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Abstract A new approach to the computation of approximations to multi-

dimensional integrals over an n-dimensional hyper-rectangular region, when the

integrand is singular, is described. This approach is based on a non-uniform

subdivision of the region of integration and the technique fits well to the sub-

division strategy used in many adaptive algorithms. The strategy can be applied

to vertex singularities, line singularities and more general subregion singularities.

The technique turns out to have good numerical stability properties.

1. Introduction

In 1976 Lyness [9] published the first paper which addresses the problem of finding
the error functional expansion in multidimensional quadrature with a singular inte-
grand function. Knowing at least the existence of such expansions is essential in order
to compute such integrals effectively. Since 1976 several related papers have appeared,
some giving expansions for different regions and others giving expansions for different
types (or combinations) of singular behavior [3, 4, 5, 8, 10, 11, 12, 13, 14]. A common
feature for these expansions is that they are based on a uniform subdivision of the
region, applying the same rule on each subregion.

In a recent paper Espelid (1992) [7] describes a new idea applying extrapolation
on a sequence of estimates produced through a non-uniform subdivision of the initial
region. This approach can be used on problems having vertex singularities associated
with homogeneous functions. The idea presented in [7] is generally applicable to any
dimension and any region which can be subdivided into subregions of the same form,
e. g. hypercubes, simplices, etc.. Furthermore, the technique can be applied to internal
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point singularities as well. In order to apply this technique one has to know at least
the position of the singular point.

In this paper we will extend this new approach to the integration of singular inte-
grands to include problems with line singularities in 2 dimensions, line or face singu-
larities in 3 dimensions and subregion (line, face , etc.) singularities in n-dimensions.
In order to achieve this generalization we have to restrict the region of integration to
an n-dimensional hyperrectangle.

This paper is organized as follows: in the next section we present the problem and
develop the basic error expansion. Then we describe the new subdivision approach and
finally we give some examples and concluding remarks.

2. Homogeneous functions: basic error expansion

A function f(x) , where x ∈ Rn, is said to be homogeneous of degree α (about the
origin) if

f(λx) = λαf(x) for ∀ λ > 0.

We will use the notation introduced by Lyness (1976), [9], and denote such a function
fα(x). Note the following simple rules: fαfβ is of homogeneous of degree α + β and
(fα)β is of homogeneous of degree αβ.

We will discuss n-dimensional integration, however we will assume that the singu-
larity is caused by a homogeneous function about the origin which involves exactly s of
the n variables, with 1 ≤ s ≤ n. To simplify the presentation assume that the variables
are numbered such that these s variables are x1, x2, . . . , xs.

Observe that we may use an affine transformation to transform the given rectangular
region on to the unit n-cube. Any homogeneous function will still be homogeneous
after such a transformation and its degree will be invariant. We know furthermore
that any given cubature rule can be transformed as well and its polynomial degree will
be invariant too. Thus, choosing the n-dimensional unit hypercube, Cn, as the region
of integration represents no restriction

Cn : 0 ≤ xi ≤ 1 for i = 1, 2, . . . , n.

Define

I(f) =
∫

Cn

f(x)dx =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
f(x1, x2, . . . , xn) dx1 dx2 . . . dxn. (1)

We will discuss how to compute numerical estimates to integration problems of type (1),
where the function involved, f , is a product of a homogeneous function fα(x1, x2, . . . , xs)
and a function g(x) which is regular in Cn. The function fα(x1, x2, . . . , xs) is assumed
to have a point singularity at the origin of Cs due to the homogeneous property. Define
x0 = (0, 0, . . . , 0, xs+1, xs+2, . . . , xn) then

{

f(x) = fα(x1, x2, . . . , xs) g(x), with α > −s.
g(x0) 6≡ 0, x0 ∈ Cn.
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Furthermore we assume that the origin is the only point in Cs where fα is non-analytic.
We give a few examples to illustrate the type of singular problems we will deal with.
1) A line singularity in C2 due to a point singularity in C1 ( s = 1),

∫ 1

0

∫ 1

0
xαg(x, y) dxdy with α > −1.

2) A line singularity in C3 due to a point singularity in C2 (s = 2),

∫ 1

0

∫ 1

0

∫ 1

0
(x + y)αg(x, y, z) dxdydz with α > −2.

3) A face singularity in C3 due to a point singularity in C1 (s = 1),

∫ 1

0

∫ 1

0

∫ 1

0
xαg(x, y, z) dxdydz with α > −1.

4) A point singularity in C3 (s = 3), with r =
√

x2 + y2 + z2,

∫ 1

0

∫ 1

0

∫ 1

0
rα g(x, y, z) dxdydz with α > −3.

Example 4) is the only one that can be handled by the technique described in [7]
directly. However, all of these problems can be dealt with by that technique after an
appropriate transformation. E. g., in example 1) we may apply an inverse Duffy (1982)
transformation, [6]; replacing y with t using y = t/x gives

∫ 1

0
(
∫ x

0
xα−1g(x, t/x) dt) dx with α > −1.

Thus integrating a function over a triangle having a vertex singularity at the origin of
degree α − 1. An additional difficulty has been introduced due to the transformation:
t/x is a homogeneous function of degree 0 around the origin, however this will be han-
dled by the described technique quite easily. It will, however, have a slightly negative
effect on the performance of the method. We will give an example of such an approach
in Section 5.

In order to deal with example 1) directly we may choose a product of two classical
rules: a Gauss-Legendre rule in the y direction where the function is smooth and a
Gauss-Jacobi rule in the other direction.

Alternatively we may subdivide the original square in m2 equal squares and then
use the same rule Q over all these squares. Denoting the compound rule Q(m) we get,
Sidi (1983) [13] and Lyness and de Doncker-Kapenga (1987) [11],

Q(m)(f) ∼ I(f) +
∑

`≥0

A`

mα+2+`
+

∑

`≥0

C` log m

mα+2+`
+

∑

`≥1

B`

m`
. (2)

For many integrals, some of the coefficients in (2) vanish e.g., the C-coefficients vanish
if α is non-integer or if a special rule Q is used; some of the B-coefficients may van-
ish depending on the degree of precision and symmetry of Q. Based on (2) we may
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now compute Q(m) for different values of m and then use extrapolation to improve
these approximations. This last approach does not need information about where the
line singularity is, while the Gauss-Legendre/Gauss-Jacobi approach is based on that
information.

We will, in what follows, present an alternative approach. Just as in [7] we will
base this on a non-uniform subdivision of the region of integration combined with
extrapolation. The non-uniform aspect resembles the basic idea with the product rules:
to treat the problem differently in the different directions of integration. Assume that
we know (a) which variables are involved in the singularity and (b) the position of at
least one vertex where the function is singular (the origin in this presentation). Cut
this region into s+1 new subregions by dividing in two halves the region containing the
singularity orthogonal to one of the s directions. Continuing this until all s directions
have been divided exactly once we have: one region containing the singularity and
s regions where the function is supposed to be well behaved. Considering these s
subdivisions as one step we may do j such steps. The hyper-rectangle containing the
singularity is now H (s)

n (h) = [0, h]s × [0, 1]n−s, with h = 1/2j. Define

I
H

(s)
n (h)

(f) =
∫ 1

0
· · ·

∫ 1

0
(
∫ h

0
· · ·

∫ h

0
f(x1, x2, . . . , xn) dx1 . . . dxs)dxs+1 . . . dxn. (3)

Suppose that both x0 and x are points in Cn. Expand g(x) in a Taylor series around
x0 with p basic terms and a remainder term r

g(x) = g(x0) +
∑s

i=1 xi
∂g
∂xi

(x0) + 1
2

∑s
i,j=1 xixj

∂2g
∂xi∂xj

(x0) + . . .

+ 1
(p−1)!

∑s
i1,i2,...,ip−1=1 xi1xi2 . . . xip−1

∂p−1g
∂xi1

∂xi2
...∂xip−1

(x0) + r.

Multiply this expression by fα(x1, x2, . . . , xs) and integrate over H (s)
n (h). Changing

integration variables xi = h vi, i = 1, 2, . . . , s, in each integration term moves all
integrals to Cn and gives

I
H

(s)
n (h)

(fαg) = c0 hα+s +
p−1
∑

`=1

c` hα+s+` + O(hα+s+p), (4)

with














c0 =
∫

Cn
fα(x1, x2, . . . , xs)g(x0)dx,

c` = 1
`!

∫

Cn
fα(x1, x2, . . . , xs)

∑s
i1,...,i`=1 xi1 · · ·xi`

∂`g
∂xi1

...∂xi`

(x0) dx,

` = 1, 2, . . . p − 1.

Here we have used the fact that the term ` involves functions which are of homogeneous
degree α + ` in Cs about the origin.

Suppose furthermore that we use a fixed cubature rule Q on a hyper-rectangle, H,
based on L evaluation points

QH(f) =
L

∑

i=1

wi f(xi).
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Assume that
∑L

i=1 wi equals the volume of hyperrectangle H (Q has degree of precision
at least 0) and that the evaluation points xi have been translated to H. Applying this
rule on f over H (s)

n (h) then gives

Q
H

(s)
n (h)

(fαg) = b0 hα+s +
p−1
∑

`=1

b` hα+s+` + O(hα+s+p), (5)

where














b0 = QCn
(fα(x1, x2, . . . , xs)g(x0)),

b` = 1
`!
QCn

(fα(x1, x2, . . . , xs)
∑s

i1,...,i`=1 xi1 · · ·xi`
∂`g

∂xi1
...∂xi`

(x0)),

` = 1, 2, . . . p − 1.

Here we have used the fact that the term ` involves functions which are of homogeneous
degree α + ` in Cs and that applying Q over Hn(h) is a simple h-scaling of Cn in the
first s variables. Thus the volume and the weights w` must be scaled by a hs factor.
By subtracting (4) from (5) we get the error expansion

E(s)
n (h) = Q

H
(s)
n (h)

(fαg) − I
H

(s)
n (h)

(fαg) =
p−1
∑

`=0

a` hα+s+` + O(hα+s+p), (6)

with
a` = b` − c`, ` = 0, 1, . . . , p − 1.

b` is the numerical estimate produced by the rule Q of the integral c` and the functions
involved will become smoother with increasing values of `. Therefore it is reasonable
to expect |a`| >> |a`+1|, at least as long as α + s + ` ≤ degree(Q).

The extrapolation scheme will be based the error expansion (6). In fact, we assume
that the error given in (6) will be the major error source in the estimate of I(f). The
error contribution from the rest of the original region Cn has to be kept under control
and we will show how it will influence the extrapolation process and the final global
estimate of I(f).

3. The Series with Tail-correction Approach

We will now use the error expansion developed in the previous section combined with
the series with tail-correction approach presented in [7]. Suppose that we use a strategy
which repeatedly subdivides the subregion which is considered to represent the most
difficult part of the integration problem (1). Each time the subregion containing the
singularity needs subdivision we divide this in s+1 new subregions following the proce-
dure described in the previous section. Thus, at any time, the collection of subregions
will contain only one hyperrectangle containing the singularity, namely H (s)

n (h). At a
given time we may have replaced this hyperrectangle in the collection k times. Define
(with hi = 1/2i)















Ii = I
H

(s)
n (hi)

(fαg), i = 0, 1, 2, . . . , k,

Ui = Ii−1 − Ii, i = 1, 2, . . . , k,

Sk =
∑k

i=1 Ui, Ŝk =
∑k

i=1 Ûi,

(7)
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where Ûi is an approximation to Ui. The elements in the sequence U1, U2, . . . are by
definition (7) integrals over a sequence of subregions, L(s)

n (h) = [h, 2h]s × [0, 1]n−s for a
given value of h. L(s)

n (h) is similar to the L-shaped regions described by Lyness (1976)
[9] when s = n (that is: a corner singularity in the n-cube).
We illustrate, in Figure 1, two subregion sequences in 2 dimensions:

U1

U2

U3

I3

U1U2U3I3

Figure 1. 2-D (a) corner and (b) line singularities: U and I-sequences.

Using the definition of Ui we get Sk = I0 − Ik. Thus Sk is an approximation to I0 with
error −Ik. We can use the expansion for I

H
(s)
n (h)

with h = hk = 1/2k given in (4)

Sk − I0 = −c0h
α+s
k − c1h

α+s+1
k − · · · − cp−1h

α+s+p−1
k − O(hα+s+p

k ).

In practice we have to approximate Ui, e. g.: we have suggested to divide this region
into s rectangles in Section 2, however we may need to subdivide further to achieve
the necessary precision. Ŝk is an approximation to I0 giving

Ŝk − I0 =
k

∑

i=1

(Ûi − Ui) − c0h
α+s
k − c1h

α+s+1
k − · · · − cp−1h

α+s+p−1
k − O(hα+s+p

k ). (8)

In [7] we discuss to use (8) as a basis for extrapolation. The conclusion is that correcting
the tail of the series gives an improved approximation to a low cost and that this
actually is to be preferred. Based on this we present the tail correction strategy here:
using the rule Q to estimate Ii = I

H
(s)
n (hi)

, then Qi = Q
H

(s)
n (hi)

(fαg) is an estimate of

the tail Ii =
∑

`>i U`. Define

Ti0 = Qi +
i

∑

`=1

Û`, i = 0, 1, 2, . . . , k.

Ti0 is an approximation to I0 and we have according to (6)

Ti0 − I0 =
i

∑

`=1

EU`
+

p−1
∑

`=0

a`h
α+s+`
i + O(hα+s+p

i ), (9)

where EU`
= Û` − U`. By standard linear extrapolation we may use (9) to eliminate

the k first terms in the sum of h-powers. Define

n1 = 2α+s − 1, nj+1 = 2nj + 1, j = 1, 2, 3, . . . ,
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and then

Tij = Ti,j−1 + (Ti,j−1 − Ti−1,j−1)/nj, i = 1, 2, . . . , k, j = 1, 2, 3, . . . , i. (10)

We may put the Tij in a standard extrapolation tableau as follows

T00

T10 T11
...

...
. . .

Tk0 Tk1 · · · Tkk

This gives after j extrapolation steps in row k

Tkj = I0 +
p−1
∑

`=j

a
(j)
` hα+s+`

k + O(hα+s+p
k ) +

k
∑

`=1

(1 − βk+1−`,j)EU`
. (11)

We refer the reader to [7] for more details about these β−coefficients. The important
point to make is that these coefficients may be computed and make it possible to keep
track of the effect of not knowing each U` exactly. We may avoid that these errors
ruin the extrapolation process by simply deciding that if the effect becomes disturbing,
then compute a better approximation to at least one these U`s.

We face two different alternatives if we are not satisfied with the global approxima-
tion: (A) Compute a better value for Û` and update the T -tableau. This can easily be
done directly in the last row of this tableau, estimate the new errors and finally decide
what to do next. (B) If we are not satisfied with the extrapolation error then increase
k: put hk+1 = hk/2, compute Ûk+1 and Qk+1 and create a new row in the T -tableau.

In [7] we observed that Tkk can be written

Tkk =
k

∑

i=1

γ
(k)
i Ûi +

k
∑

i=0

δ
(k)
i Qi,

and defined the condition number for Tkk as

τ (k)
s = (1 − 1

2s
)

k
∑

i=1

|γ(k)
i |( 1

2s
)i−1 +

k
∑

i=0

|δ(k)
i |( 1

2s
)i.

Observe that the volumes associated with the estimates Ûi and Qi enter this expression.
We can compute τ (k)

s once the exponent sequence is known, ([7]):

s / k 1 2 3 4 7 10
1 5.83 6.92 6.30 4.49 1.55 1.07
2 5.83 4.28 3.13 1.80 1.02 1.00
3 5.83 2.96 2.15 1.24 1.00 1.00
4 5.83 2.30 1.81 1.09 1.00 1.00
5 5.83 1.97 1.67 1.04 1.00 1.00

Table 1 τ -table for s + α = 1/2.
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The extrapolation procedure is remarkably stable and increasing the number of ex-
trapolation steps has a positive effect on the methods stability. H (s)

n (h) has volume hs

and this volume will decrease in each step with a factor 1
2s . This decrease in volume

counter-effects the influence by the coefficients γ
(k)
i and δ

(k)
i on the condition number.

4. Integrating logarithmic singularities

Now suppose that the function f is a product of a homogeneous function fα, a log-
arithmic function ln gβ and a function g(x) which is regular in Cn. The functions
fα(x1, x2, . . . , xs) and gβ(x1, x2, . . . , xs) are both assumed to have a point singularity
at the origin of Cs due to the homogeneous property.

f(x) = fα(x1, x2, . . . , xs) (ln gβ(x1, x2, . . . , xs)) g(x), with α > −s.

Furthermore we assume that origin is the only point in Cs where fα and gβ are non-
analytic. Repeating the line of arguments that led to (4), (5) and (6) we get the error
expansion

E(s)
n (h) = Q

H
(s)
n (h)

(f) − I
H

(s)
n (h)

(f) =
p−1
∑

`=0

(ã` + â` ln h) hα+s+` + O(hα+s+p lnh), (12)

where we have






































ã` = b̃` − c̃`, ` = 0, 1, 2, . . . , p − 1.

b̃0 = QCn
(fα(ln gβ)g(x0)),

b̃` = 1
`!

QCn
(fα(ln gβ)

∑s
i1,...,i`=1 xi1 · · ·xi`

∂`g
∂xi1

...∂xi`

(x0)), ` = 1, 2, . . . p − 1.

c̃0 =
∫

Cn
fα(ln gβ)g(x0)dx,

c̃` = 1
`!

∫

Cn
fα(ln gβ)

∑s
i1,...,i`=1 xi1 · · ·xi`

∂`g
∂xi1

...∂xi`

(x0) dx, ` = 1, 2, . . . p − 1,

and






































â` = b̂` − ĉ`, ` = 0, 1, 2, . . . , p − 1.

b̂0 = β QCn
(fαg(x0)),

b̂` = β
`!

QCn
(fα

∑s
i1,...,i`=1 xi1 · · ·xi`

∂`g
∂xi1

...∂xi`

(x0)), ` = 1, 2, . . . p − 1.

ĉ0 = β
∫

Cn
fαg(x0)dx,

ĉ` = β
`!

∫

Cn
fα

∑s
i1,...,i`=1 xi1 · · ·xi`

∂`g
∂xi1

...∂xi`

(x0) dx, ` = 1, 2, . . . p − 1.

The extrapolation scheme will be based the error expansion (12). Using linear extrap-
olation just as before: it is well known that considering each h-exponent to appear
twice will remove both the constant and the ln h term in front of the hα+s+`. We will
give one example where we apply this idea in the next section.

5. Numerical Examples

8



In this section we will demonstrate, on a few examples in 2 and 3 dimensions, how
efficient this approach may be. We will for this illustrative purpose apply the highest
degree basic rule Q implemented in DCUHRE [2] (Berntsen et al. 1991) and further-
more not subdivide any of the rectangles which does not contain the singularity any
further.

1) In the first example we look at a problem with a line singularity in C2 combined
with a nice function g(x, y)

∫

C2

x−1/2e2x+y dxdy ≈ 8.1255 96316 47 (13)

We give the Tail tableau in Table 2. The number of function evaluations (nfe) is given
in the left column.

nfe
65 8.13780021352

195 8.13431250231 8.12589242260
325 8.13179057440 8.12570210185 8.12559801197
455 8.12998733056 8.12563391482 8.12559662210 8.12559632365
585 8.12870513608 8.12560964477 8.12559637104 8.12559631712

8.12559631649

Table 2. The Tail extrapolation tableau Tij on (13).

DCUHRE uses in this example a degree 13 rule Q based on 65 evaluation points.
Thus, dividing in two pieces and computing Ûk and Qk in each step cost 130 function
evaluations per step.

As mentioned in Section 2 we can deal with this problem with the technique given
in [7]. Using the transformation y = t/x in (13) we get

∫ 1

0
(
∫ x

0
x−3/2e2x+t/x dt) dx ≈ 8.1255 96316 47 (14)

and applying the tail approach described in [7] gives

nfe
37 7.65148426982

185 7.79175999005 8.13041553629
333 7.89003397527 8.12728836320 8.12557805545
481 7.95920320233 8.12619248842 8.12559313459 8.12559637265
629 8.00800024677 8.12580673327 8.12559575677 8.12559631985

8.12559631473
777 8.04246510858 8.12567064538 8.12559621644 8.12559631515

8.12559631469 8.12559631469

Table 3. The Tail extrapolation tableau Tij on (14).

In this example a 37 point rule of degree 13 is used on each triangle (DCUTRI, Berntsen
and Espelid 1992 [1]) and we divide each triangle into 4 subtriangles in each step by
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connection the midpoints of the 3 sides. Thus the cost per step is 4 × 37 = 148
evaluation points.

We get an impression of the efficiency of these two approaches by plotting, in Figure
2, the true error for the diagonals in these two tableaus versus the cost of computing
these diagonals elements.

-

6

100 300 500 700 900 Work

Error

100

10−3

10−6

10−9

10−12

2: 65-point rule of degree 13.
4: 37-point rule of degree 13.

2

2

2

2

2

2

4
4

4

4
4 4

Figure 2. The true error in the diagonal elements in Table 2 (2) and Table 3 (4)
versus the number of function values used to produce these elements.

Both techniques demonstrate fast convergence, however they will both converge to a
”wrong” answer. Figure 2 indicates that the error in Û` is O(10−8) in the triangle ver-
sion and much smaller in the rectangle approach. This difference in behavior probably
stems from the Hølder discontinuity introduced by the transformation. Thus it looks
like the direct treatment of the integration problem (13) is to be preferred. In order to
achieve a similar accuracy using adaptive codes, e. g. DCUTRI on (14) or DCUHRE
on (13), we need in both cases at least ≈ 20,000 function evaluations.

2) In the next example we integrate a face singularity in C3

∫

C3

x−1/2ex+xy+z/3 dxdydz ≈ 4.4191 59656 80 (15)

-

6

150 450 750 1050 1350 Work

Error

100

10−3

10−6

10−9

2: 127-point rule of degree 11.

2

2

2

2

2 2

Figure 3. The true error in the diagonal elements in the T -tableau versus
the number of function values used to produce these elements.
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In this example the error in Û1 is O(10−10) and we see that after 4-5 extrapolation
steps we reach this limit.

3) In this example we integrate a face singularity in C3 created by a logarithmic
singularity and a homogeneous function

−
∫

C3

x−1/2 ln x ex+xy+z/3 dxdydz ≈ 5.8401 12318 46 (16)

-

6

200 600 1000 1400 1800 Work

Error

100

10−3

10−6

10−9

2: 127-point rule of degree 11.

2

2

2

2

2

2

2 2

Figure 4. The true error in the diagonal elements in the T -tableau versus
the number of function values used to produce these elements.

In this example the error in Û1 is O(10−9) and we see that after 6 extrapolation steps
we reach this limit.

4) In the last example we integrate a line singularity in 3 dimensions

∫

C3

(x + y)−1/2 ex+xy+z/3 dxdydz ≈ 2.7878925361 . . . (17)

-

6

200 600 1000 1400 1800 Work

Error

100

10−3

10−6

10−9

2: 127-point rule of degree 11.

2

2

2
2 2

Figure 5. The true error in the diagonal elements in the T -tableau versus
the number of function values used to produce these elements.

In this example the error in Û1 is O(10−8) and we see that after 3 extrapolation steps
we reach this limit.
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6. Conclusions

The power of this technique is clearly demonstrated through these examples. Using
a high degree rule gives good accuracy in the computation of Û` and will in addition
give small constants ai in the error expansion which in turn will reduce the number of
extrapolation steps needed. In practice it may be difficult to choose the best rule Q to
use and it seems natural to combine an adaptive strategy and extrapolation.

It is essential though, in order to apply the technique, that we have all information
about the singularity in Cn. We have used that knowledge in our examples creating
two sequences Û1, Û2, Û3 . . . and Q1, Q2, Q3, . . .. The Û`’s are estimates to integrals over
a sequence of non-overlapping regions all of the same form, but non of them containing

the singularity. Similarly, the Q`’s are estimates to integrals, over overlapping regions,

all of the same form and containing the singularity.
Having more than one singularity in a region complicates the integration problem

considerably. If we can separate these singularities, that is: subdivide the region such
that each subregion has at most one singularity the problem can be handled. If this is
not the case then further research is needed in order to handle such problems by this
non-uniform subdivision technique.

Extrapolation is, as we have seen, the key to the success of both the uniform and
non-uniform approaches. We have, in our examples, used the value of α combined with
linear extrapolation. If we do not know the value of α, only the position of the singular
point, then a pre-computation of function values in selected points along a straight
line ending in a singular point, combined with extrapolation, will provide accurate
estimates of α. This seems to be a good way to compute α and then use this value in
the described linear extrapolation. One would expect such an approach to be at least
as efficient as many of the non-linear extrapolation techniques available which do not
need a value of α and therefore can be applied directly on the Tail-sequence created
by the Q- and U -sequences.

Finally the non-uniform approach fits well with the general strategy one finds in
adaptive codes and therefore it is reasonable to expect that these codes can be modified
to handle these types of singular integrands quite well.
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