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SUMMARY

The linear equations governing the propagation of inertia-gravity waves in geo-
physical fluid flows are discretized on the Arakawa C-grid using centered differ-
ences in space. In contrast to the constant depth case it is demonstrated that
varying depth may give rise to increasing energy (and loss of stability) using the
natural approximations for the Coriolis terms found in many well known codes.
This is true no matter which numerical method is used to propagate the equa-
tions. By a simple trick based on a modified weighting that ensures that the
propagation matrices for the spatially discretized equations become similar to
skew-symmetric matrices, this problem is removed and the energy is conserved
in regions with varying depth too. We give a number of examples both of model
problems and large scale problems in order to illustrate this behavior.

In real applications diffusion, explicit through frictional terms or implicit through
numerical diffusion, is introduced both for physical reasons, but often also in order
to stabilize the numerical experiments. The growing modes associated with vary-
ing depth, the C-grid and equal weighting may force us to enhance the diffusion
more than we would like from physical considerations. The modified weighting
offers a simple solution to this problem.
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1. INTRODUCTION

The propagation of inertia-gravity waves is a central issue in many geophysical
fluid models. The reason for this is that large scale atmospheric and oceanic
motions roughly obey the geostrophic equilibrium and that the dynamics of tides
and storm surges are dominated by the propagation of external inertia-gravity
waves.

It is well known that when propagating the solution of partial differential equa-
tions with numerical models, instabilities may often occur. In particular steep
topography often in combination with nonlinearities may cause an energy cas-
cade towards the shortest resolvable wavelengths of the computational grid, see
Arakawa and Lamb [4] and Adcroft et al. [1].

The stability properties of the numerical methods are often studied with the
Fourier or the von Neumann method. This method is relatively easy to apply to
small subsystems of equations, but gives only necessary conditions for stability.
The method is only applicable to linearized equations and constant parameters
i.e. constant depth of the ocean. See for instance Grammeltvedt [11] , Mesinger
and Arakawa [15], Schoenstadt [18], Foreman [9], Tanguay and Robert [20], Fox-
Rabinowitz [10] or the recent study by Wang [21] where a theorem of roots for
polynomials is applied to extend previous studies to more complex systems.

When applying the energy method, one requires that invariants associated with
the continuous equations, total energy, vorticity and/or entrophy, are maintained
in the discrete representation of the integral constraints. This method may be
applied to nonlinear systems to produce sufficient conditions for stability. The
task is to construct discrete spatial operators such that the contributions to the
discrete invariants cancel when summarized over the model region. This is of-
ten done in the space domain, see Haltiner and Williams [12], Arakawa [2] and
Arakawa and Lamb [4]. Lilly [14] also applied the technique to the vorticity
equation studying the invariants in the discrete Fourier domain.

The conservative schemes produced by applying the energy method are rather
complicated involving large computational stencils and may therefore be difficult
to use in practise, see Navon [16] and Sasaki [17]. Simpler schemes like the
leapfrog scheme or the forward-backward scheme, Haltiner and Williams [12], are
thus still interesting for propagating the external inertia-gravity waves in ocean
models (Slagstad et al. [19]; Berntsen [6]). To ensure stability some kind of
filtering, in time and/or space, often by adding enough viscosity and diffusivity,
is often required. The application of variational techniques to enforce conservation
of invariants is also suggested (Navon [16]; Sasaki [17]).

Ocean models often define the variables on staggered grids. Many regional scale
models apply the C-grid, Mesinger and Arakawa [15], because of its satisfactory
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properties provided that the grid resolution is high relative to the deformation
radius, see Mesinger and Arakawa [15], Fox-Rabinowitz [10], and/or Arakawa and
Lamb [3].

Beckers and Deleersnijder [5] analyze the important forward-backward (explicit)
scheme applied to such a problem on various grids. They use a von Neumann
stability analysis (implying constant depth and free waves) to throw some new
light on the bounds on the time step for the various grids. Adcroft et al. [1]
address problems arising from the spatial averaging of the Coriolis terms when
using the C-grid and suggest to augment the C-grid variables with D-grid velocity
variables.

In a recent paper Espelid and Berntsen [8] focus on the stability using the C-grid
centered differences in space and using different numerical time-stepping meth-
ods on problems with varying depth. They demonstrate that varying depth may
imply that the stability is lost no matter how small time step one uses. We will
in this paper show that it is possible to avoid this problem by a simple modifi-
cation in the approximations. The method is based on studying the eigenvalues
of the propagation matrices of the semi-discretized partial differential equations,
discretization only in space. For purely hyperbolic problems the propagation
matrices should have only purely imaginary eigenvalues. Skew-symmetric ma-
trices and matrices similar to skew-symmetric matrices have this property. It is
shown that with varying depth and the normal Coriolis term averaging used in
C-grids the propagation matrices also get a symmetric part giving rise to growing
and damping computational modes. A Coriolis weighting that ensures that the
propagation matrix is similar to a skew-symmetric matrix is suggested.

In the next section we will present some of the results from [8], then we will
present the necessary modifications and finally demonstrate both the problem of
varying depth and the effect of the modification on a number of problems. First
we follow [8] and limit the discussion to a model problem which has some general
features.

2. A MODEL PROBLEM

Let f be the Coriolis parameter, g the gravity constant, U and V the depth inte-
grated transports in x and y directions, respectively, η the sea surface elevation
and H(x, y) the undisturbed water depth. The external linearized inertia-gravity
equations in Cartesian coordinates (x, y) may then be written

∂U

∂t
= −gH

∂η

∂x
+ fV

∂V

∂t
= −gH

∂η

∂y
− fU (1)
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∂η

∂t
= −∂U

∂x
− ∂V

∂y
.

In order to discuss the numerical stability we restrict ourselves to a bounded
model region, Ω, with a boundary ∂Ω consisting of connected lines parallel to
the two axes (we allow interior island(s) in Ω with a similar boundary form).
Assume furthermore closed boundaries with no-flow boundary conditions; thus
either U = 0 or V = 0 at each point on the boundary ∂Ω (this has to be true for
the boundary of any island as well).

Define u = U/H and v = V/H everywhere in the interior of Ω and put u = 0 or
v = 0 at each boundary point. The total energy of (1) over Ω, assuming uniform
density ρ, may then be written

E(t) =
1

2
ρ

∫ ∫

Ω
[H(u2 + v2) + gη2]dxdy. (2)

The total energy obviously has to be conserved.

2.1 THE METHOD OF LINES AND THE C-GRID

Assume that a uniform subdivision is possible in each spatial direction giving a
grid Ω∆ with spacing ∆x and ∆y in the two directions, possibly different. We
will concentrate on the Arakawa C-grid, with η evaluated in the center of each
grid cell, implying that only U and V are evaluated at the boundary grid points
∂Ω∆.
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Figure 1: The Arakawa C-grid: spatial distribution of the variables (η, U, V ): η
is in the center of each grid cell: •, U is at the horizontal bars on the boundary
of each grid cell, and V is similarly at the vertical bars.

We follow [8] and approximate (1) in space only, using central differences. Define

w(t) =







U∆(t)
V∆(t)
η∆(t)







By U∆(t) we mean a vector of functions, each element of the vector defined at an
interior U -grid point in Ω∆, similarly for V∆(t) and η∆(t). Let us now approximate
(1) by second order space differences at time t using the vector w(t)

d

dt
w(t) = (A + B)w(t). (3)

Here we have collected all terms containing the Coriolis parameter f in the matrix
A and the rest of the elements in the matrix B. Both matrices are sparse. Thus we
have to solve a linear system of ordinary differential equations, given the initial
values w(0). Formally the solutions of (3) may be written w(t) = [exp((A +
B)t)]w(0) and are approximate solutions (second order in space) to the true
solution of (1).

The matrix A has elements 0 or ±f/4 due the average over neighbor U - and
V - points in the C-grid. Thus, the equation for a U -point component of w(t)
will involve at most four neighbor V -point components of w(t) all with weight
f/4. This U -point component gets weight −f/4 in the equation for the V -point
component. This implies that the matrix A, independent of the numbering of the
unknowns, always will be skew-symmetric, that is AT = −A, where the T means
the transpose of the matrix.
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The matrix B may be written B = Bx +By, splitting the ∆x and ∆y terms. The
equation for every U -component of w(t) connects to neighbor η-components,
through matrix Bx, with weights ±gH/∆x. The equation for every η-component
connects two neighbor U -components with weights ±1/∆x. Due to these neighbor
relations it turns out that all matrices Bx, By and B are ”sign skew-symmetric”,
that is: bii = 0, for ∀i; for ∀i 6= j then if bij = 0 then bji = 0 otherwise bijbji < 0.
Furthermore, it is always possible to make all three matrices skew-symmetric
by the same similarity transformation B̂ = D−1BD using a diagonal matrix D.
Written in block form separating U∆, V∆ and η∆ (the diagonal block matrices are
square) we have

D =







DU 0 0

0 DV 0

0 0 I





 .

The diagonal elements in DU are
√

gHu, where Hu is evaluated at the (x, y)-
coordinates of the corresponding U -point. Similarly for DV at the V -points.

Let z be an eigenvector to the matrix A+B with eigenvalue µ. Putting w(0) = z

then we have a solution to (3)

w(t) = exp(µt)z. (4)

Thus the eigenvalues of the matrix A+B will characterize the different solutions
to (3). We observe that the real part of µ, <µ > 0, implies a solution where all
non-zero components of z will increase in absolute value with t, while <µ < 0
implies decrease in absolute values. Either of these situations means a change in
energy as t increases. To illustrate the effect on the energy we approximate the
double integral in (2)

1

2
ρ

∫ ∫

Ω
[H(u2 + v2) + gη2]dxdy ≈ 1

2
ρg∆x∆y||D−1

w(t)||22 =

E∆(t) =
1

2
ρ∆x∆y(

∑

U2/Hu +
∑

V 2/Hv + g
∑

η2) (5)

Here the three sums are taken over all wet U -points, V -points and η-points re-
spectively. This approximation will be second order in space.

For the solution (4) we get

||D−1
w(t)||22 = exp(2t<µ)||D−1

z||22,

implying conservation of energy for solutions associated with eigenvalues with
zero real part.
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In order to find the eigenvalues of A + B the following lemma is useful

Lemma 1 Let S be a real skew-symmetric matrix, ST = −S, then
(a) all eigenvalues of S are on the imaginary axis,
(b) the matrix I − S is non-singular and
(c) the matrix (I − S)−1(I + S) is orthogonal, implying ||(I − S)−1(I + S)||2 = 1,
(d) the matrix exp(S) is a unitary matrix.

These are well known results.

The main results in [8] are given in the following theorem

Theorem 1 The total energy

E∆ =
1

2
gρ∆x∆y||D−1

w(t)||22

of any solution w(t) of (3)
(a) will be conserved when f = 0 (the depth H(x, y) may vary over Ω),
(b) will be conserved when f 6= 0 and the depth is constant over Ω.
(c) When f 6= 0 and the depth H(x, y) varies over Ω, we may have eigenvalues
µ whose real part is non-zero giving rise to solutions with both increasing and
decreasing total energy.

Following the proof found in [8] let us define the following matrices P = (D−1AD−
DAD−1)/2 and S = (D−1AD+DAD−1)/2+D−1BD. S is skew-symmetric while
the matrix P is symmetric. Using S and P we may write D−1(A+B)D = S +P
illustrating the fact that the matrix A + B is not similar to a skew-symmetric
matrix when the matrix P is not a zero matrix. f = 0 implies that both A
and P are zero matrices while H constant implies that D−1AD = DAD−1 = A
independent of f and therefore P = 0 implying (b). It is easy to give examples
that prove case (c), e. g. see the Three-cell case in Section 3.

In practice it is of interest how large the real part of an eigenvalue to the matrix
A + B may be. In [8] an upper bound of the real part of the eigenvalues µ of the
matrix A + B is found by investigating the elements of the matrix P as

|<µj| ≤ ||P ||2 = ρ(P ) ≤ ||P ||∞ ≤ |f |(k − 1/k)/2, ∀j, (6)

where k is an upper bound on the neighbor depth ratio
√

HN/H. Here H is the
depth at any wet U point and HN the depth at any neighboring V -points and
vice versa. Furthermore ρ(P ) is the spectral radius of the matrix P and the norm
||P ||∞ = maxi

∑

j |pij| , where P = {pij}.
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In order to understand the essence of Theorem 1 we may consider a method, based
on the C-grid and second order space-differences, designed to solve (1). Assume
furthermore that this method may be viewed as a proper approximation to (3)
too. A consequence of Theorem 1, case (c) with <µ > 0, is then that no such
convergent method can conserve the energy when ∆t becomes small. We will only
consider methods having the property that they can be viewed as approximations
to (3) as well as to (1). The forward-backward scheme, the leapfrog scheme and
the Crank-Nicolson method are all methods having this property. These methods
are frequently used in ocean codes.

We observe that the source to this lack of energy-conservation using the C-grid is
the approximation of the Coriolis terms. In the next section we will modify this
approximation used in (3) in order to conserve the energy.

2.2 A MODIFIED APPROXIMATION: CONSERVING THE ENERGY

In order to approximate the Coriolis terms in (1) we need an estimate of V in
each U -point and vice versa. In (3) this is simply done as follows

V C = (VNE + VNW + VSW + VSE)/4 ≈ VC , (7)

where C is a wet U -point and NE, NW, SW and SE are the four neighbor V -
points, some of these may be boundary points. This approximation is second
order in space to the true value VC . We may multiply and divide VC by any
positive space function w(x, y) in order to create a different approximation to VC ,
e.g.

V C =
wC

4

(

VNE

wNE

+
VNW

wNW

+
VSW

wSW

+
VSE

wSE

)

≈ VC . (8)

Using this approximation in the Coriolis terms in (1) we still have a second order
approximation in space since (8) gives a second order approximation to VC/wC .

Choosing w(x, y) =
√

gH(x, y) and replacing the standard approximation (7)

with (8) modifies (3) as follows

d

dt
w̃(t) = (DAD−1 + B)w̃(t). (9)

From this we see that D−1
w̃(t) satisfies

d

dt
D−1

w̃(t) = (A + D−1BD)D−1
w̃(t), (10)
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and now the coefficient matrix S = A+D−1BD is skew symmetric and therefore
the matrix exp(St) becomes unitary implying that ||D−1

w̃(t)||2 = ||D−1
w̃(0)||2 =

||D−1
w(0)||2 and thus conservation of energy is achieved. We will use the termi-

nology: unweighted run when we have used (7) (that is (8) with w constant) and

weighted run when (8) is applied with w(x, y) =
√

gH(x, y).

Applying the model to large local areas where the Coriolis parameter is varying
too introduces an additional difficulty. In this case the matrix A is no longer
skew-symmetric if f(x, y) is evaluated in a straightforward manner: in the U -
point in the moment-equation for U and similarly for V . However, by defining

w(x, y) =
√

gH(x, y)/|f(x, y)| in (8) we achieve that the system (10) can be
written

d

dt
D−1

ŵ(t) = (Â + D−1BD)D−1
ŵ(t), (11)

where Â has elements (neglecting the sign) 1
4

√

|fCfN | and is skew-symmetric.
Note that C denotes a U - or a V -point and that N denotes a neighbor point to
this C-point.

In order to better understand the effect of a weighted approximation it is instruc-
tive to study how the Coriolis terms effect the numerical energy expression E∆(t),
(5), over time. Let us differentiate E∆(t) with respect to time and use (3) to get

d

dt
E∆ = ρ∆x∆y(

∑

fuV U/Hu −
∑

fvUV/Hv), (12)

where the two sums are over all wet U -points and V -points respectively. Note
that differentiating the exact energy (2) and using (1) gives a double integral
over the region and two similar Coriolis terms cancelling each other pointwise:
fV U/H−fUV/H = 0. The two approximations’ ability to resemble this behavior
locally is as follows: the unweighted approximation implies that for each pair of
neighbor U and V points we will have two terms (one in each sum)

fu

1

4
V U/Hu − fv

1

4
UV/Hv. (13)

These two terms will cancel if fu/Hu = fv/Hv, e. g. either f = 0 or both f and
H are constant (Theorem 1), while otherwise we may experience increasing or
decreasing energy. On the other hand the weighted approximation implies that
each pair of neighbor U and V points will have two terms (one in each sum)

√

|fufv|
1

4
V U/

√

HuHv −
√

|fufv|
1

4
UV/

√

HuHv = 0. (14)
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Thus the weighted approximation resembles the exact Coriolis effect in a per-
fect manner locally in contrast to the unweighted approximation. The above
expression may be regarded as using the energy method to double check that
the weighted approximation succeeds in conserving the energy. In retrospect this
approach could have been used to develop the weighted approximation too. Due
to the fact that any homogeneous linear system of ordinary differential equations
will have invariant 2-norm if the matrix is skew-symmetric (Lemma 1 (c)) we con-
sider the approach to re-establish the skew-symmetric property as a fruitful and
simple idea and thus a natural path to follow in developing this approximation.

In some codes one will find that an unweighted approximation is using wet points
only. Assuming that the point SE in (7) is a land point we then would get

V C = (VNE + VNW + VSW )/3 ≈ VC ,

and a similar modification in the weighted case. We observe that this way of
handling land points implies that one term will have a factor 1/4 and the other
term will have a factor 1/3 in both (13) and (14). Thus this will in general ruin
the conservation of energy property both in the new weighting case and in the
unweighted, constant H, case.

It is important to notice that the weighted approach (9) guarantees that the exact
solution of the system of ordinary differential equations (3) conserves the total
energy of our model problem in contrast to the unweighted approximation in the
varying depth case. This fact gives us the hope that the popular methods Crank-
Nicolson, leapfrog and forward-backward all will benefit from this new weighting
procedure.

Let us take a closer look at how Crank-Nicolson will perform on the model prob-
lem. Note that (10) and (11) are linear systems of ordinary differential equations
where the matrix involved is skew-symmetric, say S. Crank-Nicolson applied to
(3), using (9) is equivalent to using the trapezoidal method to (10). Given the
approximation D−1

w̃(t) at time t. Using the trapeziodal method one time step
from t to t + ∆t, implies multiplying D−1

w̃(t) by the matrix

(I − 0.5∆tS)−1(I + 0.5∆tS).

According to Lemma 1, case (c), the two norm of this matrix is 1 implying
conserved energy. Thus we find that the Crank-Nicolson method will indeed
conserve the energy when applied to the model problem with varying depth and
the weighted approximation.

It is less obvious how the forward-backward method will perform and we will use
that method in all experiments in the rest of the paper.
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3. THE THREE-CELL CASE

The simplest possible C-grid ocean model involving both U , V and η points is
presented in Figure 2.

η2 η3

η1

V

U

Figure 2: Variables in the Three-cell case.

The matrix-vector product (A + B)w(t) appearing in (3) becomes in this case



















0 f

4
0 gHu

∆x
−gHu

∆x

−f

4
0 −gHv

∆y

gHv

∆y
0

0 1
∆y

0 0 0

− 1
∆x

− 1
∆y

0 0 0
1

∆x
0 0 0 0



































U(t)
V (t)
η1(t)
η2(t)
η3(t)

















The eigenvalues of A+B depend on the parameters involved including the depths
Hu and Hv measured in the U -point and the V -point respectively. Theorem 1
states that for Hu = Hv there will be no growing/damping modes, but for Hu

6= Hv some modes might experience an unphysical growth/damping. In general
note that since the trace of the matrix A+B is zero then the existence of damping
modes always implies the existence of growing modes.

An eigenvalue µ of A + B associated with a growing mode has the real part of µ,
<µ, greater than 0. In Figure 3 we plot the maximum real part of an eigenvalue
as a function of Hu and keeping Hv = 100m for ∆x = ∆y = 20000m. Espelid
and Berntsen [8] give several upper bounds on <µj summarized in (6). In this
Three-cell case the best upper bound is easily found as

|<µj| ≤ ρ(P ) = |f |(k − 1/k)/8,

Figure 3 illustrates that this upper bound is, in this case, a severe overestimate
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of the true value of the maximum real part.
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Figure 3: Maximum value of < µ in s−1 and its upper bound as a function of Hu.

In particular we note that in this case <µ approaches .82 × 10−5s−1 ∼ f

16
as the

neighbor depth ratio increases.

The propagation matrices have 5 eigenvectors/eigenvalues. One eigenvector rep-
resents the stable situation that U = V = 0m2s−1 and all water levels are equal.
The corresponding eigenvalue is 0. Two eigenvectors appear in a pair that may
be linearly combined to form the mode that represents oscillations in/out of the
central cell. The corresponding eigenvalues appear in a complex pair. The real
part of these eigenvalues are positive and this mode will be growing. The last
two eigenvectors also appear in a pair and may be combined to form the pair
that represents the fundamental oscillation in our model domain. Again the
corresponding eigenvalues appear in complex pairs, but the real part of these
eigenvalues are negative and this mode will therefore be damped.

For the case Hu = 100m and Hv = 200m we have chosen η2 = 1m , η1 = η3

= 0m and U = V = 0m2s−1 as initial values, initial values 1, and propagated
the solution 150 hours in time with the forward-backward method and time step
equal to 0.5s. The total energies are given in Figure 4.

Keeping the same depths we have tried η1 = 2√
5
m, η2 = 1√

5
m, η3 = 0m and U

= V = 0m2s−1 as initial values, initial values 2, and propagated the solution 150
hours in time with the forward-backward method and time step equal to 0.5s. The
total energies are given in Figure 4. Initially the total energy is 33.44Jm−3 for
both initial values. For initial values 1 the total energy is 3309.74Jm−3 after 150
hours with an unweighted run. In the first experiment the initial values represent
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the growing mode and the expected increase in energy occurs already at the
start of the simulation. In the second experiment the initial values represent the
damping mode and on a short time scale this is dominating and damping before
the growing mode eventually builds up.
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10
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10
4

Time
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a) unweighted run 

c) unweighted run 

b) and d)   weighted runs 

Figure 4: Total energy in Jm−3 for a) Initial values 1 and unweighted run b)
Initial values 1 and weighted run, c) Initial values 2 and unweighted run and d)
Initial values 2 and weighted run as functions of time in hours.

The modification given in the previous section implies that the matrix vector
product in (10), (A + D−1BD)D−1

w̃(t), becomes





















0 f

4
0

√
gHu

∆x
−

√
gHu

∆x

−f

4
0 −

√
gHv

∆y

√
gHv

∆y
0

0
√

gHv

∆y
0 0 0

−
√

gHu

∆x
−

√
gHv

∆y
0 0 0

√
gHu

∆x
0 0 0 0





































Ũ(t)/
√

gHu

Ṽ (t)/
√

gHv

η̃1(t)
η̃2(t)
η̃3(t)

















3.1 BALANCING THE GROWTH WITH VISCOSITY

From Figure 3 we see that for Hv = 100m and Hu larger than approximately
200m or smaller than 50m, <µ will be greater than 0.5 × 10−5s−1. Such depth
ratios are often appearing in many model areas and one may ask if such a growth
of some eigenmodes is something to worry about. <µ = 0.5×10−5s−1 means that
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this eigenmode will double its energy approximately every 20 hour.

When running 3-D models with more complete sets of equations, we often enhance
the viscosity to get stable runs. We therefore consider to balance the growth above
with a horizontal viscosity term modifying (1) as follows

∂U

∂t
= −gH

∂η

∂x
+ fV + AH(

∂2U

∂x2
+

∂2U

∂y2
)

∂V

∂t
= −gH

∂η

∂y
− fU + AH(

∂2V

∂x2
+

∂2V

∂y2
). (15)

∂η

∂t
= −∂U

∂x
− ∂V

∂y

Assuming U = 0 at the boundary grid points and on land, the new spatial op-
erators above are approximated by AH(−2U/∆x2 − 2U/∆y2) in this Three-cell
case. This introduces the terms −2AH(1/∆x2 + 1/∆y2) in the diagonal elements
in (A+B) associated with the U− and V −block respectively. For the case Hu =
100m and Hv = 200m and with initial values 1 we have run the model 150 hours
and the total energies at the end of the computations are given as function of AH

in Figure 5. In order to avoid growth in energy AH must be chosen greater than
900m2s−1. This will represent a lower limit on the horizontal viscosity we may
apply unless other frictional terms are introduced and for some applications this
may be a larger value than we from physical considerations may want to apply.
The energy after 150 hours in a weighted run with AH = 900m2s−1 is 11.32Jm−3

as opposed to 36.68Jm−3 in the unweighted run.
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Figure 5: Total energy in Jm−3 after 150 hours as a function of AH in m2s−1

with initial values 1 and unweighted runs.
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3.2 BALANCING THE GROWTH WITH BOTTOM FRICTION

Alternatively one may introduce bottom friction to balance the growth in energy.
We therefore consider to balance the growth above with bottom friction terms

∂U

∂t
= −gH

∂η

∂x
+ fV − r

√
U2 + V 2 U/H2

u,

∂V

∂t
= −gH

∂η

∂y
− fU − r

√
U2 + V 2 V/H2

v ,

∂η

∂t
= −∂U

∂x
− ∂V

∂y
,

where r is a bottom drag coefficient. This coefficient is usually taken in the range
2 × 10−3 to 4 × 10−3, see Kowalik and Murty [13]. For the case Hu = 100m and
Hv = 200m and with initial values 1 we have run the model 150 hours and the
total energies at the end of the computations are given as function of r in Figure
6. In order to avoid growth in energy r must be chosen greater than 0.011 which
is much larger than the values normally used in ocean models. In all experiments
in this paper we have used the same approximation of V in a U -point under the
square root in the friction term as for the Coriolis term and vice versa for U in a
V -point.
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Figure 6: Total energy in Jm−3 after 150 hours as a function of r with initial
values 1 and unweighted runs.

4. THE NORTH SEA EXPERIMENT

To investigate whether the growing modes associated with the standard Coriolis
averaging may be a problem in more realistic applications an experiment for an
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extended North Sea discretized in a 20 × 20 km grid with totally 80 × 70 grid
cells has been performed. The bottom matrix is given in Figure 7.
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Figure 7: Bottom topography of the North Sea.

The depths for this model area are given at the cell centers(η points) and they are
averaged to produce the depths in U and V points. In the numerical experiment
all border cells are defined as land cells to avoid open boundary problems. Initial
values of η, U and V are taken from Engedahl et al. [7]. The initial values for η
are given in Figure 8.

The basis for this experiment is (1) with no forcing and no fluxes at the bound-
aries. The solution is propagated in time 600 hours with the forward-backward
technique and 60s time step using both the unweighted approximation and the
weighted approximation. In Figure 9 the total energies in Jm−3 are given for
the two methods. The average growth rate for the simulation is close to 1.2 ×
10−6s−1.
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Figure 9: Total energy in Jm−3 as a function of time in hours for weighted and
unweighted runs.

As for the Three-cell case one may consider to add viscosity terms to the equa-
tions of the form (15) and in Table 1 the total energies in Jm−3 after 600 hours
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of simulation for the two methods are given as functions of the viscosity AH in
m2s−1. We notice that for this more realistic model problem it suffices to apply
AH = 400m2s−1 to balance the growth when using the unweighted approxima-
tion. We also notice that the solutions at the end of the simulations are less
energetic when applying the weighted approximation for all values of AH even if
the differences are reduced as we increase AH .

AH Energy Energy
unweighted case weighted case

0. 203.563 1.265
100. 33.357 0.593
200. 6.029 0.485
300. 1.425 0.445
400. 0.609 0.423
500. 0.449 0.409
600. 0.408 0.397
700. 0.392 0.389

Table 1. Total energies in Jm−3 after 600 hours of simulation using weighted and
unweighted Coriolis as functions of the viscosity AH in m2s−1.

In Figure 10 the η values after 600 hours simulation using the unweighted Coriolis
approximation and AH = 200m2s−1 are given and the corresponding values in
the weighted case are given in Figure 11. Notice especially that the small scale
noise in the Skagerrak is no longer present in the results produced in the weighted
case. The instabilities present in Figure 10 seem to be connected to the steep
topography in the Skagerrak and along the Norwegian trench. Figures 10 and
11 also suggest that it may be possible to run ocean models with smaller values
of viscosity and thus allow the presence of more physical phenomena with the
weighted approach.
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Figure 10: Values of η in cm after 600 hours of simulation using the unweighted
Coriolis approximation and AH = 200m2s−1.
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Figure 11: Values of η in cm after 600 hours of simulation using the weighted
Coriolis approximation and AH = 200m2s−1.

Alternatively bottom friction terms may be added to the problem and in Table 2
the total energies in Jm−3 after 600 hours of simulation for the two methods are
given as functions of the bottom friction parameter r.

r Energy Energy
unweighted weighted

0.000 203.563 1.265
0.001 0.729 0.452
0.002 0.531 0.402
0.003 0.464 0.382
0.004 0.431 0.372
0.005 0.411 0.365
0.006 0.397 0.360

Table 2. Total energies in Jm−3 after 600 hours of simulation after an unweighted
run and a weighted run as functions of the bottom friction parameter r.
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It suffices to apply r = 0.001 to balance the growth when using the unweighted
Coriolis approximation which is a smaller value than normally is applied. How-
ever, the solutions at the end of the simulations are less energetic in the weighted
case for all values of r even if the differences are smaller for larger values of r.

5. THE BIG LAKE EXPERIMENT

In order to investigate how the varying depth problem is experienced in a case
where both wind forcing and bottom friction are included we have studied a
regularly shaped closed sea (a big lake).

Modifying the depth integrated linearized shallow water equations (1) to include
bottom friction and constant wind forcing we may write

∂U

∂t
= −gH

∂η

∂x
+ fV + ρ−1(τ (0)

x − τ (B)
x ),

∂V

∂t
= −gH

∂η

∂y
− fU + ρ−1(τ (0)

y − τ (B)
y ), (16)

∂η

∂t
= −∂U

∂x
− ∂V

∂y
.

The stress terms are non-linear, and given by

ρ−1(τ (0)
x , τ (0)

y ) = λ
√

W 2
x + W 2

y (Wx, Wy), (17)

ρ−1(τ (B)
x , τ (B)

y ) = r
√

U2 + V 2(U, V )/H2. (18)

Wx, Wy are the wind velocity components, ms−1, in the x- and y-direction, re-
spectively. λ is equal to the product of the drag coefficient and the ratio between
the densities of air and water. λ is set to 3.2×10−6. r is a bottom drag coefficient,
which is set equal to 3.0×10−3. ρ is the density, τ

(0)
(x,y) is the wind stress and τ

(B)
(x,y)

is the bottom stress.

The depth integrated shallow water equations with bottom friction and constant
wind forcing are discretized, and integrated from a basic state at rest using the
forward-backward method.

We let the maximum depth vary from 20m to 150m. We choose ∆t = 3 minutes
for all runs, so that the CFL-criteria is fulfilled for a maximum depth of 150m.
The sea has a closed boundary, and the transport normal to the boundary must
vanish.
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After forty days we have stationary current and surface displacement fields. In
the stationary state the left hand sides of (16) vanish. This gives a divergence free
transport and a surface displacement field, where the horizontal pressure gradient
is balancing the stress terms and the Coriolis force.

The lake bathymetry is given in the figures 12a and 12b for the shallowest and
deepest case, respectively. The area outside the 10m contour is land (Figure 12a).
The unit along axes and the grid resolution are 10km.
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(a) shallowest case
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Figure 12: Bottom topography of the Big Lake. The unit along both axes is
10km

The two outermost grid-boxes around the sea are land-boxes where H = 0. Six
boxes arranged symmetrically at each corner are also land-boxes. Else the topog-
raphy is given by the formula

Hk,l = 10 + (Hmax − 10)(cos(π(k − 11)/20)cos(π(l − 11)/20))2

In the experiment the maximum depth Hmax is varied from 20m to 150m in steps
of 10m. Thus in the shallowest case where the undisturbed depth sloped from
10.48m at the bays to 20m at midsea, we ran the model first with an unweighted
Coriolis approximation and thereafter with weighting. The wind was westerly
10ms−1, that is Wx = 10ms−1, Wy = 0ms−1. Figures 13a and b show the
resulting current fields (in cms−1). It is hard to see any differences between the
two runs for this shallow case. Neither are there any differences in the surface
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displacement (not shown)
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Figure 13: Current for the shallowest case.
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Figure 14: Current for the deepest case.

The runs were repeated thirteen times. The current plots of the deepest case are
shown in the figures 14a and b. Differences are clearly seen, for example around
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point (k, l) = (12, 13). The stronger slope (from 16.7m at the bays to 150m
midsea) makes the effect of the weighting stronger.

The surface displacement is unaffected (not shown). The maximum current dif-
ference between unweighted and weighted runs as a function of maximum depth
is plotted in Figure 15. The effect of an increased slope is evident. The maximum
difference increases from only 2cms−1 in the shallowest case to 14cms−1 in the
deepest case. The currents are slower in the deepest case (compare figures 14 and
15), and 14cms−1 is a pronounced effect here.
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Figure 15: The maximum current difference between weighted and unweighted
runs.

Next we will study the energy of the model system. The total kinetic energy of
the sea is given by

K =
1

2
ρ∆x∆y

∑

k,l

(U2
k,l/Hk,l + V 2

k,l/Hk,l)

The results of the fourteen different cases are plotted in Figure 16. The total
kinetic energy increases with maximum depth. This increase is weaker, when
weighting is applied than if it is not applied. The difference is plotted in Figure
17 as a function of depth. It increases weakly from 0.08 × 1011J for 20m (less
than 5%) to 1.81 × 1011J for 80m (3.6%), then more and more strongly up to
8.13 × 1011J for 150m (11.2%).
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Figure 16: Total kinetic energy as a function of maximum depth. The unweighted
runs gave the upper curve, while the weighted runs gave the lower curve.
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Figure 17: Total kinetic energy difference between unweighted and weighted runs
as a function of maximum depth.

The total potential energy of the ocean is given by

P =
1

2
ρg∆x∆y

∑

k,l

η2
k,l

It decreases with increasing maximum depth from about 13.2× 1011J for 20m to
about 1.1× 1011J for 150m(not shown), and the effect of weighting is very small,
see Figure 18. It is interesting that the weighting gives an increase in potential
energy, whereas it gave a decrease in kinetic energy.
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Figure 18: Total potential energy difference between unweighted and weighted
runs as a function of maximum depth.

The experiments with the Big Lake have rather modest k = max
√

Hu/Hv values
close to 1 , see Figure 3. To see what happens when the k value is larger than 2,
we made an experiment with the shallowest case where two 100m deep troughs
along i=11 and along j=11 were added giving k ≈

√
10, see Figure 19 .
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Figure 19: Bottom topography with deep troughs in the Big Lake.
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Figure 20: Currents with deep troughs in the Big Lake.
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Figure 21: The maximum current difference between weighted and unweighted
runs.

The results show much larger differences between unweighted and weighted runs.
The total kinetic energy changed from 133.3 × 1011J in the unweighted run to
around 105 × 1011J in the weighted, which is a substantial 20% change. The
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largest current change was about 30cms−1, which is also substantial, see figures
20 and 21.

6. CONCLUSIONS

Linear analysis shows that in the constant depth case the Arakawa C-grid may
be an attractive choice for spatial discretization when solving the shallow water
equations. In the present paper the varying depth case is analyzed and it is
shown that the unweighted approximation of the Coriolis terms will give rise to
growing modes and instability unless frictional terms are added to the equations.
A new weighted approximation that guarantees no growth or damping for the
purely hyperbolic case is suggested. These two approaches are compared for a
simple Three-cell case, an enclosed North Sea and for a wind driven Big Lake.
In the experiments it is demonstrated that in the unweighted case we may get
unphysical growth in energy and artificial flows.

In real applications diffusion, explicit through frictional terms or implicit through
numerical diffusion, is introduced both for physical reasons, but often also in
order to stabilize the numerical experiments. The growing modes associated with
varying depth and the C-grid using the unweighted approximation may force us
to enhance the diffusion more than we would like from physical considerations.
The suggested weighting procedure offers a simple solution to this problem.

The method used to develop the energy conservative spatial discretization is based
on producing propagation matrices for the semi-discretized partial differential
equations that are similar to skew-symmetric matrices. The method may be
applied to equations with non-constant parameters as in this case. To extend
the analysis to 3-D equations including only the same terms as in the present
study, neglecting bottom friction and viscosity, is straightforward if the prognostic
equations for the momentum are written on transport form, ∂(uH)/∂t, where u
is the velocity. This is not surprising for the problem with the present terms is
basically 2-D. If the moment equations are given for the velocities, ∂u/∂t, a slight

revision is required. The similarity matrix D will get terms of the type
√

g/Hu

on the diagonal and the Coriolis weighting has to be adjusted accordingly.

We also hope to extend the study by including non-linear terms. The task will be
to produce consistent approximations to these terms that also give propagation
matrices that are similar to skew-symmetric matrices.
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