30

CHAPTER | / INTRODUCTION

A description of the early FORTRAN compilers can be found in Backus [1957] and
Backus [1981]. A description of an early Algol60 compiler can be found in Randell and

Russell [1964]. Pascal compilers are described in Barron [1981], where a description of

the Pascal P-system can also be found (Nori [1981]).

The Ratfor preprocessor mentioned in Section 1.2 is described in Kernighan [1975].
The T-diagrams of Section 1.6 were-introduced by Bratman [1961].

This text focuses on standard translation techniques useful for the translation of
most languages. Additional techniques may be needed for efficient translation of lan-
guages outside the main tradition of Algol-based imperative languages. In particular,
the translation of functional languages such as ML and Haskell has been the source of
many new techniques, some of which may become important general techniques in the
future. Descriptions of these techniques can be found in >Ea_ :ooﬁ vmv;oz Jones
[1992], and Peyton Jones [1987]. The latter con

VAN cyion Jon L1706 atier co

type checking (mentioned in Section 1.1).

y-Milner

Chapter2

R

Scanning

2.1 The Scanning Process 2.5 Implementation of a TINY
2.2 Regular mx_u_.mmmmo:m Scanner
2.3 Finite Automat 2.6 Use of Lex to Generate a

24 From Regular Expressions to Seaaiet >c83mn_nm__<

DFAs

The scanning, or lexical analysis, phase of a compiler has the task of reading the
source program as a file of characters and dividing it up into tokens. Tokens are like
the words of a natural language: each token is a sequence of characters that repre-
sents a unit of information in the source program. Typical examples are keywords,
such as if and while, which are fixed strings of letters; identifiers, which are
user-defined strings, usually consisting of letters and numbers and beginning with a
letter; special symbols, such as the arithmetic symbols + and *; as well as a few
multicharacter symbols, such as >= and <>. In each case a token represents a cer-
tain pattern of characters that is recognized, or matched, by the scanner from the
beginning of the remaining input characters.

Since the task performed by the scanner is a special case of pattern matching, we
need to study methods of pattern specification and recognition as they apply to the
scanning process. These methods are primarily those of regular expressions and
finite automata. However, a scanner is also the part of the compiler that handles
the input of the source code, and since this input often involves a significant time
overhead, the scanner must operate as efficiently as possible. Thus, we need also to
pay close attention to the practical details of the scanner structure.

We divide the study of scanner issues as follows. First, we give an overview of
the operation of a scanner and the structures and concepts involved. Then, we study
regular expressions, a standard notation for representing the patterns in strings that
form the lexical structure of a programming language. Following that, we study finite-
state machines, or finite automata, which represent algorithms for recognizing string
patterns given by regular expressions. We also study the process of constructing

31

32

l

CHAPTER 2 / SCANNING

finite automata out of regular expressions. We then turn to practical methods for
writing programs that implement the recognition processes represented by finite
automata, and we study a complete implementation of a scanner for the TINY lan-
guage. Finally, we study the way the process of producing a scanner program can be
automated through the use of a scanner generator, and we repeat the implementa-
tion of a scanner for TINY using Lex; which is a standard scanner generator available
for use on Unix and other systems.

THE SCANNING PROCESS

It is the job of the scanner to read characters from the source code and form them into
logical units to be dealt with by further parts of the compiler (usually the parser). The
logical units the scanner generates are called tokens, and forming characters into tokens
is much like forming characters into words in an English sentence and deciding which
word is meant. In this it resembles the task of spelling.

Tokens are logical entities that are usually defined as an enumerated type. For
example, tokens might be defined in C as'

typedef enum
{IF, THEN, ELSE, PLUS, MINUS, NUM, ID, . ..}
TokenType;

Tokens fall into several categories. These include the reserved werds, such as IF
and THEN, which represent the strings of characters “if” and “then.” A second category
is that of special symbols, such as the arithmetic symbols PLUS and MINUS, which
represent the characters “+” and “— . Finally, there are tokens that can represent mul-
tiple strings. Examples are NUM and ID, which represent numbers and identifiers.

Tokens as logical entities must be clearly distinguished from the strings of charac-
ters that they represent. For example, the reserved word token IF must be distinguished
from the string of two characters “if " that it represents. To make this distinction clearer,
the string of characters represented by a token is sometimes called its string value or
its lexeme¢. Some tokens have only one lexeme: reserved words have this property. A
token may represent potentially infinitely many lexemes, however. Identifiers, for
example, are all represented by the single token ID, but they have many different string
values representing their individual names. These names cannot be ignored, since a
compiler must keep track of them in a symbol table, Thus, a scanner must also construct
the string values of at least some of the tokens. Any value associated to a token is called

1. In a language without enumerated types we would have to define tokens directly as sym-
numeric values. Thus, in old-style C one sometimes sees the following:

#define IF 256
#define THEN 257
#define ELSE 258

(These numbers begin at 256 to avoid confusion with numeric ASCII values.)

w
7

L1 The Scanning Process 33

an attribute of the token, and the string value is an example of an attribute. Tokens may
also have other attributes. For example, a NUM token may have a string value attribute
such as “32767,” which consists of five numeric characters, but it will also have a
numeric value attribute that consists of the actual value 32767 computed from its string
value. In the case of a special symbol token such as PLUS, there is not only the string
value “+” but also the actual arithmetic operation + that is associated with it. Indeed,
the token symbol itself may be viewed as simply another attribute, and the token
viewed as the collection of all of its attributes.

A scanner needs to compute at least as many attributes of a token as necessary to
allow further processing. For example, the string value of a NUM token needs to be com-
puted, but its numeric value need not be computed immediately, since it is computable
from its string value. On the other hand, if its numeric value is computed, then its string

s 4

value may be discarded. Sometimes the scanner itself may perform the operations nec-
essary to record an attribute in the appropriate place, or it may simply pass on the
attribute to a later phase of the compiler. For example, a scanner could use the string
value of an identifier to enter it into the symbol table, or it could pass it along to be

‘entered at a later stage.

Since the scanner will have to compute possibly several attributes for each token, it
is often helpful to collect all the attributes into a single structured data type, which we
could call a token record. Such a record could be declared in C as

typedef struct
{ TokenType tokenval;
char * stringval;
int numval;
} TokenRecord;

or possibly as a union

typedef struct
{ TokenType tokenval;
union
{ char * stringval;
int numval;
} attribute;
} TokenRecoxd;

(which assumes that the string value attribute is needed only for identifiers and the
numeric value attribute only for numbers). A more common arrangement is for the
scanner to return the token value only and place the other attributes in variables where
they can be accessed by other parts of the compiler.

Although the task of the scanner is to convert the entire source program into a
sequence of tokens, the scanner will rarely do this all at once. Instead, the scanner will
operate under the control of the parser, returning the single next token from the input
on demand via a function that will have a declaration similar to the C declaration

TokenType umn&o#ou& void);

34

1

CHAPTER 2 / SCANNING

The getToken function declared in this manner will, when called, return the next
token from Ea input, as well as compute additional attributes, such as the string value
of the token. The string of input characters is usually not made a parameter to this func-
tion, but is kept in a buffer or provided by the system input facilities.

As an example of the operation of getToken, consider the following line of C
source code, which we used as an example in Chapter 1:

alindex] = 4 + 2

Suppose that this line of code is stored in an input buffer as follows, with the next input
character indicated by the arrow:

A call to getToken will now need to skip the next four blanks, recognize the string
“a” consisting of the single character a as the next token, and return the token value ID
as the next token, leaving the input buffer as follows:

Thus, a subsequent call to getToken will begin the recognition process again with the
left bracket character.

We turn now to the study of methods for defining and recognizing patterns in
strings of characters.

REGULAR EXPRESSIONS

Regular expressions represent patterns of strings of characters. A regular expression r
is completely defined by the set of strings that it matches. This set is called the lan-
guage generated by the regular expression and is written as L(r¥ Here the word lan-
guagé'is used only to mean “set of strings™ and has (at least at this stage) no specific
relationship to a programming language. This language depends, first, on the character
set that is available: Generally, this will be the set of ASCII characters or some subset
of it. Sometimes the set will be more general than the ASCII character set, in which
case the set elements arc referred to as symbols. This set of legal symbols is called the
alphabe and is usually written as the Greek symbol 3 (sigma).

A regular expression r will also contain characters from the alphabet, but such char-
acters have a different meaning: in a regular expression, all symbols indicate patterns,
In this chapter, we will distinguish the use of a character as a pattern by writing all pat-
terns in boldface. Thus, a is the character a used as a pattern.

i

o

22 Regular Expressions 35

Last, a regular expression r may contain characters that have special meanings.
Such characters are called metacharacters or metasymbajs. These generally may not
be legal characters in the alphabet, or we could not distinguish their use as metachar-
acter from their use as a member of the alphabet. Often, however, it is not possible to
require such an exclusion, and a convention must be used to differentiate the two pos-
sible uses of a:metacharacter. In many situations this is done by using an escape chars
acter; that ““turns off ” the special meaning of a metacharacter. Common escape charac-
ters are the backslash and quotes: Note that escape characters are themselves
metacharacters, if they are also legal characters in the alphabet.

221 Definition of Regular Expressions

We are now in a position to describe the meaning of regular expressions by stating
which languages are generated by each pattern. We do this in several stages. First, we
describe the sct of basic regular expressions, which consist of individual symbols.
Then, we describe operations that generate new regular expressions from existing ones.
This is similar to the way arithmetic expressions are constructed: the basic arithmetic
expressions are the numbers, such as 43 and 2.5. Then arithmetic operations, such as
addition and multiplication, can be used to form new expressions from existing ones,
asin43*25and 43 *2.5 + 1.4.

The group of regular expressions that we describe here is minimal in the sense that
it contains only the essential operations and metasymbols. Later we will consider exten-
sions to this minimal set.

Basic Regular Expressions; These are just the single characters from the alphabet, which
match themselves. Given any character @ from the alphabet X, we indicate that the reg-
ular expression a matches the character ¢ by writing.L(a) = {a}. There are two addi-
tional symbols that we will need in special situations. We need to be able to indicate a
match of the empty string; that is, the string that contains no characters at all. We use
the symbol & (epsilon) to denote the empty string, and we define the metasymbol €
(boldface &) by setting L{g) = {&}. We also occasionally need to be able to write a sym-
bol that matches no string at all, that is. whose language is the empty sef, which we
write as { }. We use the symbol ds for this. and we write L(¢p) = {}. Note the difference
between {} and {e}: the set {} contains no strings at all, while the set {&} contains the
single string consisting of no characters.

Regular Fxpression Operations' There are three basic operations in regular expressions:
(1) choice among alternatives, which is indicated by the metacharacter |4 vertical bar);
(2) concatenation, which is indicated by juxtaposition (without a metacharacter); and
() repetition or “closure,” which is indicated by the metacharacter ﬁmﬁm discuss each
of these in turn, giving the corresponding set construction for the languages of matched
strings.

Choice Among Alternatives If r and s are regular expressions, then r|s is a regular expres-
sion which matches any string that is matched either by r or by s. In terms of languages,
the language of r|s is the union of the languages of r and s, or L(r|sj = L(r) U L(s). As

36

CHAPTER 2 / SCANNING

a simple example, consider the regular expression a | b: it matches either of the char-
acters a or b, that is, L(a | b) = L(a) U L(b) = {a} U {b} = {a, b}. As a second exam-
ple, the regular expression a | & matches either the single character a or the empty string
(consisting of no characters). In other words, L(a | &) = {a, £}.

Choice can be extended to ore than one alternative, so that, for example,
L(a|ble|d) = {a. b, c, d). We also sometimes write long sequences of choices with
dots, asina|b| ... |z, which matches any of the lowercase letters a through z.

Concatenation The concatenation of two regular expressions r and s is written as rs, and
it matches any string that is the concatenation of two strings, the first of which matches
rand the second of which matches s. For example, the regular expression ab matches
only the string ab, while the regular expression (a | b) ¢ matches the strings ac and be.
(The use of parentheses as metacharacters in this regular expression will be explained
shortly.)

We can describe the effect of concatenation in terms of generated languages by
defining the concatenation of two sets of strings. Given two sets of strings S and S,
the concatenated set of strings S5, is the set of strings of S, appended by all the strings
of S,. For example, if S = {aa, b} and S» = {a, bb}, then $18: = {aaa, aabb, ba, bbb).
Now the concatenation operation for regular expressions can be defined as follows:
L(rs) = L(#)L(s). Thus (using our previous example), L((a|b)c) = L(a|b)L(c) =
{a, b}{c} = {ac, bc).

Concatenation can also be extended to more than two regular expressions:

L(ryry. .. 1) = Lr)L(r5) . . . L(r,) = the set of strings formed by concatenating all
strings from each of L(ry), . . ., L(r,,).
?a:.%i The repetition operation of a regular expression, sometimes also called
(Kleene) closure, is written r*, where r is a regular expression. The regular expression
r* matches any finite concatenation of strings, each of which matches r. For example,
a* matches the strings €, a, aa, aaa, (It matches & because ¢ is the concatenation
of no strings that match a.) We can define the repetition operation in terms of gener-
ated languages by defining a similar operation * for sets of strings. Given a set S of
strings, let

St={eJuSUSSUSSSU. ..

This is an infinite set union, but each element in it is a finite concatenation of strings
from S. Sometimes the set S* is written as follows:

where §” = S.. .S is the concatenation of § n-times. (S° = {g}.)
Now we can define the repetition operation for regular expressions as follows:

h?.*v... = L(r)*

S

12 Regular Expressions 37

As an example, consider the regular expression (a|bb) *. (Again, the reason for
the parentheses as metacharacters will be explained later.) This regular expression
matches any of the following strings: &, a, bb, aa, abb, bba, bbbb, aaa, aabb, and so
on. In terms of languages, L((a|bb) *) = L(a|bb)* = {a, bb}* = {e&, a, bb, aa, abb,
bba, bbbb, aaa, aabb, abba, abbbb, bbaa, . . .}.

Precedence of Operations and Use of Parentheses The foregoing description neglected the
question of the precedence of the choice, concatenation, and repetition operations. For
example, given the regular expression a | b*, should we interpret this as (a|b) * or as
a| (b*)? (There is a significant difference, since L((a|b) *) = {&, a, b, aa, ab, ba,
bb, ...}, while L(a| (b*)) = {e., a, b, bb, bbb, . . .}.) The standard convention is that
repetition should have higher precedence, so that the second interpretation is the
correct one. Indeed, among the three operations, * is given the highest precedence,
concatenation is given the next highest, and | is given the lowest. Thus, for ex-
ample, a|bc* is interpreted as a|(b(ec*)), and ab|e*d is interpreted as
(ab) | ((c*)d).

When we wish to indicate a different precedence, we must use parentheses to do so.
This is the reason we had to write (a|b) ¢ to indicate that the choice operation should
be given higher precedence than concatenation, for otherwise a|be is interpreted as
matching either @ or be. Similarly, without parentheses (a|bb) * would be inter-
preted as a | bb*, which matches a, b, bb, bbb, This use of parentheses is entirely
analogous to their use in arithmetic, where (3 + 4) *5 = 35, but 3 + 4 * 5 = 23, since
* is assumed to have higher precedence than +.

Names for Regular Expressions - Often, it is helpful as a notational simplification to give a
flame {0 a long regular expression, so that we do not have to write the expression itself
each time we wish to use it. As an example, if we want to develop a regular expression
for a sequence of one or more numeric digits, then we could write

(oj1|2]...]9(0|1}2]...]|9)*

or we could write

digit digit*
where

digit = 0[1]|2]...]9

is a regular definition of the name digit.

The use of a regular definition is a great convenience, but it does introduce the
added complication that the name itself then becomes a metasymbol and a means must
be found to distinguish the name from the concatenation of its characters. In our case,
we have made that distinction by using italics for the name. Note that a name cannot be
used in its own definition (i.e., recursively)—we must be able to remove names by suc-
céssively replacing them with the regular expressions for which they stand.

Before considering a series of examples to elaborate our definition of reguiar
expressions, we collect all the pieces of the definition of a regular expression together.

38

Definition

CHAPTER 2 / SCANNING

Example 2.1

A regular expression is one of the following:

1. A basic regular expression, consisting of a single character a, where a is from
an alphabet X of legal characters; the metacharacter €; or the metacharacter .
In the first case, L(a) = {a}; in the second, L(g) = {&}; in the third, L(d) = {}.

2. An expression of the form r| s, where r and s are regular expressions. In this
case, L(r| 8) = L{r) U L(s).
3. Anexpression of the form rs, where r and s are regular expressions. In this case,

L(rs) = L(r)L(s).

4. An expression of the form *, where r is a regular expression. In this case,
L(r*y = L(r)*.

S. An expression of the form (r), where r is a regular expression. In this case,
L((r}) = L(»). Thus, parentheses do not change the language. They are used
only 1o adjust the precedence of the operations.

We note that, in this definition, the precedence of the operations in (2), (3), and (4)
is in reverse order of their listing; that is, | has lower precedence than concatenation
and concatenation has lower precedence than *. We also note that this definition gives
ametacharacter meaning to the six symbols &, €, |, *, (,).

In the remainder of this scction, we consider a series of examples designed to elab-
orate on the definition we have just given. These are somewhat artificial in that they do
not usually appear as token descriptions in a programming language. In Section 2.2.3,
we consider some common regular expressions that often appear as tokens in program-
ming languages.

In the following examples, there generally is an English description of the strings
to be matched, and the task is to translate the description into a regular expression. This
situation, where a language manual contains descriptions of the tokens, is the most
common one facing compiler writers. Occasionally, it may be necessary to reverse the
direction, that is, move from a regular expression to an English description, so we also
include a few exercises of this kind.

Consider the simple alphabet consisting of just three alphabetic characters: 3 =

{a. b, c}. Consider the set of all strings over this alphabet that contain exactly one b.
This set is generated by the regular expression

{(d]e) *b(ale) *

Note that, even though b appears in the center of the regular expression, the letter b
need not be in the center of the string being matched. Indeed, the repetition of a or ¢
before and after the b may occur different numbers of times. Thus, all the following
strings are matched by the above regular expression: b, abe, abaca, baaaac, ccbaca,
ceceeeh. §

Example 2.2

Example 2.3

Example 2.4

12 Regular Expressions 39

With the same alphabet as before, consider the set of all strings that contain at most one
b: A regular expression for this set can be obtained by using the solution to the previ-
ous example as one alternative (matching those strings with exactly one b) and the reg-
ular expression (a|c) * as the other alternative (matching no 4’s at all). Thus, we have
the following solution:

(ale)*| (a]e)*b(ale) *

An alternative solution would allow either & or the empty string to appear between the
two repetitions of « or ¢:

(alec)*(ble) (a]c)*

This exampie brings up an important point about regular expressions: the same lan-
guage may be generated by many different regular expressions. Usually, we try to find
as simple a regular expression as possible to describe a set of strings, though we will
never attempt to prove that we have in fact found the “simplest”—for example, the
shortest. There are two reasons for this. First, it rarely comes up in practical situations,
where there is usually one standard “simplest™ solution. Second, when we study meth-
ods for recognizing regular expressions, the algorithms there will be able to simplify the
recognition process without bothering to simplify the regular expression first. §

Consider the set of strings § over the alphabet £ = {a, b} consisting of a single b sur-
rounded by the same number of a's:

S = (b, aba, aabaa, aaabaaa, . . .} = {@"bad"|n # 0}

This set cannot be described by a regular expression. The reason is that the only repe-
tition operation we have is the closure operation *, which allows any number of repe-
titions. So if we write the expression a*ba* (about as close as we can get (o a regular
expression for §), then there is no guarantee that the number of s before and after the
b will be the same. We express this by saying that “regular expressions can’t count.” To
give a mathematical proof of this fact, however, would require the use of a famous the-
orem about regular expressions called the pumping lemma. which is studied in
automata theory, but which we will not mention further here.

Clearly, not all sets of strings that we can describe in simple terms can be generated
by regular expressions. A sct of strings that /s the language for a regular expression is,
therefore, distinguished from other sets by calling it a kegular set. Occasionally, non-
regular sets appear as strings in programming languages that need to be recognized by
a scanner. These are usually dealt with when they arise, and we will return to this mat-
ter again briefly in the section on practical scanner considerations. §

Consider the strings over the alphabet = = {a, b, ¢} that contain no two consecutive
b’s. Thus, between any two &'s there must be at least one a or ¢. We build up a regular

40

CHAPTER 2 / SCANNING

expression for this set in several stages. First, we can force an « or ¢ to come after every
b by writing

(b(ae))*

We can combine this with the expression (a | ¢) *, which matches strings that have no
b’s at all, and write

((a]e)*|(b(alc)) *)*

or, noting that (r* | s*)* matches the same strings as (r | s)*

((a]e) | (b(a]e)))*

or

(alc|ba|be)*

(Warning! This is not yet the correct answer.)

The language generated by this regular expression does, indeed, have the property
we seek, namely, that there are no two consecutive b’s (but isn’t quite correct yet).
Occasionally, we should prove such assertions, so we sketch a proof that m:.mizmm in
L({a|e|ba|bc) *) contain no two consecutive b’s. The proof is by 5&:.0:.0: on the
length of the string (i.e., the number of characters in the string). Clearly, it is true for
all strings of length 0, 1, or 2: these strings are precisely the strings &, q, ¢, aa, ac, ca,
cc, ba, be. Now, assume it is true for all strings in the language of length i < n, and let
s be a string in the language of length n > 2. Then, s contains more than one of the
non-g strings just listed, so s = s,5,, where s, and s, are also in the language and are
not . Hence, by the induction assumption, both s, and s, have no two consecutive b’s.
Thus, the only way s itself could have two consecutive b’s would be for s, to end with
a b and for s to begin with a b. But this is impossible, since no string in the language
can end with a b.

This last fact that we used in the proof sketch—that no string generated by the pre-
ceding regular expression can end with a b—also shows why our solution is not yet
quite correct: it does not generate the strings b, ab, and cb, which contain no two con-
secutive b’s. We fix this by adding an optional trailing b, as follows:

(ajc|ba|bec)* (b|€)

Note that the mirror image of this regular expression also generates the given language

(ble) (a|c|ab|cb) *

We could also generate this same language by writing

(notb|b notb)*(b|e)
where notb = a|c. This is an example of the use of a name for a subexpression. This
solution is in fact preferable in cases where the alphabet is large, since the definition of
notb can be adjusted to include all characters except b, without complicating the orig-
inal expression. §

.
.

Example 2.5

212 Regular Expressions 41

This example is one where we are given the regular expression and are asked to deter-
mine a concise English description of the language it generates. Consider the alphabet
% = {a, b, ¢} and the regular expression

((b|c)*a(b|c)*a)* (b]ec) *

This generates the language of all strings containing an even number of a’s. To see this,
consider the expression inside the outer left repetition:

(b|c)*a(b|c)*a

This generates those strings ending in « that contain exactly two «’s (any number of b's

and c’s can appear before or between the two a’s). Repeating these strings gives all

strings ending in @ whose number of a’s is a multiple of 2 (i.e., even). Tacking on the

repetition (b|c)* at the end (as in the previous example) gives the desired result.
We note that this regular expression could also be written as

(nota* a nota* a)* nota* §

222 Extensions to Regular Expressions

We have given a definition of regular expressions that uses a minimal set of operations
common to all applications, and we could limit ourselves to using only the three basic
operations (together with parentheses) in all our examples. However, we have already
seen in the examples so far that writing regular expressions using only these operators
is sometimes unwieldy, creating regular expressions that are more complicated than
they would be if a more expressive set of operations were available. For example, it
would be useful to have a notation for a match of any character (we now have to list
every character in the alphabet in a long alternative). In addition, it would help to have
a regular expression for a range of characters and a regular expression for all characters
except one character.

In the following paragraphs we will describe some extensions to the standard regu-
lar expressions already discussed, with corresponding new metasymbols, that cover
these and similar common situations. In most of these cases no common terminology
exists, o we will use a notation similar to that used by the scanner generator Lex, which
is described later in this chapter. Indeed, many of the situations we are about to describe
will appear again in our description of Lex. Not all applications that use regular expres-
sions will include these operations, however, and even when they do, a different nota-
tion may be used.

We now proceed to our list of new operations.

ONE OR MORE REPETITIONS

Given a regular expression r, repetition of r is described using the standard closure
operation, written r*. This allows r to be repeated O or more times. A typical situ-
ation that arises is the need for one or more repetitions instead of none, which guar-
antees that at least one string matching r appears, disallowing the empty string ¢.
An example is that of a natural number, where we want a sequence of digits, but we
want at least one digit to appear. For example, if we want to match binary numbers,

42

CHAPTER 2 / SCANNING

we could write (0]1)*, but this will also match the empty string, which is not a
number. We could, of course, write

(oj2)(o|1)*

but this situation occurs often enough that a relatively standard notation has been
developed for it that uses + instead of *: r+ indicates one or more repetitions of r.
Thus, our previous regular expression for binary numbers can now be written

(0]1)+
ANY CHARACTER
A common situation is the need to match any character in the alphabet. Without a
special operation this requires that every character in the alphabet be listed in an

alternative. A typical metacharacter that is used to express a match of any charac-
ter is the period “.”, which does not require that the alphabet actually be written
out. Using this metacharacter, we can write a regular expression for all strings that
contain at least one b as follows:

.*b.*

A RANGE OF CHARACTERS

Often, we need to write a range of characters, such as all lowercase letters or all dig-
its. We have done this up to now by using the notation a|b]| . . . | z for the lower-
case letters or 0| 1] . . . | 9 for the digits. An alternative is to have a special nota-
tion for this situation, and a common one is to use square brackets and a hyphen, as
in [a=-z] for the lowercase letters and [0-9] for the digits. This can also be used
for individual alternatives, so that a|b|c can be written as [abc]. Multiple
ranges can be included as well, so that [a-zA-2Z] represents all lowercase and
uppercase letters. This general notation is referred to as character classes. Note
that this notation may depend on the underlying order of the character set. For
example, writing [A-2Z] assumes that the characters B, C, and so on come between
the characters A and Z (a reasonable assumption) and that only the uppercase char-
acters are between A and Z (true for the ASCII character set). Writing [A-z] will
not match the same characters as [A~Za-z], however. even in the ASCII charac-
ter set.

ANY CHARACTER NOT IN A GIVEN SET

As we have seen, it is often helpful to be able to exclude a single character from the
set of characters to be matched. This can be achieved by designating a metacharac-
ter to indicate the “not™ or complement operation on a set of alternatives. For exam-
ples, a standard character representing “not” in logic is the tilde character ~, and we
could write a regular expression for a character in the alphabet that is not a as ~a
and a character that is not either « or b or ¢ as

~(a|blec)

An alternative to this notation is used in Lex, where the carat character * is used in
conjunction with the character classes just described to form complements. For

22 Regular Expressions 43

example, any character that is not a is written as [4a] and any character that is not
aor b or ¢ is written as

[*abe]

OPTIONAL SUBEXPRESSIONS

A final common occurrence is for strings to contain optional parts that may or may
not appear in any particular string. For example, a number may or may not have a
leading sign, such as + or -. We can use alternatives to express this, as in the reg-
ular definitions

natural = [0-9]+
signedNatural = natural | + natural | - nat:

This can quickly become cumbersome, however, and we introduce the question
mark metacharacter »2 to indicate that strings matched by r are optional (or that 0
or | copies of r are present). Thus, the leading sign example becomes

natural = [0-9]+
signedNatural = (+|-)? natural

223 Regular Expressions for Programming
Language Tokens

Programming language tokens tend to fall into several limited categories that are fairly
standard across many different programming languages. One category is that of
reserved words, sometimes also called keywords, which are fixed strings of alpha-
betic:characters that have special meaning in the language. Examples include if,
while, and do in such languages as Pascal, C, and Ada. Another category consists of
the special symbols, including arithmetic operators, assignment, and equality. These
can be a single character, such as =, or multiple characters, such as s= or ++. A third
category consists of identifiers, which commonly are defined to be sequences of letters
and digits beginning with a letter. A final category consists of literals or constants,
which can include numeric constants such as 42 and 3.14159, string literals such as
“hello, world,” and characters such as “a” and “b.” We describe typical regular ex-
pressions for some of these here and discuss a few other issues related to the recog-
nition of tokens. More detail on practical recognition issues appears later in the
chapter.

Numbers Numbers can be just sequences of digits (natural numbers), or decimal num-
bers, or numbers with an exponent (indicated by an e or E). For example, 2.71E-2 rep-
resents the number .0271. We can write regular definitions for these numbers as fol-
lows:

nat = [0-9]+
signedNat = (+|-)? nat
number = sgignedNat("." nat)?(E signedNat)?

44

CHAPTER 2 / SCANNING

Here we have written the decimal point inside quotes to emphasize that it should be
matched directly and not be interpreted as a metacharacter.

Reserved Words and Identifiers Reserved words are the simplest to write as regular expres-
sions: they are represented by their fixed sequences of characters. If we wanted to col-
lect all the reserved words into one definition, we could write something like

reserved = if | while | do | ...

Identifiers, on the other hand, are strings of characters that are not fixed. Typically, an
identifier must begin with a letter and contain only letters and digits. We can express
this in terms of regular definitions as follows:

letter = [a-zA-Z]
digit = [0-9]
identifier = letter(letter|digit)*

Comments Comments typically are ignored during the scanning process.” Nevertheless,
a scanner must recognize comments and discard them. Thus, we will need to write reg-
ular expressions for comments, even though a scanner may have no explicit constant
token (we could call these pseudotokens). Comments can have a number of different
forms. Typically, they are either free format and surrounded by delimiters such as

{this is a Pascal comment}

/* this is a C comment */
or they begin with a specified character or characters and continue to the end of the line,
as in

; this is a Scheme comment
-- this is an Ada comment

It is not hard to write a regular expression for comments that have single-character
delimiters, such as the Pascal comment, or for those that reach from some specified
character(s) to the end of the line. For example, the Pascal ccmment case can be writ-

ten as

{(~})*}

where we have written ~} to indicate “not }” and where we have assumed that the char-
acter } has no meaning as a metacharacter. (A different expression must be written for
Lex, which we discuss later in this chapter.) Similarly, an Ada comment can be
matched by the regular expression

--(~newline) *

2. Sometimes they can contain compiler directives.

S

11 Regular Expressions 45

in which we assume that newline matches the end of a line (writable as \n on many
systems), that the ““=” character has no meaning as a metacharacter, and that the trail-
ing end of the line is not included in the comment itself. (We will see how to write this
in Lex in Section 2.6.)

It is much more difficult to write down a regular expression for the case of delim-
iters that are more than one character in length, such as C comments. To see this. con-
sider the set of strings ba. . .(no appearances of ab). . .ab (we use ba. . .ab instead of
the C delimiters /*. . .*/, since the asterisk, and sometimes the forward slash, is a
metacharacter that requires special handling). We cannot simply write

ba(~(ab))*ab

because the *“not” operator is usually restricted to single characters rather than strings
of characters. We can try to write out a definition for ~(ab) using ~a, ~b, and
~(a|b), but this is not trivial. One solution is

b* (a*~(a|b)b*)*a*

but this is difficult to read (and to prove correct). Thus, a regular expression for C com-
ments is so complicated that it is almost never written in practice. In fact, this case is
usually handled by ad hoc methods in actual scanners, which we will see later in this
chapter.

Finally, another complication in recognizing comments is that, in some program-
ming languages, comments can be nested. For example, Modula-2 allows comments of
the form

(* thias is (* a Modula-2 *) comment *)

Comment delimiters must be paired exactly in such nested comments, so that the fol-
lowing is not a legal Modula-2 comment:

(* this is (* illegal in Modula-2 *)

Nesting of comments requires the scanner to count the numbers of delimiters. But we

have noted in Example 2.3 (Section 2.2.1) that regular expressions cannot express
counting operations. In practice, we use a simple counter scheme as an ad hoc solution
to this problem (see the exercises).

Ambiguity, White Space, and Lookahead Frequently, in the description of programming lan-
guage tokens using regular expressions, some strings can be matched by several differ-
ent regular expressions. For example, strings such as i€ and while could be either
identifiers or keywords. Similarly, the string <> might be interpreted as representing
either two tokens (“less than” and “greater than”) or a single token (“not equal t0”). A
programming language definition must state which interpretation is to be observed, and
the regular expressions themselves cannot do this. Instead, a language definition must
give disambiguating rules that will imply which meaning is meant for each such case.

Two typical rules that handle the examples just given are the following. First, when
a string can be either an identifier or a'keyword, keyword interpretation is generally
preferred: This is implied by using the term reserved word, which means simply a key-

