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Abstract

We describe an automatic quadrature routine which is specifically designed for real
functions having a certain type of infinite oscillating tails. The algorithm is designed
to integrate a vector function over an infinite interval. A FORTRAN implementation
of the algorithm is included.

The algorithm combines an adaptive subdivision strategy with extrapolation and
requires that the decay of all the functions in the vector is the same. The algorithm is
based on the assumption that the oscillating behavior is due to a periodic function with
the property that it changes sign when evaluated at points of distance half a period.
We assume that this period is known. The algorithm offers a choice of three different
quasi-linear extrapolation procedures, namely the Euler transformation and two modi-
fications of this transformation.

Keywords: Quadrature, automatic, adaptive, numerical integration, extrapolation, os-
cillatory integrals.

1 Introduction

We know of only one published routine designed specifically for the integration of infinite
oscillating tails, Lyness and Hines [17]. This is slightly surprising since a number of papers
have, over the years, addressed such computational problems, e. g. Longman [13, 14, 15],
Levin [11], Levin and Sidi [12], Sidi [20, 21] and Hasegawa and Torii [8]. Piessens et al. [19]
suggest using Longman’s method combined with some extrapolation method, however no
code, tailored for this problem, is offered.

The available routine is based on a paper by Lyness [16]. The routine applies the Euler
transformation on a series generated by partitioning the original integral into an infinite
series of integrals all of the same interval length. Assuming that a periodic function is
involved, for example a circular function or a Bessel function (asymptotically periodic),
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these interval lengths equals half the period of the periodic function. This way one achieves
an oscillating series. This approach represents a modification of the original Longman
method which implies using the zeros or the maximum points of the function involved.

The routine [17] is automatic in the sense that the user may specify a tolerance and
then the routine will try to give an answer where the extrapolation error is within this
tolerance. However, the error one introduces by applying the same quadrature rule on each
subinterval is not taken into account in the routine. This responsibility rests with the user.

The new algorithm offered here will use the partition idea suggested by Lyness [16]
(half periods) of the original interval. However, we will combine an adaptive strategy and
extrapolation creating an automatic routine which takes into account the global error in
the approximation.

We offer three alternative extrapolation methods: Overholt’s P -order two algorithm
[3, 18], the Euler transformation and a suggested modification of the Euler transformation.
All three transformations are two-point and quasi-linear. Overholt’s algorithm are superior
to the other two, which both are of P -order one, but requires more information.

This paper is organized as follows: in the next section we present the problem, create the
oscillating series and establish some properties of that series. Then we present the different
transformations and discuss their properties. Next we outline the basic algorithm and
develop the error estimates. Then we give a number of examples and concluding remarks.
Finally we present the code and the parameter list in the appendix.

2 The basic problem and the series approach.

We consider the numerical evaluation of an infinite integral

I =

∫ ∞

a
f(x) dx, (1)

where the integrand f may be written

f(x) =
k

∑

i=1

pi(x) gi(x), k ≥ 1. (2)

All the functions pi(x) are assumed to be periodic, with the same period 2q, such that at
points of distance a half period q,

pi(x + q) = −pi(x), for x ≥ b ≥ a, i = 1, 2, . . . , k. (3)

Furthermore the functions gi(x) all have a similar expansion in 1/x as x → ∞,

gi(x) ∼
∞
∑

j=0

c
(i)
j /xγ+j , i = 1, 2, . . . , k, with γ > 0 and x ≥ b ≥ a, (4)

with
∑k

i=1 |c
(i)
0 | 6= 0. We assume that for x ≥ b the expansion in (4) is either absolutely

convergent, or it is an asymptotic expansion valid with sufficient accuracy for x ≥ b. It is
the responsibility of the user of this software to give an appropriate value of b.
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For the validity of the operations on series required in the following, we refer to any
standard treatise on this subject, e. g. Knopp [10] or Henrici [9].

A number of functions f(x) fit into this framework, e. g. problems involving the circular
functions, the Bessel functions, the step functions, f(x) = sin(x + 1/x) g(x), etc. However,
the sawtooth function does not satisfy (3).

Define the Lyness [16] partition

x0 = a, x` = b + (` − 1)q, ` = 1, 2, . . . ,

and the integrals

u` =

∫ x`+1

x`

f(x) dx, ` = 0, 1, 2 . . . .

With this partition the problem (1) has been changed to a summation problem

S =
∞
∑

`=0

u`,

and creating partial sums

Sn =
n

∑

`=0

u` (5)

we may look for acceleration techniques for such sums. Each u` has of course to be approx-
imated, but let us postpone the question of how this may be done and concentrate on the
series approach first.

We get, by using the assumptions about pi(x) and gi(x), that

un = (−1)n{c0/(c + n)γ + c1/(c + n)γ+1 + c2/(c + n)γ+2 + · · ·}, n > 0, (6)

where ( we give only c, c0 and c1)











c = b/q

c0 = −q−γ
∫ q
0

∑k
i=1 c

(i)
0 pi(b + t)dt

c1 = −q−(γ+1)
∫ q
0

∑k
i=1{c

(i)
1 − γ(t − q)c

(i)
0 }pi(b + t)dt.

In general we may have c0 = c1 = . . . = cm−1 = 0 and cm 6= 0 in (6). Then the leading
term in (6) will be (−1)ncm/(c + n)α, with α ≡ γ + m. Observe that, at least for n >> 1,
we have an alternating series.

In [16] Lyness discusses and experiments with different starting values of b. This was
inspired by an observation by Longman (attributed to J. C. P. Miller) indicating that the
function’s maxima is better than it’s zeros as partition points. We see from the expression
of c0 that this constant may be zero if a proper value of b is chosen. Such a value of b will
therefore give a series converging at least one order faster than for other values of b.

If the periodic functions are non-smooth then this gain may be lost due to the numerical
difficulties in estimating un. In such a case some other subdivision points may be far better.

The following definitions appear in [18] and [3, pages 161–163], presented here in our
notation:
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Definition 1 A sequence S is P -regular iff

∆Sn/∆Sn−1 = z (1 + r1/(c + n) + r2/(c + n)2 + · · ·),

where z and r1 are real numbers.

Throughout the difference operator ∆ works on the index n. Using (6) and the definition
of α and m we find

∆Sn/∆Sn−1 = un+1/un = −(1 − α/(c + n) + r2/(c + n)2 + · · ·),

and therefore the sequence (5) is P -regular with z = −1 and r1 = −α.

Definition 2 A transformation S → T is of P -order p iff

∆Tn/∆Sn = ap/(c + n)p + ap+1/(c + n)p+1 + · · · , ap 6= 0, p ≥ 0.

Thus applying a transformation T of P -order p to our P -regular series S gives

∆Tn/∆Tn−1 = −(1 − (α + p)/(c + n) + r2(T )/(c + n)2 + · · ·).

This means that the sequence T is again P -regular with z = −1 and r1(T ) = r1(S) − p.
This implies that α(T ) = α(S) + p.

The Euler transformation is one well known method which is useful for such logarithmic
alternating series (6). One step of this method is given by the simple averaging procedure

Tn = Sn − µ ∆Sn−1,with µ = 1/2. (7)

Using (6), (7) and the definition of m and α we find

∆Tn/∆Sn = −α/(2c + 2n) + O((c + n)−2). (8)

Thus the Euler transformation is of P -order one and we have α(T ) = α(S) + 1.
Defining Tn0 = Sn this procedure may be repeated, building a triangular scheme by

Tn,j = Tn,j−1 − µ (Tn,j−1 − Tn−1,j−1), (9)

where in the n-th row j runs from 1 to n and in the j-th column n runs from j upwards.
By repeated use of (8) we find that for the Euler transformation

∆T
(E)
nj /∆T

(E)
n0 = (−1)jα(α + 1) · · · (α + j − 1)/(2c + 2n)j + O((c + n)−(j+1)). (10)

Remark: The constant associated with the order O will depend on j. Note that with α = 1
we have j! as a factor in the leading term in (10). The following minor modification of the
Euler transformation is designed to reduce this factor. Replacing µ in (9) by

µn,j = µ (1 − j − 1

2(c + n)
) (11)
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gives for the Modified Euler, using (6) as before,

∆T
(M)
nj /∆T

(M)
n0 = (−1)jαj/(2c + 2n)j + O((c + n)−(j+1)). (12)

Thus we see that this modification too is of P-order one, but the constant in front of the
leading term is much smaller, especially for small values of α. For example, α = 1 gives an
improved factor 1/j!.

Overholt’s [3, 18] P -order two modification of the Euler transformation achieves the
vanishing of the leading constant in (8) by modifying µ in (9) as follows

µn,j = µ (1 − α + 2(j − 1)

2(c + n)
) (13)

This gives

∆T
(O)
nj /∆T

(O)
n0 = O((c + n)−2j).

Actually Overholt shows [3, 18] that there exist infinitely many 2-point formulas of P -order
2 if we know r1, and if we do not know r1 then there do not exist 2-point methods of
P -order 2. We may replace the constant c = b/q by a different constant and the method
will still be of P -order 2. We will take advantage of this freedom in the implemented code.

If α is available then (13) is superior to the other two methods. Now α = γ + m and
knowing γ seems to be reasonable, but even if one does not know γ it is possible to estimate
γ prior to using Overholt’s P -order 2 method. Finding m seems, on the other hand, much
more difficult in general.

Let us simply replace α in (13) by γ. Then we know (a) that we may have an un-
derestimate of α, and (b) that the difference is an integer, possibly zero. If α > γ then
Overholt’s method, with γ, is of P -order one only. This will give a practical implementation
of Overholt’s method

∆T
(PO)
nj /∆T

(PO)
n0 = (−1)jm(m−1) · · · (m−j+1)/(2c+2n)j+O((c+n)−(j+1)), j = 1, 2, . . . ,m.

When j = m + 1 then the leading term in this expression becomes zero and the method
becomes of P order two. The point being that we have underestimated α (by an integer
difference) and the method will recover its P -order 2 after a certain number of steps de-
pending on m. The conclusion is that the practical version of Overholt’s method, replacing
α by γ, will behave very much uneffected by small changes in b. Using the method this way
we are not able to take advantage in the case when the original series is converging faster,
however we do not loose acceleration speed either.

Note that the two methods of P -order one do not need α and will be of order one
independent of whether c0 is equal to zero or not.

We see that these three schemes are all very simple and easy to implement. Overholt’s
method will depend on the quality of the given or estimated value of γ. In experiments
performed in [18] the P -order 2 methods are at least as good as the Levin u-transform [11]
on alternating logarithmic series. Levin’s u-transform was on the other hand reported to
be very good in general by Fessler et al. [6]. This fact, combined with the simplicity of
these three methods, are the reasons for choosing these methods in this software project.
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3 Numerical Stability

As we have seen these three methods fit into the same framework. Put Tn0 = Sn and define

Tn,j = Tn,j−1 − µn,j(Tn,j−1 − Tn−1,j−1), j = 1, 2 . . . , n. (14)

Choosing µn,j appropriately we get the E(uler), the M(odified), the O(verholt) and the
P(ractical) O(verholt) schemes. We may put the Tnj in a standard tableau

T00

T10 T11
...

...
. . .

Tn0 Tn1 · · · Tnn

If 0 ≤ µnj ≤ 1 in (14) then each entry in the tableau is a convex combination of the two
entries to the left. This implies that

Tnn =
n

∑

j=0

vnjTj0,

where 0 ≤ vnj and
∑n

j=0 vnj = 1. Now since Tj0 = Sj =
∑j

i=0 ui we get

Tnn =
n

∑

i=0

wniui,

with wni =
∑n

j=i vnj and therefore

κn =
n

∑

j=0

wnj ≤ 1 + n.

The Euler method has κ
(E)
n = 1 + n/2. Approximating each uj by say, ûj , implies that the

approximated value T̂nn has the following quality (neglecting rounding errors)

|T̂nn − Tnn| ≤ κn max
j=0,1,...,n

|ûj − uj|.

This implies a very stable scheme where the accelerated approximation T̂nn may be less
influenced by errors in ûi than the partial sum Ŝn =

∑n
i=0 ûi which it is based on. We

consider this stability feature as very important and have chosen to use the freedom in the
parameter c such that we achieve 0 < µnj < 1 for all three methods.

4 The basic algorithm

We face two different alternatives if we are not satisfied with the global approximation T̂nn:
(A) Compute a better value for say, ûj , and update the T -tableau. This can easily be done
directly in the last row of this tableau. Estimate the new global error and decide what to
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do next. (B) If we are not satisfied with the extrapolation error then: put xn+1 = xn + q,
compute ûn+1, increase n and create a new row in the T -tableau. Estimate the new global
error and finally decide what to do next.

An algorithm combining adaptivity and extrapolation for this problem has as input: The
integration limit a, the first subdivision point b, the period 2q, the strength of the decay
of the functions at infinity (optional), γ, the function(s) f and finally an error tolerance ε.
The output will normally be an estimate of the integral, Q̂, and an error estimate Ê. If
possible the algorithm computes Q̂ with Ê ≤ ε (here ε = max(εa, εr|Q̂|), where εa and εr

are user specified absolute and relative error tolerances respectively). This does not ensure
that |I−Q̂| ≤ ε, but it does suggest that it is likely. Basic elements in this globally adaptive
quadrature algorithm are:

• A collection of intervals organized in a heap. At a certain stage we have M intervals
in the heap, say ij , j = 1, ...,M.

• A quadrature rule, Q, to produce a local estimate,Q̂j , to the integral over each interval
ij in the collection. We offer one basic rule, a Gauss rule using 21 nodes, of polynomial
degree 41.

• A procedure to estimate the error in the local approximations over the regions in the
heap produced by Q. This error estimate, Êj , is constructed using several null rules,
see [1, 2, 5, 4]. The pure extrapolation error enters the global error only and does not
effect the heap.

• A strategy for picking the next interval to be processed: In this algorithm this will be
the interval with the greatest error estimate. Therefore the heap is organized such that
the interval with the greatest error estimate is the top element. The extrapolation
error is considered too in order to decide what to do. If we integrate a vector integrand,
then the top element is the interval with the greatest worst case error estimate.

• A strategy for how to divide such a region: We have chosen to follow [7, 22] and divide
an interval in three equally sized parts.

• An extrapolation procedure: we have chosen to offer the three schemes described:
Euler, the modified and the practical Overholt scheme. The user is given the option
of having γ estimated for him before the extrapolation starts.

• A global error estimate. Note that it is important to know for each region in the heap
which u` it belongs to. We compute the wn`-coefficients and thus the global error
may be computed by

∑n
`=0 wn`Eû`

and adding the extrapolation error.
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We give here the basic structure of the algorithm

A Globally Adaptive Quadrature Algorithm with Extrapolation

Initialize: Put x0 = a, x1 = b and x2 = b + q;

Compute û0, û1, Êû0
and Êû1

.
Initialize the heap: M = 2;

The tableau: T̂00 = û0, T̂10 = û0 + û1 and n = 1;
Extrapolate and estimate the pure extrapolation error;

Compute the global error Ê
T̂11

;

Control: while Ê
T̂nn

> ε do

begin

if The pure extrapolation error > The top heap error then

Add a new interval to the collection:xn+1 = xn + q;

Process regions: Compute: ûn+1 and Êûn+1
,

T̂n+1,0 = T̂n,0 + ûn+1 and put n = n + 1;
Extrapolate and estimate the pure extrapolation error;

Compute the global error Ê
T̂nn

;

Update: Update the heap and put M = M + 1.
else

Pick the top interval from the heap; say it;
Subdivide this interval into three new subintervals;

Process regions: Compute for the three subintervals: Q̂
(`)
t and Ê

(`)
t , ` = 1, 2, 3;

Update: Update the heap, M = M + 2, ûj and Êûj
associated with it;

Update the tableau and the pure extrapolation error;

Compute the global error ÊTnn

end if

end

Remark: In the final implementation of this algorithm the code will always deliver the best
possible result, that is: the result with the smallest possible estimated error.

Note that the value of b has to be provided by the user: the theory only implies that b
has to be sufficiently great such that the asymptotic properties are satisfied for x ≥ b. If
we choose b much bigger than necessary then the cost of evaluating u0 may be high due
to adaptive subdivision of the interval [a, b]. The improved asymptotic behavior due to a
large value of b may on the other hand reduce the number of extrapolation steps necessary.
Increasing b as much as possible without increasing the work spent on u0 is probably a
reasonable advice. Some insight may be gained by experimenting with different values of b
for a particular class of problems.

The optimal choice of b will, in addition, depend on the requested accuracy. Finally: the
three implemented methods will have different optimal values of b, the practical Overholt’s
method being the least sensitive of the three.
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5 Numerical Examples

In this section we will demonstrate how efficient the new code, DQAINF, can be. All
computations have been done in double precision arithmetic on a SUN Sparc 10 workstation.

1) The first example involves the step function

∫ ∞

1
p(x)/

√
x dx ≈ 0.47958 07495 61.., (15)

where p(x) = 1 for 2k − 1 ≤ x < 2k and p(x) = −1 for 2k ≤ x < 2k + 1 for k = 1, 2, . . ..
Thus we have q = 1 and γ = 1/2 with (3) and (4) satisfied. The periodic function is
nonsmooth and some care is necessary when choosing the partition points. Good values for
b are 2, 4, 10, .... When b = 2 then we have a partition point at every jump discontinuity,
while b = 4 gives jump discontinuities inside the first interval at 2 and 3. However, the
code will do trisection and immediately divide this region in three parts and the inside
jump problem is removed. Thus there is an extra cost using b = 4 in this case and we have
therefore kept b = 2 for all three methods. Noninteger values of b is a bad choice for the
same reason: then every interval will have an inside jump discontinuity.

-
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Figure 1a. The true relative errors (o) and the estimated relative errors (*) versus the
number of function values used to produce these estimates using DQAINF with KEY = 2
(P -order 2) on (15).
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Figure 1b. The true relative errors: using Overholt’s P -order 2 method (o), the modi-
fied Euler (x) and Euler’s method (*) versus the number of function values used to produce
these estimates by DQAINF on (15).

We see that the code performs quite well on this problem for all three methods. The 21 point
Gauss rule has the quality that it computes every estimate ûj of uj to machine precision
and therefore each new step in the figures 1a and 1b is due to a new extrapolation step. We
see that the error estimate, designed to be cautious, seems reliable and is overestimating
by 1-2 digits in Figure 1a. A P -order 2 method can be expected to be twize as fast as
a P -order 1 method in general. We see that there is a factor between 2.5 and 3 between
Overholt’s method and Euler’s method, while the ratio between Overholt’s method and the
modified Euler method is between 1.5 and 2. In both cases we assume that the work is
proportional to the number of function evaluations.
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2) The next example has a smooth periodic function

∫ ∞

0
sin(x)/

√
1 + x dx ≈ 0.80952 54817 47... (16)
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Figure 2. The true relative errors: using Overholt’s P -order 2 method (o, b = 3), the
modified Euler (x, b = 30) and Euler’s method (*, b = 27) versus the number of function
values used to produce these estimates by DQAINF on (16).

The choice of different b-values for the three methods is done to achieve the precision
10−13 for all three methods with minimum effort. If the user specifies a tolerance then a
different value may be better for each of the three methods.

Due to the large values of b for the two P -order 1 methods the adaptive strategy appears
in these cases. The modified Euler method needs immediately to subdivide the first interval
with the cost of 63 function evaluations, then after 5 extrapolation steps one of these three
intervals is subdivided further. The Euler method has a similar behavior. We see that the
difference in b effects the performance of the methods.

3)In the following example we have k = 2 in (2) involving sin(x) and cos(x). Furthermore
we do not specify γ and leave that to the code

∫ ∞

1
sin(x + 1/x)/

√
x dx ≈ 0.23294 81970 94... (17)
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Figure 3. The true relative errors (o) and the estimated relative errors (*) versus the
number of function values used to produce these estimates using DQAINF with KEY = 2
(P -order 2), b = 4 and unspecified γ on (17).

The code estimates γ to 10 correct digits using 21 function evaluations. The code uses
linear extrapolation on a sequence of ratios ln(−f(yi + q)/f(yi))/ ln(yi/(yi + q)), where y0

is the starting point chosen after 4 samples in [b, b + q), yi = y0 + 2iq, i = 1, 2, .... The
stopping criterion is designed to avoid that the estimate of γ is contaminated by rounding
errors. The effect of not knowing γ is simply a shift of the plot to the right due to the 21
function values (eight linear extrapolation steps) it took to estimate γ in this case.

4) Next we integrate a function with period 2q = 22π.
∫ ∞

0

cos(x) − cos(7x/11)

x
dx = ln 7/11. (18)
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Figure 4. The true relative errors (o) and estimated errors (*) for Overholt’s P -order 2
method versus the number of function values used to produce these estimates by DQAINF
on (18).

This example illustrates the interplay between the adaptive strategy and the extrapolation.
The extrapolation sequence is in this example: 1, 1, 1, 1∗, 2, 2∗, 3, 3∗, 4, 4∗, 5. A ∗
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indicates an attempt to take another extrapolation step, but since the error estimate was
not improved the code decided not to update the result. The half period q = 11π is so big
that cos(x) changes sign repeatedly, and each new interval has to be subdivided to give an
estimate of good enough quality.

5) The final two examples are included to illustrate what may happen if one of the two
assumptions (3,4) is violated. The first example violates the antisymmetry property (3).

∫ ∞

0

cos(x) − cos(2x)

x
dx = ln 2. (19)

-

6

100 200 300 400 500 Work

Error

100

10−1

10−2

10−3

10−4

o
o

o
o o o o o o o o o o

*
* * *

* * * * * * * * *

x
x x x

x x x x x x x x x

Figure 5. The true relative errors using: Overholt’s method (o), the modified Euler
method (x) and the Euler method (*) versus the number of function values used to produce
these estimates by DQAINF on (18). b = 6.28 for all three methods.

The periodic function is indeed oscillating since integrating over a full period then

∫ b+2π

b
(cos(x) − cos(2x))dx = 0, for all b.

Figure 5 demonstrates that the extrapolation has hardly any effect. The reason is that
even though the initial sequence is oscillating this fundamental property is lost after one
extrapolation step with all three methods.

The problem may of course be transformed by a simple splitting into two finite integrals

∫ b

0

cos(x) − cos(2x)

x
dx +

∫ 2b

b

cos(x)

x
, b > 0.

6) In the final example (4) is no longer valid

∫ ∞

1
sin(x + 1/

√
x)/

√
x dx ≈ 0.04163 28516 893 . . . . (20)

Instead of the exponent sequence γ+j in (4) we get for this problem γ+j/2, for j = 0, 1, 2, ...
with γ = 1/2.
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Figure 6. The true relative errors: using Overholt’s P -order 2 method (o,b = 3), the
modified Euler (x,b = 20) and Euler’s method (*,b = 20) versus the number of function
values used to produce these estimates by DQAINF on (20).

As we see from Figure 6 all three methods have a similar behavior and a closer analysis
shows that all three methods will have P -order 1 and the oscillating property is maintained
through the different transformations. Thus we loose the P -order 2 effect when (4) is not
satisfied.

6 Concluding Remarks

The main goal in the development of the code, DQAINF, was to develop a routine that
could handle infinite oscillating tails effectively and at the same time have good reliability
properties. We feel that the power of this new code is clearly demonstrated through these
examples and thus we claim that the main goal has been achieved.

The new algorithm may be applied to a vector of similar integrands over a common
integration interval. All of the integrands in the vector have to have oscillating tails with
the same period 2q. The P -order 2 method is useful on a vector integrand only when all
functions have the same decay parameter γ (or at least an integer difference between the
possibly different γ values). In general integrating a vector simultaneously should be used
with caution, because the algorithm chooses a subdivision of the integration region that
may be refined according to the behavior of particular integrands which have certain local
intervals of difficulty. For integrands that have enough similarity, the new algorithm may
save time and space because of the common subdivisions.

7 DQAINF: A FORTRAN implementation

The algorithm described in Section 4, including the error-estimating procedure from [2, 4],
has been implemented in a FORTRAN subroutine DQAINF, a double precision adaptive
quadrature routine with extrapolation. The single precision version has the name SQAINF
and similarly the first letter in all subroutine-names is changed to S. DQAINF has the
calling sequence
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CALL DQAINF (NUMFUN,FUNSUB,PERIOD,GAMMA,A,B,WRKSUB,EMAX,
MINPTS,MAXPTS,EPSABS,EPSREL,NW,KEY,RESTAR,
RESULT,ABSERR,NEVAL,IFAIL,DONE,WORK,IWORK)

DQAINF computes approximations RESULT to the vector integral

I =
∫ ∞
A f(x) dx,

where f(x) is a vector of integrands of length NUMFUN all given by one call to the user
specified subroutine FUNSUB. The lower integration limit is given by A. PERIOD gives
the period of all components in the vector and GAMMA (optional) gives the decay of all
functions towards infinity. B is the point from where the asymptotic property is assumed
to hold. DQAINF attempts to compute each component of RESULT such that

| I[K]-RESULT[K] | ≤ max(EPSABS,EPSREL*| I[K] |), K=1,...,NUMFUN,

where EPSABS and EPSREL are absolute and relative tolerances. The program has been
successfully run on a Sun SPARC 10 workstation.

Having a vector integrand implies a change in the algorithmic structure since we have
NUMFUN error estimates over each subinterval. Picking the next interval to subdivide and
process is based on the worst case error estimate. Next we either update the extrapolation
tableau or extend the extrapolation tableau depending on whether an old interval was
subdivided or a new interval added. We continue this process with all integrands until the
global error test is satisfied for all integrands or the number of evaluation points exceeds
MAXPTS.

The integration routine and the subprograms are organized according to the structure
given in Figure 7.

FUNSUB

DTRINTDGAINTDEXINF

FUNSUB

DGAINF

DADINF DCHINF

DQAINF

Figure 7.
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In the following list we briefly describe the purpose of DQAINF and supporting subroutines.

• DQAINF is basically a driver for the algorithm controller DADINF. Inside DCHINF
the input to DQAINF is checked and the workspace for DADINF is separated into
mnemonic variables.

• DCHINF checks the validity of the input to DQAINF. If GAMMA ≤ 0 and KEY =
2 (P -order two) then the routine DGAINF is called in order to estimate GAMMA.

• DGAINF is a routine designed to estimate GAMMA.

• DADINF is the algorithm controller which at each subdivision step decides whether
to stop or to continue. This routine also decides whether a new extrapolation step
will be taken or just an update of the extrapolation tableau will be done.

• DEXINF does either the extrapolation or the update of the extrapolation tableau.
The pure extrapolation error is estimated and the global error is then computed. The
type of transformation is decided through the parameter KEY: 0 (Euler), 1 (modified
Euler) and 2 (P -order two).

• DTRINT maintains the heap of subregions.

• DGAINT computes approximations to the integral and the error over each finite
interval. In this code a 21 point Gaussian rule is offered, but the user may replace
this code with his favorite rule and associated error estimation.

APPENDIX: The Parameters for DQAINF.

Input Parameters

NUMFUN The number of components in the vector integrand function.

FUNSUB An externally declared subroutine for computing all components in the vector function
for the given evaluation points. It must have parameters (X, NUMFUN,NP,FUNVLS).
The input parameters: X is an array of dimension NP giving the x-coordinates of the
NP evaluation points. NUMFUN is the number of components of the vector inte-
grand. The output parameter FUNVLS is an array of dimension (NP,NUMFUN)
that stores NUMFUN values of the vector integrand for each of the NP evaluation
points.

PERIOD All functions are assumed to have the same asymptotic period.

GAMMA All functions are assumed to decay as c/x**GAMMA, when x >> B and we go in
steps of length PERIOD. GAMMA > 0.

A The lower limit of integration is A(1).
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B B(1) is the right endpoint of the first interval. B(1) is chosen by the user and it is
assumed that the integrand oscillates for x > B(1). The oscillations are expected to be
observed for points of distance PERIOD/2. On exit A and B contains the endpoints
of the intervals used to produce the approximations to the integrals. The original
A(1) and B(1) may have changed.

WRKSUB Defines the length of the arrays A and B. (And thus the maximum number of subre-
gions allowed.)

EMAX The maximum number of extrapolation steps that will be allowed.

MINPTS The minimum number of FUNSUB calls the code has to use.

MAXPTS The maximum number of FUNSUB calls the code is allowed to use. See the code for
details.

EPSABS Requested absolute error.

EPSREL Requested relative error.

NW Defines the length of the working array WORK. See the code for details.

KEY The choice of extrapolation method:
KEY = 0 : The Euler method.
KEY = 1 : The modified Euler method.
KEY = 2 : Overholt’s P -order 2-method.
This last method is the only one that needs the value of GAMMA.

RESTAR If RESTAR = 0, this is the first attempt to compute the integral.
If RESTAR = 1 , then we continue a previous attempt. In this case the only parame-
ters for DQAINF that may be changed (with respect to the previous call of DQAINF)
are MINPTS, MAXPTS, EPSABS, EPSREL and RESTAR.

Output Parameters

RESULT An array of dimension NUMFUN containing approximations to all components of the
vector integral.

ABSERR An array of dimension NUMFUN of estimates for absolute errors for all components
of the vector integral.

NEVAL The number of function evaluations used by DQAINF.

IFAIL IFAIL = 0 for normal exit, with
ABSERR(K) ≤ max(EPSABS, ABS(RESULT(K))*EPSREL)
for 1 ≤ K ≤ NUMFUN, using MAXPTS or less FUNSUB calls.
IFAIL = 1 if MAXPTS is too small for DQAINF to obtain the requested error. In this
case DQAINF returns values of RESULT with estimated absolute errors ABSERR.
IFAIL = 2 if NUMFUN < 1.
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IFAIL = 3 if A(1) > B(1).
IFAIL = 4 if unlegal PERIOD.
IFAIL = 5 if MAXPTS < MINPTS or MINPTS < 21.
IFAIL = 6 if both EPSABS ≤ 0 and EPSREL ≤ 0.
IFAIL = 7 if WRKSUB is too small. IFAIL = 8 if unlegal value of EMAX.
IFAIL = 9 if unlegal RESTAR.
IFAIL = 10 if KEY < 0 or KEY > 2.
IFAIL = 11 if NW is too small. (See the code DCHINF).
IFAIL = 12 if either PERIOD is wrong or B(1) is too small.
IFAIL = 13 if unable to estimate GAMMA (In case KEY=2 only).
IFAIL = 14 if EMAX turns out to be too small.

DONE DONE(I)=.TRUE. if function number I has been integrated to the specified precision,
else DONE(I)=.FALSE. (Note that IFAIL = 1 just tells you that something is wrong,
however most of the integrals in the vector may have been computed to the specified
precision).

WORK A work array of dimension NW. See the code for details.

IWORK A work array of dimension 3*WRKSUB. See the code for details.
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