PREFACE

Indeed, the basic organization of the sample compiler in this text was suggested by that
course, and the machine simulator of Appendix C is a descendant of the one he
provided.

More directly, I would like to thank my colleagues Bill Giles and Sam Khuri at San
Jose State for encouraging me in this project, reading and commenting on most of the
text, and for using preliminary drafts in their classes. I would also like to thank the stu-
dents at San Jose State University in both my own and other classes who provided use-
ful input. Further, I would like to thank Mary T. Stone of PWS for gathering a great
deal of information on compiler tools and for coordinating the very useful review
process.

The following reviewers contributed many excellent suggestions, for which I am
grateful:

Jeff Jenness Jerry Potter
Arkansas State University Kent State University
Joe Lambert Samuel A. Rebelsky
Penn State University Dartmouth College

Joan Lukas
University of Masschusetts, Boston

Of course I alone am responsible for any shortcomings of the text. I have tried to make
this book as error-free as possible. Undoubtedly errors remain, and I would be happy to
hear from any readers willing to point them out to me.

Finally, I would like to thank my wife Margreth for her understanding, patience,
and support, and our son Andrew for encouraging me to finish this book.

K.C.L.

-

-

G

Chapter 1

B

Introduction

1.1 Why Compilers? A Brief 1.5 Other Issues in Compiler
History Crrmtrottima
o \ SJUuULLur©

.2 Programs Related to 1.6 Bootstrapping and Porting
Compilers 1.7 The TINY Sample Language

1.3 The Translation Process and Compiler

1.4 Major Data Structures in a 1.8 C-Minus: A Language for a
Compiler Compiler Project

Compilers are computer programs that translate one language to another. A com-
piler takes as its input a program written in its source language and produces an
equivalent program written in its target language. Usually, the source language is a
high-level language, such as C or C+ +, and the target language is object code
(sometimes also called machine code) for the target machine, that is, code written
in the machine instructions of the computer on which it is to be executed. We can
view this process schematically as follows:

Source
Program

Target

e Compiler —_— Program

A compiler is a fairly complex program that can be anywhere from 10,000 to
1,000,000 lines of code. Writing such a program, or even understanding it, is not a
simple task, and most computer scientists and professionals will never write a com-
plete compiler. Nevertheless, compilers are used in almost all forms of computing,
and anyone professionally involved with computers should know the basic organiza-
tion and operation of a compiler. In addition, a frequent task.in computer applica-
tions is the development 6f command interpreters and interface programs, which
are smaller than compilers-but which use the same techniques. A knowledge of
these techniques is, therefore, of significant practical use.

It is the purpose of this text not only to provide such basic knowledge but also
to give the reader all the necessary tools and practical experience to design and pro-

CHAPTER | / INTRODUCTION

gram an actual compiler. To accomplish this, it is necessary to study the theoretical
techniques, mainly from automata theory, that make compiler construction a man-
ageable task. In covering this theory, we do not assume that the reader has previous
knowledge of automata theory. Indeed, the viewpoint taken here is different from
that in a standard automata theory text, in that it is aimed specifically at the com-
ilation process. Nevertheless, a reader who has studied automata theory will find
the theoretical material more familiar and will be able to proceed more quickly
through those sections. In particular, Sections 2.2, 2.3, 2.4, and 3.2 may be skipped
or skimmed by a reader with a good background in automata theory. In any case,
the readef should be fa r with basic data structures and discrete mathematics.
Some krnowledge of-machine architect d bly:language:is al tial,
particularly for the chapter an code generation.

The study of the practical coding techniques themselves requires careful plan-
ning, since even with a good theoretical foundation the details of the code can be
complex and overwhelming. This text contains a series of simple examples of pro-
gramming language constructs that are used to elaborate the discussion of the tech-
niques. The language we use for this discussion is called TINY. We also provide (in
Appendix A) a more extensive example, consisting of a small but sufficiently complex
subset of C, which we call C-Minus, which is suitable for a class project. In addition
there are numerous exercises; these include simple paper-and-pencil exercises,
extensions of code in the text, and more involved coding exercises.

In general, there is significant interaction between the structure of a compiler
and the design of the programming language being compiled. In this text we will only
incidentally study language design issues. Other texts are available that more fully
treat programming language concepts and design issues. (See the Notes and Refer-
ences section at the end of this chapter.)

We begin with a brief look at the history and the raison d'étre of compilers,
together with a description of programs related to compilers. Then, we examine the
structure of a compiler and the various translation processes and associated data
structures and tour this structure using a simple concrete example. Finally, we give
an overview of other issues of compiler structure, including bootstrapping and port-
ing, concluding with a description of the principal language examples used in the
remainder of the book.

WHY COMPILERS? A BRIEF HISTORY

With the advent of the stored-program computer pioneered by John von Neumann in
the late 1940s, it became necessary to write sequences of codes, or programs, that
would cause.these computers to perform the desired computations. Initially, these pro-
grams were written in machine language—numeric codes that represented the actual
machine operations to be performed. For example,

C7 06 0000 0002

represents the instruction to move the number 2 to the location 0000 (in hexadecimal)
on the Intel 8x86 processors used in IBM PCs. Of course, writing such codes is
extremely time consuming and tedious, and this form of coding was soon replaced by

I.I' Why Compilers? A Brief History 3

assembly language, in-which instructions and memory locations are. given symbolic

sforms. For example, the assembly language instruction

MOV X , 2

is equivalent to the previous machine instruction (assuming the symbolic memory loca-
tion X is 0000). An assembler translates the symbolic codes and memory locations of
assembly language into the corresponding numeric codes of machine language.
Assembly language greatly improved the speed and accuracy with which programs
could be written, and it is still in use today, especially when extreme speed or concise-
ness of code is needed. However, assembly language has a number of defects: it is still
not easy to write and it is difficult to read and understand. Moreover, a sembly lan-
guage is extremely dependent on the particular machine for which it was written. so
code written for one computer must be completely rewritten for another machine.
Clearly, the next major step in programming technology was to write the operations of
a program in a concise form more nearly resembling mathematical notation or natural
language, in a way that was independent of any one particular machine and yet capable
of itself being translated by a program into executable code. For example, the previous
assembly language code can be written in a concise, machine-independent form as

X =2 -

At first, it was feared that this might not be possible, or if it was, then the object code
would be so inefficient as to be useless.

The development of the FORTRANlanguage and its compiler by a team at IBM led
by John Backus between 1954 and 1957 showed that both these fears were unfounded.
Nevertheless, the success of this project came about only with a great deal of effort,
since most of the processes involved in translating programming languages were not
well understood at the time.

At about the same time that the first compiler was under development, Noam
Chomsky began his study of the structure of natural language. His findings eventually
made the construction of compilers considerably easier and even capable of partial
automation. Chomsky’s study led to the classification of languages according to the
complexity of their grammars (the rules specifying their structure) and the power of
the algorithms needed to recognize them. The Chomsky hierarchy, as it is now called,
consists of four levels of grammars, called the type 0, type 1, type 2, and type 3 gram-
mars, each of which is a specialization of its predecessor. The type 2, or context-free,
grammars proved to be the most useful for programming languages, and today they
are the standard way to represent the structure of programming languages. The study of
the parsing probiem (the determination of efficient algorithms for the recognition of
context-free languages) was pursued in the 1960s and 1970s and led to a fairly com-
plete solution of this problem, which today has become a standard part of compiler the-
ory. Context-free languages and parsing algorithms are studied in Chapters 3, 4, and 5.

Closely related to context-free grammars are finite automata and regular expres-
sions; which correspond to Chomsky’s type 3 grammars. Begun at about the same time
as Chomsky’s work, their study led to symbolic methods for expressing the structure of

Aheswords, or tokens, of a programming language. Chapter 2 discusses finite automata

and regular expressions.

CHAPTER | / INTRODUCTION

Much more complex has been the development of methods for generating efficient
object code, which began with the first compilers and continues to this day. These tech-
niques are usually misnamed optimization techniques, but they really should be called
code improvement techniques, since they almost never result in truly optimal object
code but only improve its efficiency. Chapter 8 describes the basics of these techniques.

As the parsing problem became well understood, a great deal of work was devoted
to developing programs that would automate this part of compiler development. These
programs were originally called compiler-compilers, but are more aptly referred to as
parser generators, since théy automate only one part of the compilation process. The
best-known of these programs is Yacc (yet another compiler-compiler) written by Steve
$ehnson in 1975 for the Unix system. Yacc is studied in Chapter 5. Similarly, the study
of finite automata led to the development of another tool called a scanner generator,
developed for the Unix system by Mike Lesk about the same time as
¥icce) is the best known. Lex is studied in Chapter 2.

During the late 1970s and early 1980s, a number of projects focused on automating
the generation of other parts of a compiler, including code generation. These attempts
have been less successful, possibly because of the complex nature of the operations and
our less than perfect understanding of them. We do not study them in detail in this text.

More recent advances in compiler design have included the following. First, com-
pilers have included the application of more sophisticated algorithms for inferring
and/or simplifying the information contained in a program, and these have gone hand
in hand with the development of more sophisticated programming languages that allow
this kind of analysis. Typical of these is the unification algorithm of Hindley-Milner
type checking, used in the compilation of functional languages. Second, compilers have
become more and more a part of a window-based interactive development envirori-
ment, or IDE; that includes editors, linkers, debuggers, and project managers. So far
there has been little standardization of such IDEs, but the development of standard win-
dowing environments is leading in that direction. The study of such topics is beyond
the scope of this text (but see the next section for a brief description of some of the com-
ponents of an IDE). For pointers to the literature, see the Notes and References section
at the end of the chapter. Despite the amount of research activity in recent years,
however, the basics of compiler design have not changed much in the last 20 years, and
they have increasingly become a part of the standard core of the computer science
curriculum.

PROGRAMS RELATED TO COMPILERS

In this section, we briefly describe other programs that are related to or used together
with compilers and that often come together with compilers in a complete language
development environment. (We have already mentioned some of these.)

INTERPRETERS:

An interpreter is a language translator like a compiler. It ditfers from a compiler in
that it executes the source program immediately rather than generating object code
that is executed after translation is complete. In principle, any programming lan-
guage can be either interpreted or compiled, but an interpreter may be preferred to
a compiler depending on the language in use and the situation under which transla-
tion occurs. For example, BASIC is a language that is more usually interpreted than

T

1.1 Programs Related to Compilers 5

compiled. Similarly, functional languages such as LISP tend to be interpreted.
Interpreters are also often used in educational and software development situations,
where programs are likely to be translated and retranslated many times. On the
other hand, a compiler is to be preferred if speed of execution is a primary consid-
eration, since compiled object code is invariably faster than interpreted source code,
sometimes by a factor of 10 or more. Interpreters, however, share many of their
operations with compilers, and there can even be translators that are hybrids, lying
somewhere between interpreters and compilers. We will discuss interpreters inter-
mittently, but our main focus in this text will be on compilation.

ASSEMBLERS:

An assembler is a translator for the assembly language of a particular computer. As
we have already noted, assembly language is a symbolic form of the machine lan-
guage of the computer and is particularly easy to translate. Sometimes, a compiler
will generate assembly language as its target language and then rely on an assem-
bler to finish the translation into object code.

LINKERS

Both compilers and assembiers often rely on a program called a linker, which col-
lects code separately compiled or assembled in different object files into a file that
is directly executable. In this sense, a distinction can be made between object
code—machine code that has not yet been linked—and executable machine code.
A linker also connects an object program to the code for standard library functions
and to resources supplied by the operating system of the computer, such as mem-
ory allocators and input and output devices. It is interesting to note that linkers now
perform the task that was originally one of the principal activities of a compiler
(hence the use of the word compile—ito construct by collecting from different
sotirces). We will not study the linking process in this text, since it is extremely
dependent on the details of the operating system and processor. We will also not
always make a clear distinction between unlinked object code and executable code,
since this distinction will not be important for our study of compilation techniques.

LOADERS

Often a compiler, assembler, or linker will produce code that is not yet completely
fixed and ready to execute, but whose principal memory references are all made rel-
ative to an undetermined starting location that can be anywhere in memory. Such
code is said to be relocatable, and a loader will resolve all relocatable addresses rel-
ative to a given base, or starting, address. The use of a loader makes executable
code more flexible, but the loading process often occurs behind the scenes (as part
of the operating environment) or in conjunction with linking. Rarely is a loader an
actual separate program.

PREPROCESSORS

A preprocessor is a separate program that is-called by the compiler before actual

teanslation begins. Such a preprocessor can delete comments, include other files,

and perform macro substitutions (a macro is a shorthand description of a repeated

sequence of text). Preprocessors can be required by the language (as in C) or can

be later add-ons that provide additional facilities (such as the Ratfor preprocessor
. for FORTRAN).

CHAPTER |/ INTRODUCTION

EDITORS:

Compilers usually accept source programs written using any editor that will pro-
duce a standard file, such as an ASCII file. More recently, compilers have been bun-
dled together with editors and other programs into an interactive development envi-
ronment, or IDE. In such a case, an editor, while still producing standard files, may
be priented toward the format or structure of the programming language in ques:
tion. Such editors are called structure based and already include some of the oper:
ations:of -a:comptler, so that, for example, the programmer may be informed of
errors as the program is written rather than when it is compiled. The compiler and
its companion programs can also be called from within the editor, so that the pro-
grammer can execute the program without leaving the editor.

DEBUGGERS

A debugger is a program that can be used to determine execution errors in a com-
piled programi. It is also often packaged with a compiler in an IDE. Running a pro-
gram with a debugger differs from straight execution in that the debugger keeps
track of most or all of the source code information, such as line numbers and names
of variables and procedures. It can also halt execution at prespecified locations
called breakpoints as well as provide information on what functions have been
called and what the current values of variables are. To perform these functions, the
debugger must be supplied with appropriate symbolic information by the compiler,
and this can sometimes be difficult, especially in a compiler that tries to optimize
the object code. Thus, debugging becomes a compiler question, which, however, is
beyond the scope of this book.

PROFILERS ‘

A profiler is a program that Collects statistics on the behavior of an object program
during execution. Typical statistics that may be of interest to the programmer are
the number of times each procedure is called and the percentage of execution time
spent in each procedure. Such statistics can be extremely useful in helping the pro-
grammer to improve the execution speed of the program. Sometimes the compiler
will even use the output of the profiler to automatically improve the object code
without intervention by the programmer.

PROJECT MANAGERS

Modern software projects are usually so large that they are undertaken by groups of
programmers rather than a single programmer. In such cases. it is important that the
files being:worked on by different people are coordinated, and this is the job of a
project manager program. For example, a project manager should coordinate the
merging of separate versions of the same file produced by different programmers.
It should also maintain a history of changes to each of a group of files, so that coher-
ent versions of a program under development can be maintained (this is something
that can also be useful to the one-programmer project). A project manager can be
written in a language-independent way, but when it is bundled together with a com-
piler, it can maintain information on the specific compiler and linker operations
needed to build a complete executable program. Two popular project manager pro-
grams on Unix systems are sccs (source code control system) and rcs (revi-
sion control system).

1.3 The Translation Process 7

I3 THE TRANSLATION PROCESS

e

B

A compiler consists internally of a:number of steps, or phases, that perform distinct
logical operations. It is helpful to think of these phases as separate pieces within the
compiler, and they may indeed be written as separately coded operations although in
practice they are often grouped together. The phases of a compiler are shown in Fig-
ure 1.1, together with three auxiliary components that interact with some or all of

Source Code

v
Scanner s
aodm:m
Parser
m<2mﬂ Tree
Literal
Semantic Table
Analyzer
Annotated Tree Symbol
« Table
Source Code
Optimizer Etiei
_ Handler

Intermediate Code

{

Code
Generator

Target Code

|

Target Code
Optimizer

|

Target Code

CHAPTER |/ INTRODUCTION

the phases: the literal table, the symbol table, and the error handler. We will briefly
describe each phase here; they will be studied in greater detail in the following chap-
ters. (The literal and symbol tables will be discussed in more detail in the next section
and the error handler in Section 1.5.)

THE SCANNER
This phase of the compiler does the actual reading of the source program, which is
usually in the form of a stream of characters. The scanner performs what is called
lexical analysis: it collects sequences of characters into meaningful units called
tokens, which are like the words of a natural language such as English. Thus, a
scanner can be thought to perform a function similar to spelling.

As an example, consider the following line of code, which could be part of a C

progi

alindex] = 4 + 2
This code contains 12 nonblank characters but only 8 tokens:

identifier

-

left bracket

ndex identifier

— e

right bracket

assignment
4 number

+ plus sign

2 number

Each token consists of one or more characters that are collected into a unit before
further processing takes place.

A scanner may perform other operations along with the recognition of tokens.
For example, it may enter identifiers into the symbol table, and it may enter liter-
als into the literal table (literals include numeric constants such as 3.1415926535
and quoted strings of text such as “Hello, world!”).

THE PARSER

The parser receives the source code in the form of tokens from the scanner and per-
forms syntax analysis, which determines the structure of the program. This is sim-
ilar to performing grammatical analysis on a sentence in a natural language. Syntax
analysis determines the structural elements of the program as well as their relation-
ships. The results of syntax analysis are usually represented as a parse tree or a
syntax tree.

As an example, consider again the line of C code we have already given. It rep-
resents a structural element called an expression, which is an assignment expression
consisting of a subscripted expression on the left and an integer arithmetic expres-
sion on the right. This structure can be represented as a parse tree in the following
form:

The Translation Process 9

expression

assign-expression

| T

expression = expression

subscript-expression

expression [expre.] + expression
|
identifier identifier number
a index 2

Note that the internal nodes of the parse tree are labeled by the names of the struc-
tures they represent and that the leaves of the parse tree represent the sequence of
tokens from the input. (Names of structures are written in a different typeface to dis-
tinguish them from tokens.)

A parse tree is a useful aid to visualizing the syntax of a program or program
element, but it is inefficient in its representation of that structure. Parsers tend to
generate a syntax tree instead, which is a condensation of the information contained
in the parse tree. (Sometimes syntax trees are called abstract syntax trees, since
they represent a further abstraction from parse trées.) An abstract syntax tree for our
example of a C assignment expression is as follows:

assign .Q.—.\nﬁﬁk.ﬂ.«:_

T

subscript-expression additive-expression
identifier identifier number number
a index 4 2

Note that in the syntax tree many of the nodes have disappeared (including token
nodes). For example, if we know that an expression is a subscript operation, then it
is no longer necessary to keep the brackets [and] that represent this operation in
the original input.

THE SEMANTIC ANALYZER

The semantics of a program are its “meaning,” as opposed to its syntax, or struc-
ture. The semantics of a program determine its runtime behavior, but most pro-
gramming languages have features that can be determined prior to execution and
yet cannot be conveniently expressed as syntax and analyzed by the parser. Such
features are referred to as static semantics, and the analysis of such semantics is

CHAPTER |/ INTRODUCTION

the task of the semantic analyzer. (The “dynamic” semantics of a program—those
properties of a program that can only be determined by executing it—cannot be
determined by a compiler, since it does not execute the program.) Typical static
semantic features of common programming languages include declarations and
type checking. The extra pieces of information (such as data types) computed by the
semantic analyzer are called attributes, and these are often added to the tree as
annotations, or “decorations.” (Attributes may also be entered into the symbol
table.)
In our running example of the C expression

alindex] = 4 + 2

might be that a is an array of integer values with subscripts from a subrange of the
integers and that index is an integer variable. Then the semantic analyzer would
annotate the syntax tree with the types of all the subexpressions and then check that
the assignment makes sense for these types, declaring a type mismatch error if not.
In our example, all the types make sense. and the result of semantic analysis on the
syntax tree could be represented by the following annotated tree:

a .C«:»nﬁ.\:.ﬁk.,.wtz

\ /

stbscript-expression additive-expression

integer integer
identifier identifier number number
a index 4 2
array of integer integer integer integer

THE SOURCE CODE OPTIMIZER

Compilers often include a number of code improvement, or optimization, steps. The
earliest point at which most optimization steps can be performed is just after seman-
tic analysis, and there may be possibilities for code improvement that depend only
on the source code. We indicate this possibility by providing this operation as a sep-
arate phase in the compilation process. Individual compilers exhibit a wide varia-
tion not only in the kinds of optimizations performed but also in the placement of
the optimization phases.

In our example, we have included an opportunity for source-level optimization;
namely, the expression 4 + 2 can be precomputed by the compiler to the result 6.
(This particular optimization is known as constant folding.) Of course, much more
complex possibilities exist (some of these are mentioned in Chapter 8). In our
example, this optimization can be performed directly on the (annotated) syntax tree
by collapsing the right-hand subtree of the root node to its constant value:

The Translation Process I

assign-expression

\\ /

subscript-expression number
integer 6
\ / integer
identifier identifier
a indesx
array of integer integer

Many optimizations can be performed directly on the tree, but in a number of cases,
it is easier to optimize a linearized form of the tree that is closer to assembly code.
Many different varieties of such code exist, but a standard choice is three-address
code, so called because it contains the addresses of (up to) three locations in mem-
ory. Another popular choice is P-code. which has been used in many Pascal com-
pilers.

In our example, three-address code for the original C expression might look like
this:

t =4 + 2
alindex] = t

(Note the use of an extra temporary variable t to store the intermediate result of the
addition.) Now the optimizer would improve this code in two steps, first computing
the result of the addition

€t =6
a[index] = t

and then replacing t by its value to get the three-address statement

alindex] = 6 -

In Figure 1.1 we have indicated the possibility that the source code optimizer
may use three-address code by referring to its output as intermediate code.
Intermediate code historically referred to a form of code representation intermedi-
ate between source code and object code, such as three-address code or a similar
linear representation. However, it can also more generally refer to any internal rep-
resentation for the source code used by the compiler. In this sense, the syntax tree
can also be referred to as intermediate code, and indeed the source code optimizer
could continue to use this representation in its output. Sometimes this more general
sense is indicated by referring to the intermediate code as the intermediate repre-
sentation, or IR.

THE CODE GENERATOR

The code generator takes the intermediate code or IR and generates code for the tar-
get machine. In this text we will write target code in assembly language form for
ease of understanding, although most compilers generate object code directly. It is

CHAPTER |/ INTRODUCTION

in this phase of compilation that the properties of the target machine become the
major factor. Not only is it necessary to use instructions as they exist on the target
machine but decisions about the representation of data will now also play a major
role, such as how many bytes or words variables of integer and floating-point data
types occupy in memory.

In our example, we must now decide how integers are to be stored to generate
code for the array indexing. For example, a possible sample code sequence for the
given expression might be (in a hypothetical assembly language)

MOV RO, index ; value of index -> RO

MUL RO, 2 ;; double value in RO

MOV R1l, &a ; address of a -> R1

ADD R1l, RO add RO to R1

MOV *R1, 6 ;; constant 6 -> address in R1

e
~

~

e
e

In this code we have used a C-like convention for addressing modes, so that &a is
the address of a (i.e., the base address of the array) and that *R1 means indirect reg-
ister addressing (so that the last instruction stores the value 6 to the address con-
tained in R1). In this code we have also assumed that the machine performs byte
addressing and that integers occupy two bytes of memory (hence the use of 2 as the
multiplication factor in the second instruction).

THE TARGET CODE OPTIMIZER

In this phase, the compiler attempts to improve the target code generated by the
code generator. Such improvements include choosing addressing modes to improve
performance, replacing slow instructions by faster ones. and eliminating redundant
or unnecessary operations.

In the sample target code given, there are a number of improvements possible.
One is to use a shift instruction to replace the multiplication in the second instruc-
tion (which is usually expensive in terms of exccution time). Another is to use a
more powerful addressing mode, such as indexed addressing to perform the array
store. With these two optimizations, our target code becomes

MOV RO, index ;; value of index -> RO
SHL RO ; double value in RO
MOV &a[RO], 6 ; constant 6 -> address a + RO

e

This completes our brief description of the phases of a compiler. We want to
emphasize that this description is only schematic and does not necessarily represent
the actual organization of a working compiler. Indeed, compilers exhibit a wide
variation in their organizational details. Nevertheless, the phases we have described
are present in some form in nearly all compilers.

We have also discussed only tangentially the data structures required to main-
tain the information needed by each phase, such as the syntax tree, the intermediate
code (assuming these are not the same), the literal table, and the symbol table. We
devote the next section to a brief overview of the major data structures in a com-
piler.

Major Data Structures in a Compiler 13

[4 MAJOR DATA STRUCTURES IN A COMPILER

The interaction between the algorithms used by the phases of a compiler and the data
structures that support these phases is, of course, a strong one. The compiler writer
strives to implement these algorithms in as efficient a manner as possible, without
incurring too much extra complexity. Ideally, a compiler should be capable of compil-
ing a program in time proportional to the size of the program, that is, in O(n) time,
where 1 is a measure of program size (usually, the number of characters). In this sec-
tion, we indicate a few of the principal data structures that are needed by the phases as
part of their operation and that serve to communicate information among the phases.

TOKENS

When a scanncr collects characters into a token, it generally represenis the token
symbolically, that is, as a value of an enumerated data type representing the set of
tokens of the source language. Sometimes it is also necessary to preserve the string
of characters itself or other information derived from it, such as the name associ-
ated with an identifier token or the value of a number token. In most languages the
scanner needs only to generate one token at a time (this is called single sym-
bol lookahead). In this case, a single global variable can be used to hold the
token information. In other cases (most notably FORTRAN), an array of tokens

may be needed.

THE SYNTAX TREE

If the parser does generate a syntax tree, it is usually constructed as a standard
pointer-based structure that is dynamically allocated as parsing proceeds. The entire
tree can then be kept as a single variable pointing to the root node. Each node in the
structure is a record whose fields represent the information collected both by the
parser and, later, by the semantic analyzer. For example, the data type of an expres-
sion may be kept as a field in the syntax tree node for the expression. Sometimes,
to save space, these fields are also dynamically allocated, or they are stored in other
data structures, such as the symbol table, that allow selective allocation and deallo-
cation. Indeed, each syntax tree node itself may require different attributes to be
stored, depending on the kind of language structure it represents (for example, an
expression node has different requirements from a statement node or a declaration
node). In this case, each node in the syntax tree may be represented by a varianc
record, with each node kind containing only the information necessary for that case.

THE SYMBOL TABLE

This data structure keeps information associated with identifiers: functions, vari-
ables, constants, and data types. The symbol table interacts with almost every phase
of the compiler: the scanner, parser, or semantic analyzer may enter identifiers into
the table; the semantic analyzer will add data type and other information; and the
optimization and code generation phases will use the information provided by the
symbol table to make appropriate object code choices. Since the symbol table will
be accessed so frequently, insertion, deletion, and access operations need to be effi-
cient, preferably constant-time operations. A standard data structure for this pur-
pose is the hash table, although various tree structures can also be used. Sometimes
several tables are used and maintained in a list or stack.

14

3

CHAPTER |/ INTRODUCTION

THE LITERAL TABLE

Quick insertion and lookup are essential as well to the literal table, which stores
constants and strings used in a program. However, a literal table need not allow
deletions, since its data applies globally to the program and a constant or string will
appear only once in this table. The literal table is important in reducing the size of
a program in memory by allowing the reuse of constants and strings. It is also
needed by the code generator to construct symbolic addresses for literals and for
entering data definitions in the target code file.

INTERMEDIATE CODE
Depending on the kind of intermediate code (e.g., three-address code and P-code)
and the kinds of optimizations performed, this code may be kept as an array of text

strings, a temporary text file, or as a linked list of structurcs. In compilers that per-

SHT
i

form complex optimizations, particular attention must be given to choosing repre-

sentations that permit easy reorganization.

P

TEMPORARY FILES

Historically, computers did not possess enough memory for an entire program to be
kept in memory during compilation. This problem was solved by using temporary
files to hold the products of intermediate steps during translation or by compiling
“on the fly,” that is, keeping only enough information from earlier parts of the
source program to enable translation to proceed. Memory constraints are now a
much smaller problem, and it is possible to require that an entire compilation unit
be maintained in memory, especially if separate compilation is available in the lan-
guage. Still, compilers occasionally find it useful to generate intermediate files dur-
ing some of the processing steps. Typical among these is the need to backpatch
addresses during code generation. For example, when translating a conditional
statement such as

if x = 0 then...else...

a jump from the test to the else-part must be generated before the location of the
code for the else-part is known:

CMP X,0

JNE NEXT ;; location of NEXT not yet known
<code for then-part>

NEXT:

<code for else-part>

Typically, a blank must be left for the value of NEXT, which is filled in once that
value becomes known. This is easily accomplished with the use of a temporary file.

OTHER ISSUES IN COMPILER STRUCTURE

The structure of a compiler may be viewed from many different angles. In Section 1.3
we described its phases, which represent the logical structure of a compiler. Other
viewpoints are possible: the physical structure of the compiler, the sequencing of the

1.5 Other lssues in Compiler Structure 15

operations, and so on. The compiler writer should be familiar with as many views of
compiler structure as possible, since the structure of the compiler will have a major
impact on its reliability, efficiency, usefulness, and maintainability. In this section we
will consider other aspects of compiler structure and indicate how each view applies.

ANALYSIS AND SYNTHESIS

In this view, compiler operations that analyze the source program to compute its
properties are classified as the analysis part of the compiler, while operations
involved in producing translated code are called the synthesis part of the compiler.
Naturally, lexical analysis, syntax analysis, and semantic analysis belong to the
analysis part, while code generation is synthesis. Optimization steps may involve
both analysis and synthesis. Analysis tends to be more mathematical and better
understood, while synthesis requires more specialized techniques. Thus, it is heip-
ful to separate analysis steps from synthesis steps so each can be changed indepen-
dently of the other.

FRONT END AND BACK END

This view regards the compiler as separated into those operations that depend only
on the source langnage (the front end) and those operations that depend only on the
target language (the back end). This is similar to the division into analysis and syn-
thesis: the scanner, parser, and semantic analyzer are part of the front end, while the
code generator is part of the back end. However, some optimization analysis can be
target dependent, and therefore part of the back end, while intermediate code syn-
thesis is often target independent and thus part of the front end. Ideally, the com-
piler would be strictly divided into these two sections, with the intermediate repre-
sentation as the medium of communication between them:

Source Front Intermediate Back Target
> End End "
Code Code Code

This structure is especially important for compiler portability, in which the
compiler is designed with a view toward changing either the source code (which
involves rewriting the front end) or the target code (which involves rewriting the
back end). In practice this has proven difficult to achieve, and so-called portable
compilers tend still to have features that depend on both source and target lan-
guages. In part, this can be blamed on rapid and fundamental changes in both pro-
gramming languages and machine architectures, but it is also difficult to efficiently
retain all the information one might need in moving to a new target language or in
making the data structures suitably general to permit a change to a new source lan-
guage. Nevertheless, a consistent attcmpt to scparatc front and back ends will pay
off in easier portability.

PASSES

A compiler often finds it convenient to process the entire source program several
times before generating code. These repetitions are referred to as passes. After the
initial pass, which constructs a syntax tree or intermediate code from the source, a

