
REPORTS
IN

INFORMATICS

ISSN 0333-3590

Doubly Adaptive Quadrature Routines
based on Newton-Cote Rules

Terje O. Espelid

REPORT NO 229 May 2002

Department of Informatics

UNIVERSITY OF BERGEN

Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/ps/2002-229.ps

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available

at http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,

P.O. Box 7800, N-5020 Bergen, Norway

Doubly Adaptive Quadrature Routines based on

Newton-Cote Rules

Terje O. Espelid

30th May 2002.

Abstract

In this paper we test two recently published Matlab codes, adaptsim and adaptlob,

using both a Lyness-Kaganove test and a battery type of test. Furthermore we modify

these two codes using sequences of null rules in the error estimator with the intention to

increase the reliability for both codes. In addition two new Matlab codes applying a lo-

cally and a globally adaptive strategy respectively are developed. These two new codes

turn out to have very good properties both with respect to reliability and efficiency.

Both algorithms are using sequences of null rules in their local error estimators. These

error estimators allow us both to test if we are in the region of asymptotic behavior

and thus increase reliability and to take advantage of the degree of precision of the

basic quadrature rule. The new codes compare favorably to the two recently published

adaptive codes both when we use a Lyness-Kaganove testing technique and by using a

battery test.

1 Introduction.

Automatic algorithms are now used widely for the numerical calculation of integrals. Since
the first such algorithm was given by McKeeman [18] in 1962, many new and sophisticated
algorithms, both adaptive and non-adaptive, have been developed, among these [4, 6, 12,
19, 21].

Recently Gander and Gautschi [9, 10] published a paper describing two new adaptive
quadrature codes, adaptsim and adaptlob. These two codes are written in Matlab and
they are both compared to the two Matlab codes quad and quad8 and in addition to several
routines in a number of well known software libraries. Gander and Gautschi use a battery
test of 23 test functions and conclude that the two new codes are much better than Matlab’s
currently available quad and quad8 and that the two new codes in addition are better than
the rest of the available quadrature software in 2/3 of the tested cases.

In automatic quadrature algorithms the estimate of the true error in the approximation
of the integral governs the decision on whether to return the current approximation and
terminate or to continue. Both the efficiency and the reliability therefore depend heavily
on the error estimating procedure. In many adaptive algorithms the local error estimate is
simply taken as the absolute value of the difference between two quadrature approximations,
that is the absolute value of one null rule. Testing has shown, Berntsen [1] and Berntsen
et. al. [3], that routines applying such a simple local error estimate may be very unreliable.
Unfortunately the two new codes by Gander and Gautschi are based on such a simple error
estimate and are therefore potentially more unreliable than the tests run by Gander and
Gautschi indicate.

More sophisticated local error estimating algorithms have been suggested by several
authors de Boor [6], Piessens et. al. [19], Berntsen and Espelid [2] and Espelid [7]. One of
the most successful adaptive quadrature algorithms so far, see [1] and Espelid and Sørevik
[8], is QAG in QUADPACK, [19]. This algorithm, using a Gauss-Kronrod rule as a basic
rule, has a heuristic local error estimating algorithm developed especially for this type of rule.

1

Data from experiments, showing the performance of the usual error estimating procedure,
has been used to construct this local error estimating algorithm.

Ten years ago Berntsen and Espelid, [2], presented a new error estimator to be used in
adaptive quadrature algorithms. This error estimator was designed using a sequence of null
rules and can be applied in connection with many different basic quadrature rules. In [2] it
was demonstrated that this error estimator functions well in adaptive algorithms using either
Gauss-Legendre rules, Gauss-Kronrod rules, Clenshaw-Curtis rules or Lobatto rules as their
basic quadrature rule. The main conclusion in the paper was that both Gauss-Legendre
rules and Lobatto rules are good basic rules and will function well both with respect to
reliability and efficiency in future codes using this new error estimator.

While the error estimator developed in [2] was based on a sequence of symmetric null
rules of different polynomial degrees, Espelid in [7] suggested to use both symmetric and
anti-symmetric null rules in a slightly modified error estimator. This modification makes it
possible to construct error estimators in the original spirit but using fewer evaluation points
in the basic integration rule.

We will, in this paper, test adaptsim and adaptlob using both a Lyness-Kaganove testing
technique and a battery test. Furthermore we will modify both adaptsim and adaptlob

with an error estimator tailored to the two different rules the two codes use and demonstrate
that it is possible to improve reliability and at the same time improve efficiency when the
accuracy request is high.

Finally we will, inspired by the good results achieved by modifying adaptsim, develop
two new codes, coteda and coteglob, both based on the five and nine points Newton-Cote
rules. We use these two rules in a doubly adaptive manner, which turns out to be superior to
adaptsim/adaptlob both compared through the Lyness-Kaganove testing and the battery
testing.

I have to admit that I am quite surprised by the good performance of the two new codes
and I would never have tried to develop codes based on Newton-Cote rules if it had not been
for the paper by Gander and Gautschi.

2 A sequence of null rules.

We define the integral to be computed by

I [f] =

∫ b

a

f(x)dx. (1)

We will in the following develop sequences of null rules designed to be used in connection with
symmetric quadrature rules. We refer the reader interested in a more general presentation
of these ideas to [2]. Given 2n + 1 distinct points xi, i = −n, . . . , n in the interval [a, b] and
a quadrature rule based on these points

Q[f] =

n
∑

i=−n

wif(xi). (2)

xi and wi, i = −n,−n + 1, . . . , n, are the rule’s nodes and weights respectively. We assume
xi < xi+1 for i = −n,−n + 1, . . . , n − 1. By a simple translation this rule may be used on
any of the local intervals produced by an adaptive algorithm. As mentioned we assume the
rule to be symmetric, say x0 = (a + b)/2 is the midpoint and then x−i − x0 = −(xi − x0)
for i = 1, 2, . . . , n. Furthermore w−i = wi for i = 1, 2, . . . , n.

A quadrature rule Q[f] has degree d if it integrates exactly all polynomials of degree ≤ d
and fails to integrate exactly f(x) = xd+1. An interpolatory quadrature rule based on these
2n + 1 distinct nodes has degree at least 2n. A quadrature rule based on 2n + 1 distinct
nodes of degree d ≥ 2n is unique and therefore has to be interpolatory. A quadrature rule
based on 2n + 1 nodes has degree at most 4n + 1 (Gauss-Legendre).

The term null rule was first used in 1965 by J.N. Lyness, [15]. The following definition
of a null rule is useful in this context.

2

Definition 1 A rule

N [f] =

n
∑

i=−n

uif(xi) (3)

is a null rule iff it has at least one nonzero weight and in addition

n
∑

i=−n

ui = 0.

Note: Changing the direction of integration in (1) will leave I [f] uneffected. Using
symmetric rules and null rules imply that both Q[f] and N [f] are uneffected too. An anti-
symmetric null rule will give the same value but the opposite sign due to this change of
integration direction. This implies that an error estimator which is based on the absolute
values of symmetric and anti-symmetric null rules will be uneffected of this change too.

A null rule is furthermore said to have degree d if it integrates to zero all polynomials of
degree ≤ d and fails to do so with f(x) = xd+1. Assume that the rule’s nodes are symmetric
in the integration interval then a null rule is said to be symmetric if in addition u−i = ui

for i = 1, 2, . . . , n. Similarly a null rule is said to be anti-symmetric if both u0 = 0 and
u−i = −ui for i = 1, 2, . . . , n

Note: Changing the direction of integration in (1) will leave I [f] uneffected. Using symmetric
rules and null rules imply that both Q[f] and N [f] are uneffected too. An anti-symmetric
null rule will give the same value but the opposite sign due to this change of integration
direction. This implies that an error estimator which is based on the absolute values of
symmetric and anti-symmetric null rules will be uneffected of this change too.

Suppose that Q and N have degrees dQ ≥ 0 and dN respectively. Then

Qλ[f] = Q[f] + λN [f] =

n
∑

i=−n

(wi + λui)f(xi)

is a quadrature rule of degree d ≥ min(dQ, dN). Thus we see that a null rule can be written
as the difference between two different quadrature rules of degrees ≥ 0, e. g.

λN [f] = Qλ[f] − Q[f],

and the scaling of a null rule is similar to replacing the rule of reference Qλ. A null rule based
on 2n + 1 nodes has furthermore degree of precision at most 2n − 1. This is obvious from
the fact that if a null rule has degree of precision at least 2n, then two different quadrature
rules of precision at least 2n have to exist contradicting the uniqueness theorem.

Suppose that the 2n + 1 nodes are fixed and that the unique interpolatory rule Q of
degree d is chosen as the quadrature rule in the adaptive algorithm. A sequence of null rules
N1, N2, . . . are now easily constructed based on these 2n + 1 nodes. Let f [z0, z1, . . . , zm] be
a divided difference for the function f based on the set of distinct points {z0, z1, . . . , zm}
which is a subset of the 2n + 1 nodes. The following formula is well known, see e. g. E.
Isaacson and H.B. Keller [13],

f [z0, z1, . . . , zm] =

m
∑

j=0

f(zj)/

m
∏

i=0,i6=j

(zj − zi). (4)

If f is sufficiently smooth, then

f [z0, z1, . . . , zm] = f (m)(ξm)/m!, (5)

for a value of ξm ∈ [min zi, max zi]. Now, (4) shows that a divided difference is a linear
combination of function values and (5) shows that this linear combination of function values
gives the value zero for all polynomials up to degree m−1 and the value one for f(x) = xm.
Therefore the divided difference given in (4) is a null rule of degree m − 1.

3

This implies that f [x−m, x−m+1, . . . , x0, x1, . . . , xm] is a null rule of degree 2m − 1, for
m = 1, 2, . . . , n. Furthermore it is easy to prove that these null rules are all symmetric. Sim-
ilarly f [x−m, x−m+1, . . . , x−1, x1, . . . , xm] is a null rule of degree 2m−2, for m = 1, 2, . . . , n.
These null rules are all anti-symmetric.

Now, define an inner product between two null rules, Nu and Nv , based on the same set
of 2n + 1 points as follows

(Nu, Nv) =

n
∑

i=−n

uivi. (6)

We obviously have, with this inner product, that a symmetric null rule and an anti-symmetric
null rule are orthogonal null rules. Furthermore, we may define a 2-norm to a null rule
as ||Nu||22 = (Nu, Nu). It is now straightforward to construct a sequence of null rules,
N1, N2, . . . , N2n of decreasing degrees 2n−1, 2n−2, . . . , 1, 0 that are all orthogonal. We only
apply a Gram-Schmidt orthogonalization process separately on each of the two sequences
starting with the null rules of highest degrees. Obviously, all odd numbered null rules will
retain it’s symmetry after this orthogonalization process and this will similarly be true for
the even numbered anti-symmetric null rules.

Furthermore we may assume that all these null rules have been normalized through the
same 2-norm, a natural choice is ||Nj ||22 = ||Q||22 =

∑n
i=−n w2

i . Through this choice one can
show ([2]) that when the null rules are applied to a smooth function f over an interval of
length h then Nj [f] = O(h2n+2−j) for j = 1, 2, . . . , 2n.

3 A local error estimating algorithm.

In the following we will develop a local error estimating algorithm. The algorithm con-
sists of several elements, each one with its own motivation. Let us start this section with
summarizing our knowledge about the problems of error estimation in adaptive quadrature:

• Asymptotic/non-asymptotic: The classical way to estimate the local error is based
on the knowledge that asymptotically, that is for f sufficiently smooth and the local
interval h sufficiently small, we have | I − Q | < |N [f]|. As we know, using |N [f]|
as a local error estimate in an adaptive algorithm may give an unreliable routine and
it is therefore important to test whether we, in a particular interval, have a situation
where the asymptotic theory may be applied or not. We will design such a test using
a sequence of local error estimates of decreasing asymptotic order in h. Thus we may
test if the computed values correspond to the expected order of this sequence. In the
asymptotic case we will like to use an optimistic error estimate based both on the
knowledge of the null rule’s and the basic rule’s degree of precision.

• Phase-factor: As Lyness and Kaganove [16] have pointed out, phase factor effects may
ruin |N [f]| as an estimate of the true error: given a function fλ(x) which depends on a
parameter λ. Then it is easy to demonstrate that |N [fλ]| may take the value zero for
several values of the parameter λ while the true error stays away from zero for these
values of λ. We will take such phase factors effects into account when designing the
error estimator.

• Rounding-noise: Local error estimation focus on estimating the local truncation error
as reliable and economical as possible. Rounding errors may of course influence both
the estimate of the local integral and the evaluation of all null rules. We will, as in
[19], define a certain noise level for the problem. All local error estimates below this
noise level are defined to be zero, thus avoiding to subdivide such intervals further.

Given a symmetric set of 2n + 1 distinct points and suppose furthermore that a sequence of
2n orthonormal null rules has been constructed as described in the previous section. For a
given sub-interval of length h and function f we may compute the 2n inner products

Ej = |Nj [f]|, j = 1, 2, . . . , 2n.

4

Observe that asymptotically

Ej = O(h2n+2−j)), j = 1, 2, . . . , 2n. (7)

Define the local error

E0 = |Q[f] − I [f]|

giving the asymptotic expression

E0 = O(hd+2), (8)

where d ≥ 2n is the rules degree of precision.
This implies that when h is sufficiently small and f is sufficiently smooth then we can

expect that

E0 � E1 � E2 � · · · � E2n. (9)

Define the reduction factors

rj = Ej/Ej+1, j = 1, 2, . . . , K,

for a value of K < 2n and

r = max
j=1,2,...,K

rj .

Observe that r = O(h) asymptotically, and we would therefore expect r < 1 when h becomes
sufficiently small. In view of (9) we see that a necessary test on whether h is small enough
and f sufficiently smooth, is to check that r < rcritical for a heuristic value of rcritical < 1.
If this test is passed, we may apply an optimistic error estimate based on (7) and (8)

Ê = c rαE2. (10)

Choosing E2 in this error estimate instead of E1 is an attempt to reduce possible phase
factor effects on the error estimate. Since the order is satisfied then it is less likely that both
E2 and E1 are influenced by phase factors at the same time. Observing that r0 = E0/E2 is
of order O(hd+2−2n) we may choose a value of α in the range 1 ≤ α ≤ (d+2−2n) depending
on the degree of optimism we want to put into this algorithm. We will use the term strong
test on asymptotic behavior on the test r < rcritical. The test rcritical ≤ r ≤ 1 we will denote
the weak test on asymptotic behavior and when this test is passed we will suggest to damp
the optimism, using an error estimate as follows

Ê = c′ r E2. (11)

In order to give a continuous error estimating function we choose

c′ = c rα−1
critical.

The last test to consider is 1 < r which we denote the test on non-asymptotic behavior. In
this case we cannot use (7) and (8) as a guide in the construction of the error estimate. In
the non-asymptotic region we consider any ordering of the elements of this set as equally
probable. Therefore we may, by simply bad luck, have r ≤ 1 even though we are in the non-
asymptotic region. However, the probability that this will occur is then 1/(K + 1)!. Since
we in addition distinguish between weak and strong asymptotic behavior, we assume that
we can usually maintain the reliability in spite of such failures. We suggest the following
error estimate in the non-asymptotic case

Ê = C max
j=1,2,...,K+1

Ej . (12)

5

The constant C should be chosen as a reasonable guarding constant to take care of the rare,
but possible, situation that E0 > maxEj . Having chosen this constant equal to C, and in
order to have as smooth an error estimating function as possible, we put

c′ = c rα−1
critical = C,

giving

c = C r1−α
critical.

In order to test whether we have reached the noise level or not we have also introduced a
noise test, following our local error estimating algorithm. Initially we define, for the whole
interval [a, b], the value isabs =

∑n

i=−n |wif(xi)| and then the problem’s noise level is defined
through noise = 50 ε isabs, where ε is the machine epsilon. We summarize this section by
giving a local error estimating algorithm including a noise test

The local error estimating algorithm A

Compute: Ej = |Nj [f]|, j = 1, 2, . . . , K + 1;
rj = Ej/Ej+1, j = 1, 2, . . . , K;
r = maxj=1,2,...,K rj ;

Non-asymptotic: if r > 1 then Ê = C maxj=1,2,...,K+1 Ej

Weak asymptotic: elseif rcritical ≤ r then Ê = C r E2

Strong asymptotic: else Ê = C r1−α
critical rα E2

endif

The noise test : if E1 < noise and E2 < noise then Ê = 0

Note: we may get r > 1, even though we are in the asymptotic region, simply because the
precision of the actual computer may influence the computations. If the correct values of E1

and E2 are very small, then they both may consist mainly of noise from the computations.
Example: if f is constant in a subinterval then all null rules will give the value zero and the
noise test will correctly put Ê = 0.

We have used The local error estimating algorithm A to modify the two codes devel-
oped by Gander and Gautschi in [9, 10]. Gander and Gautschi’s two codes and the two
modifications can be shortly described as follows

• adaptsim: This code is developed by Gander and Gautschi. The code is based on a five
point closed Newton-Cote rule which can be viewed as an extrapolation of Simpson’s
rule. Furthermore the code applies bisection in a locally adaptive strategy making use
of Matlab’s recursive function option. All function evaluations, except for five extra
function evaluations computed initially, contribute to the final estimate.

• modsim: This code is developed in this paper. It is based on the same quadrature
rule as adaptsim but uses The local error estimating algorithm A tailored to this
five point rule and intended to improve the code’s reliability compared to adaptsim.
Furthermore it uses the same adaptive strategy as adaptsim, but applies a nine point
closed Newton-Cote rule to get an initial estimate of the integral to be used in the
error estimation of the relative error. Furthermore in the first step a division into four
subintervals is used implying that all computed function values contribute to the final
estimate.

• adaptlob: This code is developed by Gander and Gautschi. The code is based on
a seven points Lobatto-Kronrod rule constructed by Gander and Gautschi in [9, 10].
The code uses a locally adaptive strategy with a division in six subintervals in each
step. Thus all computed function values contribute to the final estimate (here too an
exception occurs initially: six extra initial function evaluations.)

• modlob: This is a modification of the previous code with respect to two issues: First
it uses The local error estimating algorithm A tailored to the seven points Lobatto-
Kronrod rule in order to improve the codes reliability, and second the division in six

6

subintervals is replaced by bisection in order to improve the codes adaptability. The
last change implies that the code no longer makes use of all function evaluations in
the final estimate.

In both modsim and modlob we use C = 32, rcritical = 1/2 and K = 3. We have d = 5 in
modsim and d = 9 in modlob and we have chosen α one unit less than the maximum values in
both cases due to the fact that we have locally adaptive algorithms. Furthermore in modsim

and modlob we redefine the user specified tolerance to be on the noise level whenever the
code finds the specified tolerance too small. Thus, using these two codes it is normally not
possible to approximate an integral to machine precision contrary to what is possible in the
two codes adaptsim and adaptlob.

4 Lyness-Kaganove testing of the four codes

The test families used in our experiments are given below, and they are picked from [1] ,[17]
and [20].

Test families Attributes

1.
∫ 1

0
(|x − λ|)α1dx Singularity

2.
∫ 1

0 f2(x)dx Discontinuous

where f2(x, y) =

{

0 if x ≤ λ
exp(α2x) otherwise

3.
∫ 1

0
exp(−α3|x − λ|)dx C0 function

4.
∫ 2

1 10α4/((x − λ)2 + 102α4)dx One Peak

5.
∫ 2

1

∑4
i=1 10α5/((x − λi)

2 + 102α5)dx Four Peaks

6.
∫ 1

0
2B(x − λ)cos(B(x − λ)2)dx Non-linear Oscillatory

where B = 10α6/max(λ2, (1 − λ)2)

In our experiments we have chosen the difficulty parameters αi, i = 1, ..., 6, to be (numbered
from family 1 to 6): α = (-0.5,0.5,2.0,-4.0,-2.0,2.0). The random parameters, λ(or λi, i =
1, ..., 4, for test family 5), are picked randomly from the region of integration using the
Matlab function random(’unif’,...). We have tested the codes for error tolerances tol =
10−1, 10−2, ..., 10−12. (For the Test family 1 we stop at 10−5.) For these values of tol and
for each test family we have asked all routines to compute the integrals for 1000 samples
of random parameters, and in all cases the four routines adaptsim, modsim, adaptlob and
modlob report that the returned values satisfies the error request. For the complete test
results we refer to the Appendix where we list six tables containing all the results from these
tests.

7

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

−log10(tolerance)

adaptsim

modsim

 adaptlob

modlob

(a) work

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

F
a

ilu
re

s
in

 p
e

rc
e

n
ta

g
e

 o
f

a
ll

ca
se

s

−log10(tolerance)

(b) failures

Figure 1: Test family 1 (Singularity).

0 2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

−log10(tolerance)

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

(a) work

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

F
a

ilu
re

s
in

 p
e

rc
e

n
ta

g
e

 o
f

a
ll

ca
se

s

−log10(tolerance)

(b) failures

Figure 2: Test family 2 (Discontinuous).

0 2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

−log10(tolerance)

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

(a) work

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

F
a

ilu
re

s
in

 p
e

rc
e

n
ta

g
e

 o
f

a
ll

ca
se

s

−log10(tolerance)

(b) failures

Figure 3: Test family 3 (C0 function).

8

0 2 4 6 8 10 12
2

2.5

3

3.5

4

4.5

−log10(tolerance)

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

(a) work

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

F
a

ilu
re

s
in

 p
e

rc
e

n
ta

g
e

 o
f

a
ll

ca
se

s

−log10(tolerance)

(b) failures

Figure 4: Test family 4 (One peak).

0 2 4 6 8 10 12
1

1.5

2

2.5

3

3.5

4

−log10(tolerance)

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

(a) work

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

F
a

ilu
re

s
in

 p
e

rc
e

n
ta

g
e

 o
f

a
ll

ca
se

s

−log10(tolerance)

(b) failures

Figure 5: Test family 5 (Four peaks).

0 2 4 6 8 10 12
2

2.5

3

3.5

4

4.5

−log10(tolerance)

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

(a) work

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

F
a

ilu
re

s
in

 p
e

rc
e

n
ta

g
e

 o
f

a
ll

ca
se

s

−log10(tolerance)

(b) failures

Figure 6: Test family 6 (Non-linear oscillatory).

9

In order to summarize the Lyness-Kaganove testing we will characterize a code unreliable
when applied to a specific family if we have more than 10 % failures for any of the error
tolerances tested.

adaptsim appears to be unreliable in this sense for all six test families. In 51 out of 65
error tolerances counted over all six families this code has failures for more than 10 % of
the cases and in many cases the number is greater than 30 %. In addition, for many of the
families the average number of wrong digits is more than one for this code.

adaptlob appears to be much more reliable than adaptsim, but still only for Test family
2 (Discontinuous) this code appears to be reliable in the sense defined above. adaptlob has
failures in more than 10% of the samples in 18 of the 65 error tolerances tested. For the
test families 4, 5 and 6 failures above 10 % appear for low accuracies only, which is quite
normal for a code with this simple type of error estimator. As commented by Gander and
Gautschi both these codes are very unreliable on singular functions (Test family 1).

Both modifications appear to give reliable routines for all test families and are therefore
an improvement compared to their counterparts with respect to reliability, as expected.
Furthermore the modified codes appear to be generally more efficient than their counterparts,
especially for higher accuracies, say asking for more than five correct digits. This is due to
the optimism we have put into The local error algorithm A when we detect strong asymptotic
behavior.

In such a comparison a code with a failure percent of more than 10% should not be
considered more efficient no matter how few function evaluations it has used. In particular
it is surprising how well modsim is doing when it comes to efficiency compared to adaptlob

for five of the six tested families. This observation is the reason that I found it interesting
to develop a doubly adaptive code based on Newton-Cote rules.

5 Two doubly adaptive algorithms.

In this section we are going to develop two algorithms with different adaptive strategies. All
four codes we have looked at so far make use of the recursive option in Matlab implying
that all four codes are locally adaptive: the subintervals are processed from left to right until
the integral over each subinterval satisfies the relative error requirement. This means that
locally adaptive algorithms need an a priori approximation to the whole integral to be used
in the local error estimator. This is due to the fact that as the computation proceeds in a
locally adaptive algorithm this a priori estimate can not be updated until all subintervals
are processed and the computation is finished.

This is in contrast to a globally adaptive strategy where one in each step of the com-
putation chooses as the next interval to be processed the interval with the greatest error
estimate. This interval is then subdivided and both parts (using bisection) are processed
and stored in a data structure before the next interval is picked. Thus one may update the
current global approximation all the time, which implies that this approximation is as good
as it possibly can be. Furthermore, in a global strategy one may set an upper bound on
the number of function values to be used and then leave it to the algorithm to find the best
approximation.

A disadvantage with the global strategy is the need to keep all intervals explicitly in
a data structure in order to find the interval with the largest error estimate. It is quite
common to use a heap to organize the intervals, however in this Matlab code we have
decided to use a simple table in order to make use of Matlab’s max function when searching
for the next interval to be processed. The local strategy, making use of the recursive option,
is considerably simpler and saves time using only a stack to store intervals that have to wait
before they can be processed further.

These two adaptive strategies are in contrast to a so-called non-adaptive strategy where
the original interval is never subdivided: given a sequence of quadrature rules Q1, Q2, . . . , QL

for some integer L > 1. These rules are based on an increasing number of nodes and are

10

possibly of increasing polynomial degree. The non-adaptive algorithm applies the rules one
at the time starting with the cheapest rule, estimates the current error and then decide
whether to stop or to continue with the next rule in the sequence.

One may combine an adaptive and a non-adaptive strategy as follows: (1) Pick an
interval to be processed in an adaptive strategy and, (2) start a non-adaptive handling of
this interval and, (3) do not bisect the interval until all L quadrature rules have been applied
to this interval. The idea of such a doubly adaptive strategy was first presented by Cools
and Haegemans in [5]. They also allowed the algorithm to decide how many of the available
L rules to use before subdivision should take place.

We will develop two different doubly adaptive algorithms in the following. The two
codes’ properties can be described as follows

• coteda: this is a new code making use of both the five point closed Newton-Cote rule
and the nine point closed Newton-Cote rule in a locally doubly adaptive fashion based
on bisection. The code is allowed to stop either because the five point estimate is
considered good enough or because the nine point estimate is considered good enough.
The nine point estimate requires four new points in addition to the five point estimate,
but these are the same points needed in two applications of the five point rule after
bisecting the interval.

• coteglob: This code is basically similar to coteda except that it applies a globally
doubly adaptive strategy instead of the recursive strategy. This implies a need for
explicit handling of data structures in order to retrieve information about intervals
that we want to process further at a later stage. The code is here mainly included in
order to illustrate a major difference between local and global strategies.

The following two Newton-Cote rules, here presented for the interval [−1, 1], are thus used
by both codes

QA[f] = {7[f(−1) + f(1)] + 32[f(−1/2) + f(1/2)] + 12f(0)}/45,

and the nine point rule

QB[f] = {989[f(−1) + f(1)] + 5888[f(−3/4) + f(3/4)]− 928[f(−1/2)

+f(1/2)] + 10496[f(−1/4) + f(1/4)]− 4540f(0)}/14175.

These two rules have degree of precision five and nine respectively. The nine point rule
has some negative weights, however ||QB ||2 ≈ 1.25 compared to ||QA||2 ≈ 1.0634 so there is
little difference in the rules’ 2-norms.

Furthermore, observe that having applied QB on an interval and deciding that it is
necessary to bisect this interval then it is possible to apply QA to each half without any
extra function evaluations. On the other hand, having applied QA to an interval and deciding
that we have to process this interval further, then after computing four new function values
we may apply QB on this interval and maybe stop or decide that further subdivision is
necessary.

Using two rules (L = 2) is the simplest possible doubly adaptive strategy and we observe
that in our case this is achieved with basically no extra cost compared to not introducing
QB in the algorithm. Of course introducing QB implies some cost: we need a local error
estimator to be designed for the nine point rule. Having nine points makes it possible to
construct eight orthonormal null rules and then to combine these rules into pairs to reduce
phase factor effects. This means that nine inner products have to be computed each time
we want to apply QB :

11

The local error estimating algorithm B

Compute: ej = Nj [f], j = 1, 2, . . . , 2K + 2;

Ej =
√

e2
2j−1 + e2

2j , j = 1, 2, . . . , K + 1;

rj = Ej/Ej+1, j = 1, 2, . . . , K;
r = maxj=1,2,...,K rj ;

Non-asymptotic: if r > 1 then Ê = C maxj=1,2,...,K+1 Ej

Weak asymptotic: elseif rcritical ≤ r then Ê = C r E1

Strong asymptotic: else Ê = C r1−α
critical rα E1

endif

The noise test: if E1 < noise and E2 < noise then Ê = 0

Note that r = O(h2) if f is smooth and the interval is small enough. Both codes use this
error estimator with K = 3 and rcritical = 1/4. The constants C and α are chosen differently
in coteda and coteglob: α is set one unit larger in the global code than in the local code.
We present the basic algorithm for this doubly adaptive global code as follows

A Globally Doubly Adaptive Quadrature Algorithm

Initialize: Initialize the interval collection and put M = 1;

Use QB to produce Q̂1, Ê1; Put Q̂ = Q̂1; Ê = Ê1;

Control: while Ê > tol ∗ |Q̂| do

begin

Pick an interval from the collection; say interval Hk;
Process this interval: if rule QB has been applied then

Apply rule QA twice: Compute Q̂
(1)
k , Ê

(1)
k , Q̂

(2)
k , Ê

(2)
k ; Put m = 2;

else

Apply rule QB once: Compute Q̂
(1)
k and Ê

(1)
k ; Put m = 1;

end

Update: Q̂ = Q̂ +
∑m

i=1 Q̂
(i)
k − Q̂k;

Ê = Ê +
∑m

i=1 Ê
(i)
k − Êk;

Let these m intervals replace interval Hk in
the collection and put M = M + m − 1;
end

As remarked earlier four new function values must be computed prior to applying rule
QB (nine in the initialization step), while no new function evaluations is needed when rule
QA is applied. Furthermore we have suppressed the test on too small intervals, designed in
the spirit of Gander and Gautschi, the counting of function evaluations and a continuous
updating of the noise level (through updating isabs) which all are included in the globally
adaptive code.

We have tested these two new codes on the six families given in Section 4. When it comes
to reliability the two new codes hold the same high quality on these tests as do modsim and
modlob so we do not include plots on the failures for the two new codes. We refer to the
Appendix where all information from these tests is available. We plot here the work only

12

for the six different families.

1 1.5 2 2.5 3 3.5 4 4.5 5
1.6

1.8

2

2.2

2.4

2.6

2.8

3

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

−log10(tolerance)

adaptlob

modsim

coteda

coteglob

(a) Test family 1: Singularity.

0 2 4 6 8 10 12
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

−log10(tolerance)

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

(b) Test family 2: Discontinuous.

Figure 7: Work.

0 2 4 6 8 10 12
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

−log10(tolerance)

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

(a) Test family 3: C0 function.

0 2 4 6 8 10 12
1.5

2

2.5

3

3.5

4

−log10(tolerance)

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

(b) Test family 4: One peak.

Figure 8: Work.

0 2 4 6 8 10 12
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

−log10(tolerance)

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

(a) Test family 5: Four peaks.

0 2 4 6 8 10 12
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

−log10(tolerance)

lo
g

1
0

(#
e

va
lu

a
tio

n
 p

o
in

ts
)

(b) Test family 6: Non-linear oscillatory.

Figure 9: Work.

13

coteda is the most efficient code on the test families 1 and 6, while coteglob is the most
efficient code on the four other test families, however there are small differences between
coteglob and coteda for test families 2, 3 and 5. Finally, coteglob gives a very reliable
impression with very few failures. In addition this code gives a number of warnings about
too small intervals when the accuracy request is high.

Family 4 demonstrates the advantage of the globally adaptive approach nicely. An initial
estimate of such a peak function tends to underestimate the correct value, maybe with sev-
eral orders of magnitude. The effect of this in a local code will be that the effective absolute
error tolerance becomes much smaller than intended implying increased computational cost
to meet such a requirement. A global code avoids this problem by updating the estimate
regularly as the computation proceeds. This observation implies that comparisons of dif-
ferent local codes are difficult since they are all very sensitive to getting the magnitude of
the initial estimate correct. A severe underestimate may therefore improve reliability and
ruin the efficiency no matter how good the error estimator and quadrature rule are, and
conversely an overestimate has the opposite effect.

Finally one should add that codes based on rules with less ten nodes, all codes in this
paper use less than ten nodes, may have trouble in handling more difficult problems than
considered in this paper. To illustrate this one may e. g. try to increase the difficulty
parameter for Test family 6 from two to three and discover that none of the codes are able
to handle this particular problem well, especially for low accuracy requests. Tests done in
[2] demonstrate that quadrature software based on basic rules using 21 nodes is able to
handle this particular difficulty level for Test family 6 quite well. Thus, quadrature software
packages should offer codes where choosing the number of nodes in the basic quadrature rule
is a user option. Few nodes implies a very adaptive code, however for oscillating problems
adaptivity is normally less important.

6 Results from the battery test

We have also tested all six codes discussed in this paper on the 23 test problems used by
Gander and Gautschi in their battery test. Gander and Gautschi [9, 10] have picked a total
of 23 different test problems from two different sources: the 21 first comes from Kahaner
[14] and the last two are picked from [11].

14

Test problems

1.
∫ 1

0 exp(x)dx.

2.
∫ 1

0
f(x)dx, where f = 1 if x > 0.3 else f = 0.

3.
∫ 1

0

√
xdx.

4.
∫ 1

−1(
23
25 cosh(x) − cos(x))dx.

5.
∫ 1

−1 1/(x4 + x2 + 0.9)dx.

6.
∫ 1

0

√
x3dx.

7.
∫ 1

0 1/
√

xdx.

8.
∫ 1

0 1/(1 + x4)dx.

9.
∫ 1

0
2/(2 + sin(10πx))dx.

10.
∫ 1

0 1/(1 + x)dx.

11.
∫ 1

0 1/(1 + exp(x))dx.

12.
∫ 1

0
x/(exp(x) − 1)dx.

13.
∫ 1

0.1
sin(100πx)/(πx)dx.

14.
∫ 10

0

√
50 exp(−50πx2)dx.

15.
∫ 10

0
25 exp(−25x)dx.

16.
∫ 10

0
50/(π(2500x2 + 1))dx.

17.
∫ 1

0.01 50(sin(50πx)/(50πx))2dx.
18.

∫ π

0
cos(cos(x) + 3 sin(x) + 2 cos(2x) + 3 cos(3x))dx.

19.
∫ 1

0 f(x)dx, if x > 10−15 then f = log(x) else f = 0.

20.
∫ 1

−1
1/(1.005 + x2)dx.

21.
∫ 1

0

∑3
i=1 1/ cosh(20i(x − 2i/10))dx.

22.
∫ 1

0
4π2x sin(20πx) cos(2πx)dx.

23.
∫ 1

0
1/(1 + (230x− 30)2)dx.

We have tested all six codes discussed in this paper on twelve different error tolerances tol
=10−1, 10−2, . . . , 10−12 and the results can be found in the Appendix. In order to summarize
the results of this battery test we have constructed the following table. Here we give, for
each of the 23 problems, the following information:

1. A blank position: for all twelve accuracies we have success.

2. An integer gives the number of cases out of the twelve tested accuracies where we have
a failure. In parenthesis we also give the number of cases where the error is more than
one digit.

3. A star means that this code uses the fewest number of function evaluations in at least
six successful cases out of the twelve tested accuracies. The minimum number is picked
among those of the six codes with a satisfied accuracy request. A star may appear in
combination with a blank or an integer.

15

Problem adaptsim modsim adaptlob modlob coteda coteglob

1 * *
2 12 * *
3 11 *
4 3(2) * *
5 *
6 *
7 12 3 *
8 *
9 4
10 * *
11 * *
12 * *
13 5(2) 1(1) *
14 8(3) *
15 11(4) *
16 10(5) *
17 10(9) 1 2(1) 3(2)/* 1
18 *
19 11 *
20 *
21 8(4) 3(2) 5(4) 9(8) 4(3) 5(4)/*
22 12(11) *
23 *

Sum 117(40) 4(2) 11(6) 9(8) 7(5) 6(4)
Summarizing the results for the battery test.

Observe that coteda and coteglob are the most efficient codes (indicated by the star) in
14 out the 23 problems tested. Furthermore there is little observed difference between these
two codes for many of the tested problems. Only Problem 9 seems to have no winning code,
however if we remove adaptsim from this competition due to lack of reliability then coteda

becomes the best code in this case too.
adaptsim appears clearly as the most unreliable code of these six codes based on these

12 × 23 = 276 tests. adaptsim does not meet the requested error tolerance in 117 of these
cases. Furthermore in 40 of these 117 cases the error is greater than one digit. This confirms
the impression from the Lyness-Kaganove testing that this code is very unreliable.

adaptlob appears on the other hand to be very reliable based on this battery test with
11 failures in these 276 cases. 6 of these 11 failures are severe with more than one digit
wrong. However, 4 out of these 6 severe failures appear on Problem 21. Thus the battery
test and the Lyness-Kaganove test give a different impression of this code when it comes to
reliability.

The other four codes have all less than ten failures on this battery test. These failures
appear on the problems 17 and 21. Problem 21 is a very difficult three peak problem where
the width of the strongest peak is the major difficulty. We observe between three and nine
failures for the four codes on this problem, most of them of the severe kind.

On the other hand, Problem 21, which all codes have trouble handling, becomes much
easier for all codes if the problem is split in two intervals with division point 0.6 (the center
of the strongest peak).

7 Conclusions

adaptsim turns out to be a very unreliable code both in the Lyness-Kaganove test and in
the battery test. adaptlob on the other hand gives a very reliable impression in the battery
test, while the Lyness-Kaganove test gives a different picture.

16

I will characterize both modifications as successful in the following sense: they both
appear to be very reliable codes. Naturally we get an increased cost for low accuracies,
but when we have a high accuracy request both modifications demonstrate generally better
economy than their counterparts adaptsim and adaptlob. However, compared to coteda

and coteglob the two modifications are not able to compete with respect to efficiency
neither for low nor for high accuracy requests.

Both coteda and coteglob demonstrate very good efficiency and reliability both in the
Lyness-Kaganove test and in the battery test. Furthermore both codes have a very good
error tolerance responsiveness: that is being sensitive to changes in the error tolerance.
Finally both codes demonstrate that they are generally far better than both adaptsim and
adaptlob when asking for high accuracy.

Five of the tested codes are based on Matlab’s recursive function option and thus locally
adaptive. coteglob is the only code in this test which is globally adaptive and needs an
explicit data structure in order to handle the global strategy. If we do not include adaptsim
and coteglob in the comparison (lack of reliability/explicit data structure) then coteda

becomes the best code for all 23 problems in the battery test and at the same time the best
code for all six test families in the Lyness-Kaganove test. Being aware of the fact that both
adaptsim and adaptlob now, in slightly modified versions, have replaced quad and quad8

in Matlab’s quadrature software I would consider coteda a strong competitor to both these
two new Matlab codes and to codes in other software libraries.

Appendix: the numerical experiments.

We report tests on the following six Matlab routines

• adaptsim: this code is developed by Gander and Gautschi, [9, 10].

• modsim: this code is a modification of adaptsim presented in this paper.

• adaptlob: this code is developed by Gander and Gautschi, [9, 10];

• modlob: this is a modification of the previous code presented in this paper.

• coteda: this code is developed in this paper.

• coteglob: this code is developed in this paper.

All six Matlab codes are available on the Web: adaptsim and adaptlob on W. Gan-
der’s homepage http://www.inf.ethz.ch/personal/gander/ while modsim, modlob, coteda

and coteglob can be found via T. O. Espelid’s homepage: http://www.ii.uib.no/˜terje/.

The Lyness-Kaganove test

The testing technique we have used in this part is due to Lyness and Kaganove [17]. This
technique is based on a selection of test families of integrands. Each test family has a special
attribute, a difficulty parameter and one or more random parameters. The test families used
in these experiments are given below, and they are picked from [1] ,[17] and [20]. These test
families have furthermore been used by Berntsen and Espelid in [2].

17

Test families Attributes

1.
∫ 1

0 (|x − λ|)α1dx Singularity

2.
∫ 1

0
f2(x)dx Discontinuous

where f2(x, y) =

{

0 if x ≤ λ
exp(α2x) otherwise

3.
∫ 1

0 exp(−α3|x − λ|)dx C0 function

4.
∫ 2

1
10α4/((x − λ)2 + 102α4)dx One Peak

5.
∫ 2

1

∑4
i=1 10α5/((x − λi)

2 + 102α5)dx Four Peaks

6.
∫ 1

0 2B(x − λ)cos(B(x − λ)2)dx Non-lin. Oscill.
where B = 10α6/max(λ2, (1 − λ)2)

In our experiments we have chosen the difficulty parameters αi, i = 1, ..., 6, to be (num-
bered from family 1 to 6): α = (-0.5,0.5,2.0,-4.0,-2.0,2.0). The random parameters, λ(or
λi, i = 1, ..., 4, for test family 5), are picked randomly from the region of integration using
the Matlab code random(’unif’,. . .). The global code is designed to accept a maximum
number of allowed function values and this value is set in all experiments in this paper equal
to 30 000. We have tested the codes for error tolerances tol = 10−1, 10−2, ..., 10−12. (For
test family 1 we stop at 10−5.) For these values of tol and for each test family we have
asked all routines to compute the integrals for 1000 samples of random parameters, and in
all but a few cases the routines report that the returned values satisfies the error request.
An exception here is the code coteglob which gives a warning about too small intervals
on a number of occasions, all cases appear when asking for the maximum precision. The
experiments have been run on a SUN Ultra 10.

In the tables below we report on the performance of the different routines for each test
family and for each error request. For each routine the four numbers from left to right are:

1. The average number of integrand evaluations. Only the cases where the error request is
satisfied are included in the average.
2. The average number of correct digits in the returned value. Here too, only the cases
where the error request is satisfied are included in the average.
3. Failures in percent: that is cases where the actual error is greater than the error tolerance.
4. The average number of wrong digits in the cases described above.

The number of wrong digits is computed by

Wrong digits = | − log10(tol) + log10(εact)|,
where εact is the actual relative accuracy in the returned value.

18

tol adaptsim modsim coteda

10−1 12 1.4 78.4 0.3 63 2.6 0.0 0.0 55 2.5 1.3 0.2
10−2 31 2.4 98.4 1.0 105 3.8 0.6 0.1 97 3.6 2.2 0.3
10−3 63 3.3 98.9 1.3 163 4.7 0.2 0.1 151 4.6 2.0 0.3
10−4 106 4.5 99.0 1.3 239 5.5 0.6 0.4 222 5.4 1.9 0.3
10−5 181 5.4 98.7 1.4 347 6.3 0.3 0.6 314 6.3 1.6 0.3
tol adaptlob modlob coteglob

10−1 59 1.4 43.2 0.2 90 2.0 0.4 0.2 59 2.5 2.3 0.2
10−2 152 2.5 57.4 0.5 171 3.0 1.7 0.3 110 3.8 1.2 0.2
10−3 252 3.5 58.1 0.6 263 4.0 3.3 0.3 178 4.8 0.5 0.2
10−4 385 4.5 56.8 0.7 374 5.0 2.2 0.3 264 5.8
10−5 566 5.6 54.8 0.7 505 6.0 2.8 0.2 379 6.8 0.6 4.3

Test Family 1: Singularity.

tol adaptsim modsim coteda

10−1 11 1.4 50.0 0.4 41 3.4 0.1 0.2 37 3.4 0.1 0.2
10−2 22 2.4 72.7 0.6 53 4.2 0.1 0.6 49 4.2 0.1 0.6
10−3 33 3.5 78.5 0.6 68 5.4 0.1 0.8 64 5.4 0.1 0.8
10−4 48 4.5 75.6 0.6 81 6.4 0.1 0.4 77 6.4 0.9 0.4
10−5 61 5.4 77.6 0.6 94 7.3 90 7.3
10−6 73 6.4 78.6 0.6 108 8.3 0.1 0.6 103 8.4 0.1 0.7
10−7 89 7.4 79.6 0.6 121 9.4 119 9.3
10−8 104 8.4 75.4 0.6 133 10.3 131 10.3
10−9 122 9.4 78.6 0.6 154 11.3 147 11.2
10−10 150 10.4 78.5 0.6 167 12.3 161 12.3
10−11 172 11.5 76.0 0.6 193 13.3 175 13.3
10−12 213 12.4 78.0 0.6 207 14.3 0.1 0.2 189 14.2 0.1 0.2
tol adaptlob modlob coteglob

10−1 56 2.1 1.4 0.1 62 2.8 0.1 0.9 35 3.2
10−2 95 3.1 0.9 0.3 95 3.8 0.0 0.0 48 4.1
10−3 137 4.0 0.8 0.1 127 4.8 0.1 0.6 62 5.2
10−4 174 5.0 1.5 0.2 162 5.8 0.1 0.3 75 6.2
10−5 217 6.0 0.3 0.6 195 6.8 0.1 0.6 88 7.2
10−6 256 7.1 0.4 0.5 227 7.7 0.1 0.8 101 8.2
10−7 295 8.0 0.9 0.2 261 8.8 0.1 0.7 116 9.2
10−8 336 9.1 0.5 0.4 295 9.8 130 10.2
10−9 376 10.1 0.7 0.2 327 10.7 144 11.2
10−10 415 11.0 0.7 0.2 360 11.8 159 12.2
10−11 455 12.1 0.6 0.2 394 12.7 172 13.2
10−12 500 13.1 0.6 0.2 426 13.7 187 14.1

Test Family 2: Discontinuous.

19

tol adaptsim modsim coteda

10−1 10 1.7 23 3.8 17 3.5
10−2 14 2.5 33.3 0.2 30 4.9 24 4.5
10−3 21 3.5 31.5 0.3 36 6.0 30 5.5
10−4 28 4.6 24.8 0.3 42 6.7 41 6.4
10−5 38 5.5 36.2 0.2 51 7.9 0.1 0.3 49 7.5 0.1 0.3
10−6 47 6.5 31.9 0.2 68 9.0 58 8.5
10−7 64 7.6 24.1 0.2 75 9.6 66 9.5
10−8 97 8.5 37.1 0.2 109 10.9 75 10.5
10−9 125 9.5 33.8 0.3 116 11.7 90 11.4
10−10 171 10.5 27.0 0.2 182 12.7 101 12.4
10−11 300 11.5 37.9 0.2 189 13.5 107 13.5
10−12 402 12.5 32.8 0.2 319 14.7 136 14.4
tol adaptlob modlob coteglob

10−1 18 2.3 26 3.4 16 3.3
10−2 38 3.4 2.5 0.1 41 4.3 22 4.2
10−3 56 4.2 3.8 0.4 60 5.5 30 5.4
10−4 81 5.4 12.1 0.5 75 6.3 39 6.2
10−5 99 6.4 11.9 0.4 91 7.3 46 7.3 0.2 0.4
10−6 117 7.3 8.2 0.5 109 8.5 57 8.3
10−7 139 8.3 10.8 0.2 124 9.3 63 9.3
10−8 158 9.4 10.3 0.5 141 10.4 73 10.4
10−9 195 10.4 10.5 0.6 160 11.4 82 11.4
10−10 276 11.4 10.2 0.5 184 12.3 97 12.5
10−11 314 12.3 11.4 0.5 201 13.4 106 13.2
10−12 360 13.3 10.8 0.6 219 14.4 114 14.4

Test Family 3: C0 function.

20

tol adaptsim modsim coteda

10−1 106 3.9 73.0 1.0 175 5.4 1.1 0.9 147 5.6 2.0 0.9
10−2 145 4.8 33.9 2.0 235 6.3 0.2 0.7 188 6.5 0.4 1.6
10−3 198 5.7 12.1 2.9 322 7.1 244 7.4
10−4 299 6.8 5.1 3.2 446 8.0 0.1 0.7 310 8.4 0.1 0.3
10−5 463 7.9 2.7 1.7 622 8.8 0.2 0.3 388 9.5 0.2 0.4
10−6 715 9.0 3.2 0.9 860 9.7 0.4 0.5 476 10.3 0.3 0.7
10−7 1136 10.3 2.2 0.9 1201 10.5 0.4 0.5 588 11.3 0.2 0.7
10−8 1808 11.4 2.1 1.1 1661 11.4 0.4 0.7 726 12.3 0.3 0.6
10−9 2786 12.7 1.3 1.0 2320 12.2 0.5 0.6 888 13.1 0.2 0.8
10−10 4465 13.8 1.3 0.9 3216 13.1 0.6 0.7 1097 14.0 0.2 0.5
10−11 7111 14.8 0.9 1.2 4486 13.9 0.8 0.6 1354 14.8 0.3 0.9
10−12 11046 15.2 0.9 1.1 6212 14.7 0.6 1.0 1662 15.2 0.2 0.9
tol adaptlob modlob coteglob

10−1 240 5.8 24.9 1.0 244 6.5 3.9 1.0 87 3.6
10−2 304 7.0 9.8 1.9 286 7.3 1.4 2.0 112 4.7
10−3 393 8.4 4.6 2.9 348 8.2 0.7 3.0 149 5.7
10−4 518 9.7 2.1 3.9 426 9.2 0.2 4.0 192 6.6
10−5 695 11.0 0.3 5.0 516 10.2 0.2 0.6 243 7.3
10−6 954 12.3 640 10.9 304 8.4
10−7 1314 13.0 795 11.9 373 9.5
10−8 1825 13.7 975 13.0 0.1 0.1 453 10.3
10−9 2516 13.8 1211 13.8 558 11.0
10−10 3474 13.9 1502 14.5 686 12.2
10−11 4861 14.1 1857 14.7 0.2 0.1 841 13.4
10−12 6734 14.3 2285 15.0 0.2 0.2 1035 13.7

Test Family 4: One Peak.

21

tol adaptsim modsim coteda

10−1 26 1.4 88.6 0.6 125 3.9 0.1 0.2 105 3.5 0.5 0.2
10−2 71 2.8 81.6 1.2 174 4.9 141 4.6
10−3 100 3.6 51.2 1.1 243 5.7 189 5.6
10−4 150 4.8 41.0 0.7 343 6.7 247 6.6
10−5 232 5.8 31.3 0.5 479 7.4 315 7.6
10−6 345 7.1 16.7 0.7 666 8.4 395 8.6
10−7 543 8.1 17.3 0.5 935 9.1 487 9.5
10−8 870 9.2 14.4 0.5 1298 10.2 599 10.5
10−9 1339 10.3 7.6 0.4 1811 10.8 743 11.6
10−10 2126 11.4 8.0 0.4 2518 11.9 914 12.2
10−11 3387 12.5 2.1 0.6 3501 12.5 1120 13.0
10−12 5287 13.6 4.3 0.4 4862 13.6 1395 14.2
tol adaptlob modlob coteglob

10−1 114 2.3 28.7 0.4 177 4.2 1.5 0.2 113 3.8 0.1 0.6
10−2 198 4.2 17.6 0.8 243 5.5 146 4.8
10−3 261 5.7 4.7 1.3 323 6.8 0.1 0.6 199 5.8
10−4 348 7.2 1.6 0.8 393 7.1 245 6.4
10−5 470 8.7 0.5 1.3 501 8.7 311 7.7
10−6 670 9.9 0.6 1.2 620 9.5 384 8.4
10−7 903 11.4 0.1 0.1 749 9.9 475 8.9
10−8 1239 12.6 955 11.4 580 10.2
10−9 1707 14.1 1197 12.4 718 11.5
10−10 2383 15.1 0.1 0.8 1468 12.5 893 12.0
10−11 3368 15.4 0.1 1.8 1862 14.0 1080 12.8
10−12 4558 15.5 2338 15.0 1352 14.5

Test Family 5: Four Peaks.

22

tol adaptsim modsim coteda

10−1 157 1.9 99.1 2.6 339 3.1 1.1 1.1 227 3.0 1.4 2.0
10−2 240 2.8 97.4 3.1 483 3.9 1.3 0.5 276 3.9 1.3 0.7
10−3 285 3.6 92.8 2.3 696 4.9 0.6 0.8 348 4.8 1.2 0.4
10−4 391 4.7 88.7 1.5 986 5.8 1.2 0.4 425 5.8 0.8 0.6
10−5 583 5.6 84.7 1.2 1393 6.7 1.6 0.5 529 7.0 2.1 0.5
10−6 847 6.7 74.4 1.1 1962 7.8 0.8 0.6 654 7.7 0.9 0.6
10−7 1329 7.7 71.8 1.0 2744 8.7 1.5 0.5 802 8.5 2.4 0.5
10−8 2065 8.7 60.1 1.0 3835 9.7 1.2 0.5 987 9.6 2.5 0.5
10−9 3198 9.7 54.5 0.9 5354 10.7 1.4 0.6 1228 10.6 3.2 0.5
10−10 5038 10.8 48.6 0.8 7478 11.6 1.1 0.7 1522 11.4 5.3 0.3
10−11 7825 11.9 41.6 0.8 10413 12.5 1.2 0.5 1857 12.4 2.8 0.1
10−12 12321 12.9 32.8 0.8 14386 13.4 2.1 0.4 2307 13.2 6.5 0.5
tol adaptlob modlob coteglob

10−1 284 3.5 65.6 2.2 386 4.5 0.3 1.2 355 4.9 0.5 3.1
10−2 390 4.3 18.6 2.8 509 5.7 0.2 3.0 437 5.8
10−3 553 5.7 4.6 3.1 644 6.5 541 7.1
10−4 726 7.1 2.5 1.2 796 7.6 666 7.7
10−5 933 8.6 1.6 1.3 1005 8.4 817 8.5
10−6 1288 9.9 0.3 0.6 1285 9.3 1012 9.6
10−7 1945 11.2 0.1 1.0 1649 10.3 0.1 0.2 1255 10.5
10−8 2723 12.5 2087 11.2 1543 11.4
10−9 3671 13.4 2631 12.1 1933 12.4
10−10 4937 13.8 3295 13.1 2416 13.3
10−11 6946 13.9 0.1 0.5 4113 13.8 0.1 0.3 2700 13.6 0.1 0.3
10−12 9912 14.0 0.5 0.6 5091 14.0 0.6 0.5 2790 13.8 2.5 0.4

Test family 6: Nonlinear Oscillatory.

The battery test

Gander and Gautschi [9, 10] have picked a total of 23 different test problems from two
different sources: the 21 first comes from Kahaner [14] and the last two are picked from
[11]. In the following 23 tables we report on the result of testing the six codes on these 23
problems. We specify twelve different error tolerances tol =10−1, 10−2, . . . , 10−12 and report
on the number of function evaluations used by each of the six codes. A minus sign in front
of this number indicates that the requested error bound was NOT met by the actual code
in this particular case.

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 10 17 18 17 9 9
10−2 10 17 18 17 9 9
10−3 10 17 18 17 9 9
10−4 10 17 18 17 9 9
10−5 14 17 18 17 9 9
10−6 22 17 18 17 9 9
10−7 22 29 18 17 9 9
10−8 38 33 18 17 9 9
10−9 58 49 18 17 17 9
10−10 70 65 18 17 17 17
10−11 134 81 18 17 17 17
10−12 218 129 18 27 33 17

Test problem 1:
∫ 1

0
exp(x)dx.

23

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 -10 33 48 57 29 37
10−2 -18 49 78 87 45 45
10−3 -34 65 108 127 61 61
10−4 -42 73 168 157 69 69
10−5 -58 89 198 187 85 85
10−6 -74 105 198 227 101 101
10−7 -82 113 258 257 109 109
10−8 -98 129 288 287 125 125
10−9 -114 145 318 327 141 141
10−10 -122 153 378 357 149 149
10−11 -138 169 408 387 165 165
10−12 -154 185 438 427 181 181

Test problem 2:
∫ 1

0
f(x)dx, where f = 1 if x > 0.3 else f = 0.

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 10 17 18 17 9 9
10−2 -10 25 18 37 21 17
10−3 -18 37 48 57 29 29
10−4 -26 45 78 87 41 37
10−5 -38 57 78 107 57 53
10−6 -54 73 108 127 73 69
10−7 -82 101 168 147 89 85
10−8 -126 141 228 187 113 109
10−9 -190 201 288 237 161 149
10−10 -290 265 438 277 193 181
10−11 -498 365 558 347 241 229
10−12 -750 505 708 437 297 285

Test problem 3:
∫ 1

0

√
xdx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 10 17 18 17 9 9
10−2 10 17 18 17 9 9
10−3 10 17 18 17 9 9
10−4 -10 17 18 37 9 9
10−5 -10 33 18 37 9 9
10−6 -10 41 18 57 9 9
10−7 30 57 18 57 17 17
10−8 54 73 18 77 17 17
10−9 94 129 48 77 33 33
10−10 126 153 48 117 33 33
10−11 198 217 48 137 33 33
10−12 342 305 48 217 65 49

Test problem 4:
∫ 1

−1(
23
25 cosh(x) − cos(x))dx

24

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 10 17 18 37 9 9
10−2 14 17 18 37 17 17
10−3 14 41 18 37 17 17
10−4 22 41 18 37 33 33
10−5 38 49 48 57 33 33
10−6 46 89 48 77 33 33
10−7 70 129 48 77 49 41
10−8 118 177 48 117 65 57
10−9 174 249 108 197 81 65
10−10 254 337 168 237 113 81
10−11 486 457 168 277 129 113
10−12 662 649 228 337 129 129

Test problem 5:
∫ 1

−1
1/(x4 + x2 + 0.9)dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 10 17 18 17 9 9
10−2 10 17 18 17 9 9
10−3 10 17 18 17 9 9
10−4 18 21 48 37 17 17
10−5 22 29 48 47 25 21
10−6 30 37 48 57 37 29
10−7 54 49 78 77 45 41
10−8 70 69 108 87 57 49
10−9 106 93 138 107 77 65
10−10 190 137 198 147 93 89
10−11 266 177 258 177 121 109
10−12 414 261 318 207 157 129

Test problem 6:
∫ 1

0

√
x3dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 -10 65 48 117 61 61
10−2 -30 93 108 187 89 85
10−3 -54 117 168 247 113 121
10−4 -86 161 -198 317 161 177
10−5 -130 221 348 377 217 229
10−6 -190 305 -438 447 269 289
10−7 -322 417 -588 567 361 389
10−8 -490 585 888 697 473 493
10−9 -730 801 1158 837 581 613
10−10 -1262 1101 1578 1047 745 781
10−11 -1918 1541 2358 1277 945 977
10−12 -2894 2133 3138 1567 1165 1217

Test problem 7:
∫ 1

0 1/
√

xdx

25

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 10 21 18 17 9 9
10−2 10 21 18 17 9 9
10−3 14 25 18 17 17 17
10−4 14 29 18 17 17 17
10−5 22 45 18 27 17 17
10−6 34 65 18 67 33 25
10−7 46 93 48 67 33 33
10−8 66 133 48 87 41 41
10−9 126 193 48 97 49 41
10−10 162 261 48 97 65 57
10−11 254 357 108 147 89 73
10−12 482 489 168 197 105 89

Test problem 8:
∫ 1

0
1/(1 + x4)dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 10 89 48 97 65 77
10−2 38 113 138 177 89 97
10−3 -54 193 198 277 129 145
10−4 -94 281 198 317 177 177
10−5 134 369 288 397 225 217
10−6 198 497 498 557 257 265
10−7 -358 761 648 617 337 353
10−8 542 969 858 757 401 393
10−9 -750 1449 1188 1057 497 497
10−10 1438 1889 1698 1297 609 625
10−11 2134 2753 2538 1657 769 761
10−12 2982 3657 3258 1997 929 921

Test problem 9:
∫ 1

0
2/(2 + sin(10πx))dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 10 17 18 17 9 9
10−2 10 17 18 17 9 9
10−3 10 17 18 17 9 9
10−4 14 17 18 17 9 9
10−5 18 17 18 17 9 9
10−6 26 25 18 17 17 17
10−7 34 33 18 17 17 17
10−8 54 45 48 27 25 17
10−9 82 61 48 27 25 25
10−10 118 81 48 37 33 25
10−11 202 113 48 47 41 33
10−12 302 161 48 57 49 41

Test problem 10:
∫ 1

0 1/(1 + x)dx

26

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 10 17 18 17 9 9
10−2 10 17 18 17 9 9
10−3 10 17 18 17 9 9
10−4 10 17 18 17 9 9
10−5 14 17 18 17 9 9
10−6 14 21 18 17 9 9
10−7 22 29 18 17 9 9
10−8 34 33 18 17 9 9
10−9 38 53 18 27 9 9
10−10 66 69 18 37 17 9
10−11 122 97 48 47 17 17
10−12 134 133 48 57 25 17

Test problem 11:
∫ 1

0
1/(1 + exp(x))dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 10 17 18 17 9 9
10−2 10 17 18 17 9 9
10−3 10 17 18 17 9 9
10−4 10 17 18 17 9 9
10−5 10 17 18 17 9 9
10−6 14 17 18 17 9 9
10−7 14 17 18 17 9 9
10−8 22 21 18 17 9 9
10−9 38 25 18 17 9 9
10−10 38 37 18 17 9 9
10−11 70 49 18 17 9 9
10−12 134 73 18 27 17 9

Test problem 12:
∫ 1

0
x/(exp(x) − 1)dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 -22 669 -198 717 513 753
10−2 -218 857 678 867 513 929
10−3 -470 1273 768 1327 633 1001
10−4 -658 1857 1038 1567 961 1313
10−5 1014 2601 1368 1847 1025 1777
10−6 -1706 3581 2328 2357 1089 1953
10−7 2694 5213 3138 3127 1817 2169
10−8 4030 6945 4398 3847 2017 3433
10−9 6886 10157 5748 4787 2049 3849
10−10 10790 13649 6918 6157 3273 4041
10−11 16126 19593 12468 7597 3977 4897
10−12 27614 26337 15288 9307 4081 4897

Test problem 13:
∫ 1

0.1 sin(100πx)/(πx)dx

27

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 -14 37 48 77 33 37
10−2 -26 49 78 87 37 37
10−3 -34 61 78 87 45 45
10−4 -38 65 108 97 49 53
10−5 42 89 138 117 53 61
10−6 54 105 168 127 69 85
10−7 -70 165 168 157 93 97
10−8 -102 197 228 167 97 105
10−9 -134 293 288 197 125 137
10−10 234 361 468 247 153 165
10−11 342 557 528 357 173 181
10−12 -458 697 678 397 193 245

Test problem 14:
∫ 10

0

√
50 exp(−50πx2)dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 -14 37 78 57 29 33
10−2 -26 37 78 67 33 37
10−3 -34 53 78 67 41 49
10−4 38 65 108 77 49 53
10−5 -42 77 138 87 53 69
10−6 -50 101 168 97 69 81
10−7 -74 141 168 117 89 97
10−8 -98 181 198 137 97 121
10−9 -138 257 288 167 129 141
10−10 -230 333 498 187 157 181
10−11 -354 481 618 237 189 217
10−12 -498 629 708 287 225 261

Test problem 15:
∫ 10

0
25 exp(−25x)dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 -14 37 78 77 33 41
10−2 -26 49 108 87 41 49
10−3 -34 49 108 107 41 69
10−4 -42 73 108 107 65 81
10−5 -46 105 168 117 81 89
10−6 -62 137 168 117 97 129
10−7 -90 193 258 177 137 161
10−8 -146 265 378 217 169 185
10−9 -226 373 528 287 193 225
10−10 346 509 648 347 249 281
10−11 578 721 1008 427 305 353
10−12 -870 993 1308 547 377 433

Test problem 16:
∫ 10

0 50/(π(2500x2 + 1))dx

28

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 -10 69 78 67 41 241
10−2 -26 197 78 227 161 265
10−3 -34 485 -168 557 -261 -321
10−4 -42 -689 -498 947 -297 793
10−5 -90 1237 918 1197 -393 961
10−6 -238 1709 1008 1587 905 1081
10−7 -534 2505 1458 1917 1065 1449
10−8 990 3529 2718 2347 1185 1841
10−9 -1438 4905 3588 3007 1625 2057
10−10 -2282 6817 4518 3877 2017 2569
10−11 -3962 9557 6318 4877 2273 3561
10−12 5798 13433 8568 6187 2849 4009

Test problem 17:
∫ 1

0.01
50(sin(50πx)/(50πx))2dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 30 85 48 97 49 49
10−2 34 117 78 137 57 57
10−3 58 153 168 147 73 81
10−4 102 245 198 227 113 105
10−5 170 305 228 267 137 137
10−6 218 425 258 417 177 169
10−7 410 625 498 497 209 193
10−8 658 869 618 587 257 241
10−9 894 1201 768 697 329 297
10−10 1626 1661 1128 837 385 353
10−11 2614 2353 1368 1127 473 441
10−12 3566 3253 2118 1437 569 537

Test problem 18:
∫ π

0
cos(cos(x) + 3 sin(x) + 2 cos(2x) + 3 cos(3x))dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 -10 49 48 77 45 45
10−2 -26 65 78 117 57 53
10−3 -46 81 108 147 73 69
10−4 -58 97 138 187 97 93
10−5 -86 125 198 217 125 121
10−6 -134 169 258 257 149 149
10−7 -194 225 348 307 193 189
10−8 -286 301 468 387 253 241
10−9 498 417 648 447 305 297
10−10 -730 565 858 557 385 377
10−11 -1098 785 1188 677 489 469
10−12 -1914 1085 1758 827 601 589

Test problem 19:
∫ 1

0
f(x)dx, if x > 10−15 then f = log(x) else f = 0.

29

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 10 17 18 17 9 9
10−2 14 17 18 17 9 9
10−3 14 25 18 17 17 17
10−4 22 41 18 37 17 17
10−5 38 65 18 37 33 25
10−6 38 81 48 57 33 33
10−7 70 121 48 57 49 33
10−8 118 161 48 117 49 49
10−9 142 217 48 137 65 57
10−10 254 321 48 177 81 65
10−11 318 457 168 197 113 89
10−12 542 601 168 277 129 121

Test problem 20:
∫ 1

−1
1/(1.005 + x2)dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 18 65 48 47 49 53
10−2 -22 97 138 97 77 73
10−3 -46 -117 -168 -157 -93 -85
10−4 -78 -169 -228 -227 -129 -121
10−5 -110 -229 -258 -287 -161 -153
10−6 -170 481 -378 -327 -193 -193
10−7 -274 681 -528 -377 381 -233
10−8 -478 905 1008 -507 461 445
10−9 842 1293 1278 -667 581 573
10−10 1330 1781 1788 -817 737 725
10−11 -1862 2489 2388 -1037 913 873
10−12 3306 3401 3378 1797 1117 1097

Test problem 21:
∫ 1

0

∑3
i=1 1/ cosh(20i(x − 2i/10))dx

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 -10 185 168 187 129 129
10−2 -10 229 198 257 129 209
10−3 -10 297 288 367 177 249
10−4 -10 465 588 447 257 257
10−5 -10 689 678 607 257 377
10−6 -10 981 1008 787 289 465
10−7 -10 1417 1128 927 465 497
10−8 -10 1913 1848 1097 505 641
10−9 -10 2777 2928 1437 529 841
10−10 -10 3761 3498 1857 833 953
10−11 -10 5425 5058 2327 985 1113
10−12 -10 7369 6078 2907 1033 1649

Test problem 22:
∫ 1

0 4π2x sin(20πx) cos(2πx)dx

30

tol adaptsim modsim adaptlob modlob coteda coteglob

10−1 50 57 108 117 49 49
10−2 58 61 108 127 49 73
10−3 94 81 168 167 73 93
10−4 142 129 198 217 97 113
10−5 198 153 288 247 121 145
10−6 354 209 348 307 157 197
10−7 530 317 468 377 209 233
10−8 782 425 738 477 241 289
10−9 1402 597 1038 567 305 345
10−10 2118 817 1218 757 369 417
10−11 3110 1165 1608 907 457 505
10−12 5606 1601 2538 1157 545 625

Test problem 23:
∫ 1

0
1/(1 + (230x − 30)2)dx

References

[1] J. Berntsen. A test of some well known quadrature routines. Reports in Informatics 20,
Dept. of Informatics, Univ. of Bergen, 1986.

[2] J. Berntsen and T. O. Espelid. Error Estimation in Automatic Quadrature Routines.
ACM Trans. Math. Softw., 17(2):233–252, 1991.

[3] J. Berntsen, T. O. Espelid, and A. Genz. A test of ADMINT. Reports in Informatics 31,
Dept. of Informatics, Univ. of Bergen, 1988.

[4] J. Berntsen, T. O. Espelid, and A. Genz. An Adaptive Algorithm for the Approximate
Calculation of Multiple Integrals. ACM Trans. Math. Softw., 17(4):437–451, 1991.

[5] R. Cools and A. Haegemans. Cubpack: Progress report. In T. O. Espelid and
A. Genz, editors, Numerical Integration, Recent Developments, Software and Appli-
cations, NATO ASI Series C: Math. and Phys. Sciences Vol. 357, pages 305–315, Dor-
drecht, The Netherlands, 1992. Kluwer Academic Publishers.

[6] C. de Boor. On writing an automatic integration algorithm. In J. R. Rice, editor,
Mathematical Software. Academic Press, 1971.

[7] T. O. Espelid. DQAINT: An algorithm for adaptive quadrature over a collection of finite
intervals. In Numerical Integration, Recent Developments, Software and Applications,
NATO ASI Series C: Mathematical and Physical Sciences - Vol. 357, pages 341–342.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.

[8] T. O. Espelid and T. Sørevik. A discussion of a new error estimate for adaptive quadra-
ture. BIT, 29:283–294, 1989.

[9] G. Gander and W. Gautschi. Adaptive Quadrature - Revisited. Report 306, Dept.
Informatik., ETH, Zurich, 1998.

[10] G. Gander and W. Gautschi. Adaptive Quadrature - Revisited. BIT, 40(1):84–101,
2000.

[11] S. Garriba, L. Quartapelle, and G. Reina. Algorithm 36 - SNIFF: Efficient self-tuning
algorithm for numerical integration. Computing, 20:363–375, 1978.

[12] A.C. Genz and A.A. Malik. An adaptive algorithm for numerical integration over an
N-dimensional rectangular region. J. Comp. Appl. Math., 6(4):295–302, 1980.

31

[13] E. Isaacson and H.B. Keller. Analysis of Numerical Methods. North Oxford Academic,
1966.

[14] D.K. Kahaner. Comparison of numerical quadrature formulas. In J. Rice, editor,
Mathematical Software, pages 229–259, New York, 1971. Academic Press.

[15] J.N. Lyness. Symmetric integration rules for hypercubes III. Construction of integration
rules using null rules. Math. Comp., 19:625–637, 1965.

[16] J.N. Lyness and J.J. Kaganove. Comments on the nature of automatic quadrature
routines. ACM Trans. Math. Softw., 2(1):65–81, 1976.

[17] J.N. Lyness and J.J. Kaganove. A technique for comparing automatic quadrature
routines. Computer Journal, 20:170–177, 1977.

[18] W. M. McKeeman. Algorithm 145, adaptive numerical integration by Simpson’s rule.
CACM, 5(12):604, 1962.

[19] R. Piessens, E. de Doncker-Kapenga, C.W. Überhuber, and D.K. Kahaner. QUAD-
PACK, A Subroutine Package for Automatic Integration. Series in Computational
Math., 1. Springer-Verlag, 1983.

[20] T. Sørevik. Reliable and Efficient Algorithms for Adaptive Quadrature. Technical
report, Thesis for the degree Doctor Scientiarum, Department of Informatics, University
of Bergen, 1988.

[21] P. van Dooren and L. de Ridder. An adaptive algorithm for numerical integration over
an N-dimensional cube. J. Comp. Appl. Math., 2(3):207–217, 1976.

32

