
to the regular expression a (i.e., accepts precisely those strings in its language) is

a
L

s

14 From Regular Expressions to DFAs 65

Similarly, an NFA that is equivalent to € is

()
N

The case of the regular expression ¢ (which never occurs in practice in a compiler) is
left as an exercise.

oncal lar
where r and s are regular expressions. We assume (inductively) that NFAs equivalent

to r and s have already been constructed. We express this by writing

enatipn We wish to construct an
¢

O * O

for the NFA corresponding to r, and similarly for s. In this drawing, the circle on the
left inside the rounded rectangle indicates the start state, the double circle on the right
indicates the accepting state, and the three dots indicate the states and transitions inside
the NFA that are not shown. This picture assumes that the NFA corresponding to r has
only one accepting state. This assumption will be justified if every NFA we construct
has one accepting state. This is true for the NFAs of basic regular expressions, and it
will be true for each of the following constructions.
We can now construct an NFA corresponding to 7s as follows:

| e | :
O O ﬁO 2 0

We have connected the accepting state of the machine of » to the start state of the
machine of s by an e-transition. The new machine has the start state of the machine of
r as its start state and the accepting state of the machine of s as its accepting state.
Clearly, this machine accepts L(rs) = L(r)L(s) and so corresponds to the regular expres-
sion rs.

Choice Among Alternatives & We wish to construct an NFA corresponding to r|s under the
same assumptions as before. We do this as follows:

