CHAPTER | / INTRODUCTION

pass consists of processing the intermediate representation, adding information to
it, altering its structure, or producing a different representation. Passes may or may
not correspond to phases—often a pass will consist of several phases. Indeed,
depending on the language, a compiler may be one pass, in that all phases occur
during a single pass. This results in efficient compilation but also in (typically) less
efficient target code. Pascal and C are both languages that permit one-pass compi-
lation. (Modula-2 is a language whose structure requires that a compiler have at
least two passes.) Most compilers with optimizations use more than one pass; a typ-
ical arrangement is one pass for scanning and parsing, one pass for semantic analy-
sis and source-level optimization, and a third pass for code generation and target-
level optimization. Heavily optimizing compilers may use even more passes: five,
six, or even eight passes are not unknown.

LANGUAGE DEFINITION AND COMPILERS

We noted in Section 1.1 that the lexical and syntactic structures of a programming
language are usually specified in formal terms and use regular expressions and con-
text-free grammars. The semantics of a programming language, however, are still
commonly specified using English (or other natural language) descriptions. These
descriptions (together with the formal lexical and syntactic structure) are usually
collected into a language reference manual, or language definition. With a new
language, a language definition and a compiler are often developed simultaneously,
since the techniques available to the compiler writer can have a major impact on the
definition of the language. Similarly, the way in which a language is defined will
have a major impact on the techniques that are needed to construct the compiler.

A more common situation for the compiler writer is that the language being
implemented is well known and has an existing language definition. Sometimes this
language definition has been raised to the level of a language standard that has
been approved by one of the official standardization organizations, such as ANSI
(American National Standards Institute) or ISO (International Organization for
Standardization). For example, FORTRAN, Pascal, and C have ANSI standards.
Ada has a standard approved by the U.S. government. In this case, the compiler
writer must interpret the language definition and implement a compiler that con-
forms to the language definition. This is often not an easy task, but it is sometimes
made easier by the existence of a set of standard test programs (a test suite) against
which a compiler can be tested (such a test suite exists for Ada). The TINY exam-
ple language used in the text has its lexical, syntactic, and semantic structure spec-
ified in Sections 2.5, 3.7, and 6.5, respectively. Appendix A contains a minimal lan-
guage reference manual for the C-Minus compiler project language.

Occasionally, a language will have its semantics given by a formal definition
in mathematical terms. Several methods that are currently used do this, and no one
method has achieved the level of a standard, although so-called denotational
semantics has become one of the more common methods, especially in the func-
tional programming community. When a formal definition exists for a language,
then it is (in theory) possible to give a mathematical proof that a compiler conforms
to the definition. However, this is such a difficult undertaking that it is almost never
done. In any case, the techniques for doing so are beyond the scope of this text, and
formal semantic techniques will not be studied here.

1.5 Other lssues in Compiler Structure 17

One aspect of compiler construction that is particularly atfected by the language
definition is the structure and behavior of the runtime environment. Runtime envi-
ronments are studied in detail in Chapter 7. It is worth noting here, however, that
the structure of data allowed in a programming language, and particularly the kinds
of function calls and returned values allowed, have a decisive effect on the com-
plexity of the runtime system. In particular, the three basic types of runtime envi-
ronments, in increasing order of complexity, are as follows:

First, FORTRAN77, with no pointers or dynamic allocation and no recursive
function calls, allows a completely static runtime environment, where all memory
allocation is done prior to execution. This makes the job of allocation particularly
easy for the compiler writer, as no code needs to be generated to maintain the
environment. Second, Pascal, C, and other so-called Algol-like languages allow a
limited form of dynamic allocation and recursive function calls and require a “semi-
dynamic” or stack-based runtime environment with an additional dynamic struc-
ture called a heap from which the programmer can schedule dynamic allocation.
Finally, functional and most object-oriented languages, such as LISP and Smalltalk,
require a “fully dynamic” environment in which all allocation is performed auto-
matically by code generated by the compiler. This is complicated. because it
requires that memory also be freed automatically, and this in turn requires complex
“*garbage collection” algorithms. We will survey such methods along with our study
of runtime environments, but a complete account of this area is beyond the scope of
this book.

COMPILER OPTIONS AND INTERFACES

An important aspect of compiler construction is the inclusion of mechanisms for
interfacing with the operating system and for providing options to the user for var-
ious purposes. Examples of interface mechanisms are the provision of input and
output facilities as well as access to the file system of the target machine. Examples
of user options include the specification of listing characteristics (length, error mes-
sages, cross-reference tables) and code optimization options (performance of cer-
tain optimizations but not others). Both interfacing and options are collectively
referred to as compiler pragmatics. Sometimes a language definition will specify
that certain pragmatics must be provided. For example, Pascal and C both specify
certain input/output procedures (in Pascal they are part of the language proper,
whereas in C they are part of the specification of a standard library). In Ada, a num-
ber of compiler directives, called pragmas, are part of the language definition. For
example, the Ada statements

pragma LIST(ON);

pragma LIST(OFF);

generate a compiler listing for the part of the program contained within the prag-
mas. In this text we will see compiler directives only in the context of generating
listing information for compiler debugging purposes. Also, we will not treat issues
in input/output and operating system interfacing, since these involve considerable
detail and vary so much from one operating system to another.

18 CHAPTER | / INTRODUCTION

ERROR HANDLING

One of the most important functions of a compiler is its response to errors in a
source program. Errors can be detected during almost every phase of compilation.
These static (or compile-time) errors must be reported by a compiler, and it is

important that a compiler be able to generate meaningful error messages and

resume compilation after each error. Each phase of a compiler will need a slightly
different kind of error handling, and so an error handler must contain different
operations, each appropriate for a specific phase and situation. Error handling
techniques for each phase will therefore be studied separately in the appropriate
chapter.

A language definition will usually require not only that static errors be caught
by a compiler but also that certain execution errors be caught as well. This requires
a compiier to generate extra code that wili perform suitabie runtime tests to guar-
antee that all such errors will cause an appropriate event during execution. The sim-
plest such event will halt the execution of the program. Often, however, this is inad-
equate, and a language definition may require the presence of exception handling
mechanisms. These can substantially complicate the management of a runtime sys-
tem, especially if a program may continue to execute from the point where the error
occurred. We will not consider the implementation of such a mechanism, but we
will show how a compiler can generate test code to ensure that specified runtime
errors will cause execution to halt.

16 BOOTSTRAPPING AND PORTING

We have discussed the source language and target language as determining factors in
the structure of a compiler and the usefulness of separating source and target language
issues into front and back ends. But we have not mentioned the third language involved
in the compiler construction process: the language in which the compiler itself is writ-
ten. For the compiler to execute immediately, this implementation (or host) language
would have to be machine language. This was indeed how the first compilers were writ-
ten, since essentially no compilers existed yet. A more reasonable approach today is to
write the compiler in another language for which a compiler already exists. If the exist-
ing compiler already runs on the target machine, then we need only compile the new
compiler using the existing compiler to get a running program:

Compiler for language A Existing Compiler Running compiler
Written in language B for language B for language A

If the existing compiler for the language B runs on a machine different from the target
machine, then the situation is a bit more complicated. Compilation then produces a
cross compiler, that is, a compiler that generates target code for a different machine
from the one on which it runs. This and other more complex situations are best de-
scribed by drawing a compiler as a T-diagram (named after its shape). A compiler

1.6 Bootstrapping and Porting 19

written in language H (for host language) that translates language S (for source lan-
guage) into language T (for target language) is drawn as the following T-diagram:

Note that this is equivalent to saying that the compiler runs on “machine” H (if H is not
machine code, then we consider it to be the executable code for a hypothetical
machine). Typically, we expect H to be the same as T (that is, the compiler produces
code for the same machine as the one on w it runs), but this needn’i be the case.

T-diagrams can be combined in two ways. First, if we have two compilers that run
on the same machine H, one of which translates language A to language B and the other
of which translates language B to language C, then we can combine them by letting the
output of the first be the input to the second. The result is a compiler from A to C on
machine H. We express this as follows:

Second, we can use a compiler from “machine” H to “machine” K to translate the
implementation language of another compiler from H to K. We express this as follows:

Sy Y

Now the first scenario we described previously—that is, using an existing compiler
for language B on machine H to translate a compiler from language A to H written in
B—can be viewed as the following diagram, which is just a special case of the previ-

ous diagram:
J X -

20 CHAPTER | / INTRODUCTION

The second scenario we have described—where the compiler of language B gener-
ates code for (and runs on) a different machine, which results in a cross compiler for
A—can similarly be described as follows:

It is common to write a compiler in the same language that it is to compile:

5

While this appears to be a blunder of circularity—since, if no compiler for the source
language yet exists, the compiler itself cannot be compiled—there are important advan-
tages to be gained from this approach. r

Consider, for example, how we might .%_uno&.: the circularity problem. We might
write a “quick and dirty” compiler in assembly language, translating only those features
of the language that are actually used in the compiler (having, of course, limited our use
of those features when writing the “good™ compiler). This “quick and dirty” compiler
may also produce extremely inefficient code (it only needs to be correct!). Once we
have the running “quick and dirty” compiler, we use it to compile the “good” compiler.
Then we recompile the “good” compiler to produce the final version. This process is
called bootstrapping. This process is illustrated in Figures 1.2(a) and 1.2(b).

After bootstrapping, we have a compiler in both source code and executing code.
The advantage to this is that any improvement to the source code of the compiler can

Figure 1.2(a) | i
The first step in a bootstrap et T -1
process A H __

Compiler written in its own Ic::_:@ but inefficient
language A compiler

"Quick and dirty" compiler written in
machine language

G

1.6 Bootstrapping and Porting 21

Figure 1.2(h)
The second step in a ————q
bootstrap process A H __
Compiler s:_zm: in its owl Final version of the
language A compiler

Running but inefficient compiler
(from the first step)

N

process as _uwmo:w

But there is another advantage. Porting the compiler to a new host computer now
only requires that the back end of the source code be rewritten to generate code for the
new machine. This is then compiled using the old compiler to produce a cross compiler,
and the compiler is again recompiled by the cross compiler to produce a working ver-
sion for the new machine. This is illustrated in Figures 1.3(a) and 1.3(b).

Figure 1.3(a)
Porting a compiler written in -
its own source language A H o

(step 1) \ m H \

Compiler source code Cross compiler
retargeted to K

Original compiler

Figure 1.3(b)

Porting a compiler written in —— JU

its own source language '
==

(step 2)

.II

Compiler source ooa Retargeted ooBu__m_‘

retargeted to K

Cross compiler

[T THE TINY SAMPLE LANGUAGE AND COMPILER

A book on compiler construction would be incomplete without examples for each step
in the compilation process. In many cases we will illustrate techniques with examples

22

CHAPTER | / INTRODUCTION

that are abstracted from existing languages, such as C, C+ +, Pascal, and Ada. These
examples, however, are not enough to show how all the parts of a compiler fit together.
For that, it is also necessary to exhibit a complete compiler and provide a commentary
on its operation.

This requirement—that an actual compiler be demonstrated—is a difficult one. A
“real” compiler—that is, one that we would expect to use in everyday programming —
has far too much detail and would be overwhelming to study within the framework of
a text. On the other hand, a compiler for a very small language, whose listing would
comprise 10 or so pages of text, could not hope to demonstrate adequately all the fea-
tures that a “real” compiler needs. i P

We will attempt to satisfy these requirements by giving complete source code in
(ANSI) C for a small language whose compiler can be easily comprehended once the
techniques are understood. We will call this language TINY and will use it as a running
example for the techniques studied in each chapter. The code for its compiler will be
discussed as the techniques are covered. In this section we will give an overview of the
language and its compiler. The complete compiler code is collected in Appendix B.

A further problem is the choice of the machine language to use as the target
language of the TINY compiler. Again, the complexity of using actual machine code
for an exisiting processor makes such a choice difficult. But the choice of a specific
processor also has the effect of limiting the execution of the resulting target code
to these machines. Instead, we simplify the target code to be the assembly language
for a simple hypothetical processor, which we will call the TM machine (for tiny
machine). We will take a quick look at this machine here but will delay a more
extensive description until Chapter 8 (code generation). A TM simulator listing in C
appears in Appendix C. .

Il The TINY Language

A program in TINY has a very simple structure: it is just a sequence of statements sep-
arated by semicolons in a syntax similar to that of Ada or Pascal. There are no proce-
dures and no declarations. All variables are integer variables, and variables are declared
simply by assigning values to them (somewhat like FORTRAN or BASIC). There are
only two control statements: an if-statement and a repeat-statement. Both control state-
ments may themselves contain statement sequences. An if-statement has an optional
else part and must be terminated by the keyword end. There are also read and write
statements that perform input/output. Comments are allowed within curly brackets;
comments cannot be nested.

Expressions in TINY are also limited to Boolean and integer arithmetic expressions.
A Boolean expression consists of a comparison of two arithmetic expressions using
either of the two comparison operators < and =. An arithmetic expression may involve
integer constants, variables, parentheses, and any of the four integer operators +, -, *,
and / (integer division), with the usual mathematical properties. Boolean expressions
may appear only as tests in control statements —there are no Boolean variables, assign-
ment, or I/O.

Figure 1.4

A TINY language program
that outputs the factorial of
its input

1.7 The TINY Sample Language and Compiler 23

Figure 1.4 gives a sample program in this language for the well-known factorial
function. We will use this program as a running example throughout the text.

{ Sample program
in TINY language -
computes factorial
}
read x; { input an integer }
if x > 0 then { don’t compute if x <= 0 }
fact := 1;
repeat
fact := fact * x;
x :=x - 1
until x = 0;
write fact { output factorial of x }
end

While TINY lacks many features necessary for real programming languages—proce-
dures, arrays, and floating-point values are some of the more serious omissions—it is
still large enough to exemplify most of the essential features of a compiler.

112 The TINY Compiler

The TINY compiler consists of the following C files, where we list header files (for
inclusion) on the left and code files on the right:

globals.h main.c

util.h util.c

scan.h scan.c

parse.h parse.c

symtab.h symtab.c

analyze.h analyze.c

code.h code.c .
cgen.h cgen.c

The source code for these files is listed in Appendix B, with line numbers, and in the
order given, except that main.c is listed before globals.h. The globals.h
header file is included in all the code files. It contains the definitions of data types and
global variables used throughout the compiler. The file main . c contains the main pro-
gram that drives the compiler, and it allocates and initializes the global variables. The
remaining files consist of header/code file pairs, with the externally available function
prototypes given in the header file and implemented (with possibly additional static
local functions) in the associated code file. The scan, parse, analyze, and cgen
files correspond exactly to the scanner, parser, semantic analyzer, and code generator
phases of Figure 1.1. The util files contain utility functions needed to generate the

24

CHAPTER 1 / INTRODUCTION

internal representation of the source code (the syntax tree) and display listing and error
information. The symtab files contain a hash-table implementation of a symbol table
suitable for use with TINY. The code files contain utilities for code generation that are
dependent on the target machine (the TM machine, described in Section 1.7.3). The
remaining components of Figure 1.1 are absent: there is no separate error handler or lit-
eral table and there are no optimization phases. Also, there is no intermediate code sep-
arate from the syntax tree. Further, the symbol table interacts only with the semantic
analyzer and the code generator (so we delay a discussion of it until Chapter 6).

To reduce the interaction among these files, we have also made the compiler four-
pass: the first pass consists of the scanner and parser, which construct the syntax tree;
the second and third passes undertake semantic analysis, with the second pass con-
structing the symbol table and the third pass performing type checking; the final pass is
the code generator. The code inmain. ¢ that drives these passes is particularly simple.
Ignoring flags and conditional compilation, the central code is as follows (see lines 69,
77,79, and 94 of Appendix B):

syntaxTree = parse();
buildsymtab(syntaxTree) ;
typeCheck (syntaxTree) ;
codeGen (syntaxTree, codefile);

For flexibility, we have also built in conditional compilation flags that make it possible
to build partial compilers. The flags, with their effect, are as follows:

. FILES NEEDED FOR

FLAG EFFECT IF SET COMPILATION (CUMULATIVE)
NO_PARSE Builds a scanner-only globals.h, main.c,
compiler. util.h, util.c, scan.h,
scan.c

NO_ANALYZE Builds a compiler that parse.h, parse.c
parses and scans only.

NO_CODE Builds a compiler that symtab.h, symtab.c,
performs semantic analyze.h, analyze.c
analysis but generates
no code. .

Although this design for the TINY compiler is somewhat unrealistic, it has the ped-
agogical advantage that separate files correspond roughly to phases, and they can be
discussed (and compiled and executed) individually in the chapters that follow.

The TINY compiler can be compiled by any ANSI C compiler. Assuming that the
name of the executable file is t iny, it can be used to compile a TINY source program
in the text file sample. tny by issuing the command

tiny sample.tny

(The compiler will also add the . tny suffix if it is omitted.) This will print a program
listing to the screen (which can be redirected to a file) and (if code generation is

|7 The TINY Sample Language and Compiler 25

activated) will also generate the target code file sample.tm (for use with the TM
machine, described next).

There are several options for the information in the compilation listing. The fol-
lowing flags are available:

FLAG EFFECT IF SET

EchoSource Echoes the TINY source program to the listing together
with line numbers.

TraceScan Displays information on each token as the scanner recog-
nizes it.

TraceParse Displays the syntax tree in a linearized formz

TraceAnalyze Displays summary i

TraceAnalyze Displays summary
checking

TraceCode Prints code gencration—tracing comments to the code file.

173 The TM Machine

We use the assembly language for this machine as the target language for the TINY
compiler. The TM machine has just enough instructions to be an adequate target for a
small language such as TINY. In fact, TM has some of the properties of Reduced
Instruction Set Computers (or RISCs), in that all arithmetic and testing must take place
in registers and the addressing modes are extremely limited. To give some idea of the
simplicity of this machine, we translate the code for the C expression

alindex] = 6
into TM assembly language (compare this with the hypothetical assembly language for

the same statement in Section 1.3, page 12):

LDC 1,0(0) load 0 into reg 1
* the following instruction
* agsumes index is at location 10 in memory

LD 0,10(1) load val at 10+R1 into RO
LDC 1,2(0) load 2 into reg 1
MUL 0,1,0 put R1*R0 into RO
LDC 1,0(0) load 0 into reg 1

* the following instruction
* agsgumes a is at location 20 in memory

LDA 1,20(1) load 20+R1 into RO
ADD 0,1,0 put R1+RO into RO
LDC 1,6(0) load 6 into reg 1
ST 1,0(0) store R1 at O0+RO

We note that there are three addressing modes for the load operation, all given by dif-
ferent instructions: LDC is “load constant,” LD is “load from memory,” and LDA is
“load address.” We note also that addresses must always be given as “register+offset”
values, as in 10(1) (instruction 2 of the preceding code), which stands for the address

26

CHAPTER | / INTRODUCTION

computed by adding the offset 10 to the contents of register 1. (Since 0 was loaded into
register 1 in the previous instruction, this actually refers to the absolute location 10.)
We also note that the arithmetic instructions MUL and ADD can have only register
operands and are “three-address” instructions, in that the target register of the result can
be specified independently of the operands (contrast this with the code in Section 1.3,
page 12, where the operations were *“two address”).

Our simulator for the TM machine reads the assembly code directly from a file and
executes it. Thus, we avoid the added complexity of translating the assembly language
to machine code. However, our simulator is not a true assembler, in that there are no
symbolic addresses or labels. Thus, the TINY compiler must still compute absolute
addresses for jumps. Also, to avoid the extra complexity of linking with external
input/output routines, the TM machine contains built-in I/O facilities for integers; these
are read from and written to the standard devices during simulation.

The TM simulator can be compiled from the tm. ¢ source code using any ANSI C
compiler. Assuming the executable file is called tm, it can be used by issuing the
command

tm sample.tm

where sample. tmis, for example, the code file produced by the TINY compiler from
the sample . tny source file. This command causes the code file to be assembled and
loaded; then the TM simulator can be run interactively. For example, if sample.tny
is the sample program of Figure 1.4, then the factorial of 7 can be computed with the
following interaction:

tm sample.tm

T™ simulation (enter h for help)...
Enter command: go

Enter value for IN instruction: 7
OUT ingtruction prints: 5040

HALT: 0,0,0

Halted

Enter command: gquit

Simulation domne.

1§ C-MINUS: A LANGUAGE FOR A

COMPILER PROJECT

A more extensive language than TINY, suitable for a compiler project, is described in
Appendix A. It is a considerably restricted subset of C, which we will call C-Minus. It
contains integers, integer arrays, and functions (including procedures, or void func-

1. The LDC command also requires a register+offset format, but the register is ignored and
the offset itself is loaded as a constant. This is due to the simple uniform format of the TM assem-
bler.

S

.

.

i

Figure 15

A C-Minus program that
outputs the factorial of

its input

Exercises 27

tions). It has local and global (static) declarations and (simple) recursive functions. It
has an if-statement and a while-statement. It lacks almost everything else. A program
consists of a sequence of function and variable declarations. A main function must be
declared last. Execution begins with a call to main.’

As an example of a program in C-Minus, in Figure 1.5 we write the factorial pro-
gram of Figure 1.4 using a recursive function. Input/output in this program is provided
by a read function and a write function that can be defined in terms of the standard
C functions scanf and print£.

C-Minus is a more complex language than TINY, particularly in its code generation
requirements, but the TM machine is still a reasonable target for its compiler. In
Appendix A we provide guidance on how to modify and extend the TINY compiler
to C-Minus.

int fact(int x)
/* recursive factorial function */
{ if (x > 1)
return x * fact(x-1);
else
return 1;

void main(void)
{ int x;
x = read();
if (x > 0) write(fact(x));

EXERCISES .

Pick a fa r compiler that comes packaged with a development environment, and list
all of the companion programs that are available with the compiler together with a brief
description of their functions.

1.2 Given the C assignment

afi+l] = a[i] + 2

draw a parse tree and a syntax tree for the expression, using the similar example in
Section 1.3 as a guide.

1.3 Compilation errors can be loosely divided into two categories: syntax errors and semantic
errors. Syntax errors include missing or incorrectly placed tokens, such as the missing

2. For consistency with other functions in C-Minus, main is declared as a void function
with a void parameter list. While this differs from ANSI C, many C compilers will accept this
notation.

28 CHAPTER | / INTRODUCTION Notes and References 29

right parenthesis in the arithmetic expression (2+3 . Semantic errors include incorrect . the following diagram, in which letters stand for arbitrary languages, determine which
types in expressions and undeclared variables (in most languages), such as the assign- languages must be equal for the reduction to be valid, and show the single reduction

ment x = 2, where 3 is an array variable.
a. Give two more examples of errors of cach kind in a language of your choice.

b. Pick a compiler with which you are familiar and determine if it lists all syntax errors \
before semantic errors or if syntax and semantic errors are intermixed. What implica- . B D . J K
tion does this have for the number of passes? cla HI|F = L

steps that make it valid:

G

This question assumes that you have a compiler that has an option to produce assembly
language output.
a. Determine if your compiler performs constant folding optimizations.

b. A related but more advanced optimization is that of constant propagation: a variable Give a practical example of the reduction described by this diagram.
that currently has a constant value is replaced by that value in expressions. For exam- . 1.9 An alternative to the method of porting a compiler described in Section 1.6 and Figure
ple, the code (in C syniax) 1.3 is to use an interpreter for the intermediate code produced by the compiler and to do
“ away with a back end altogether. Such a method is used by the Pascal P-system, which
x = 4; includes a Pascal compiler that produces P-code, a kind of assembly code for a “generic”
Y =%+ 2; stack machine, and a P-code interpreter that simulates the execution of the P-code. Both

the Pascal compiler and the P-code interpreter are written in P-code.
a. Describe the steps needed to obtain a working Pascal compiler on an arbitrary ma-
chine, given a Pascal P-system.
b. Describe the steps needed to obtain a working native-code compiler from your system
: in (a) (i.e., a compiler that produces executable code for the host machine, rather than
using the P-code interpreter).

1.10 The process of porting a compiler can be considered as two distinct operations: retar-

geting (modifying the compiler to produce target code for a new machine) and rehosting

would, using constant propagation (and constant folding). be replaced by the code

x

b4

non
a &

Determine if your compiler performs constant propagation.
Give as many reasons as you can why constant propagation is more difficult than con-
stant folding.

a

A

d. A situation related to constant propagation-and constant folding is the use of named . (modifying the compiler to run on a new machine). Discuss the distinctness of these two
constants in a program. Using a named constant 3 instead of a variable, we can trans- mm operations in terms of T-diagrams.
late the above example as the following C code: \
const int x = 4; «
v.« u x + 2; \ zoﬂmﬁ >z= Most of the topics mentioned 5, this n:mwmmﬂ are treated in more ﬁ_o.S: ms‘mccmmncma
. wmmmm_wz@mm chapters, and the Notes and References of those o:m.na;. will provide mEEEm refer-
ences. For instance, Lex is studied in Chapter 2; Yacc in Chapter 5; type checking, sym-
Determine if your compiler performs propagation/folding under these circumstances. bol tables, and attribute analysis in Chapter 6; code generation, three-address code, and
How is this different from part (b)? P-code in Chapter 8; and error handling in Chapters 4 and 5.
If your compiler will accept input directly from the keyboard, determine if your compiler A standard comprehensive reference on compilers is Aho [1986], particularly for
reads the entire program before generating error messages or generates error messages as .. theory and algorithms. A text that gives many useful implementation hints is Fischer
it encounters them. What implication does this have for the number of passes? and LeBlanc [1991]. Complete descriptions of C compilers can be found in Fraser and
Describe the tasks performed by the following programs, and explain how these pro- Hanson [1995] and Holub [1990]. A popular C/C++ compiler whose source code is
grams resemble or are related to compilers: widely available through the internet is the Gnu compiler. It is described in detail in
a. A language preprocessor b. A pretty-printer ¢. A text formatter Stallman [1994].
Suppose you have a Pascal-to-C translator written in C and a working C compiler. Use w For a survey of programming language concepts, with information on their interac-
T-diagrams to describe the steps you would take to create a working Pascal compiler. tions with translators, see Louden [1993] or Sethi [1996].
We have used an arrow = to indicate the reduction of a pattern of two T-diagrams to a . A useful reference for automata theory from a mathematical view (as opposed to the
single T-diagram. We may consider this arrow to be a *“reduction relation” and form its . practical view taken here) is Hopcroft and Uliman [1979]. More on the Chomsky hier-

transitive closure =*, in which we allow a sequence of reductions to take place. Given archy can also be found there (as well as in Chapter 3).

30

CHAPTER | / INTRODUCTION

A description of the early FORTRAN compilers can be found in Backus [1957] and
Backus [1981]. A description of an early Algol60 compiler can be found in Randell and
Russell [1964]. Pascal compilers are described in Barron [1981], where a description of
the Pascal P-system can also be found (Nori [1981]).

The Ratfor preprocessor mentioned in Section 1.2 is described in Kernighan [1975].
The T-diagrams of Section 1.6 were-introduced by Bratman [1961].

This text focuses on standard translation techniques useful for the translation of
most languages. Additional techniques may be needed for efficient translation of lan-
guages outside the main tradition of Algol-based imperative languages. In particular,
the translation of functional languages such as ML and Haskell has been the source of
many new techniques, some of which may become important general techniques in the
future. Descriptions of these techniques can be found in Appel [1992], Peyton Jones
[1992], and Peyton Jones [1987]. The latter contains a description of Hindley-Milner
type checking (mentioned in Section 1.1).

(hapter 2

R

Scanning

2.l The Scanning Process 2.5 Implementation of a TINY
2.2 Regular Expressions Scanner
2.6 Use of Lex to Generate a

2.3 Finite Automata

2.4 From Regular Expressions to
DFAs

Scanner Automatically

The scanning, or lexical analysis, phase of a compiler has the task of reading the
source program as a file of characters and dividing it up into tokens. Tokens are like
the words of a natural language: each token is a sequence of characters that repre-
sents a unit of information in the source program. Typical examples are keywords,
such as if and while, which are fixed strings of letters; identifiers, which are
user-defined strings, usually consisting of letters and numbers and beginning with a
letter; special symbols, such as the arithmetic symbols + and *; as well as a few
multicharacter symbols, such as >= and <>. In each case a token represents a cer-
tain pattern of characters that is recognized, or matched, by the scanner from the
beginning of the remaining input characters.

Since the task performed by the scanner is a special case of pattern matching, we
need to study methods of pattern specification and recognition as they apply to the
scanning process. These methods are primarily those of regular expressions and
finite automata. However, a scanner is also the part of the compiler that handles
the input of the source code, and since this input often involves a significant time
overhead, the scanner must operate as efficiently as possible. Thus, we need also to
pay close attention to the practical details of the scanner structure.

We divide the study of scanner issues as follows. First, we give an overview of
the operation of a scanner and the structures and concepts involved. Then, we study
regular expressions, a standard notation for representing the patterns in strings that
form the lexical structure of a programming language. Following that, we study finite-
state machines, or finite automata, which represent algorithms for recognizing string
patterns given by regular expressions. We also study the process of constructing

31

