Nowhere-dense graph classes and algorithms

Z. Dvořák

Geilo winter school
unless I attribute the results to somebody, they are by Nešetřil and Ossona de Mendez
they are also preparing a comprehensive book on the subject:
 Sparsity (Graphs, Structures, and Algorithms)
Plan of the lecture

- tell something about **nowhere-dense graph classes** and **graph classes with bounded expansion**
- and algorithms for them
- a little about data structures
- we will avoid mostly theoretical connections to logic and theory of homomorphisms
The term **bounded expansion** used in this talk has no immediate connection to

- edge/vertex expansion of graphs, or
- expanders.

I apologize for sticking with this somewhat unfortunate name.
Graph classes

- a graph class: a set (more precisely, proper class) of graphs closed on isomorphism
- we only consider finite graphs without loops and parallel edges
- “nowhere-dense” and “bounded expansion” are properties of graph classes
 - not of single graphs
 - e.g., the class of all planar graphs has bounded expansion
Plan of the lecture

- usually, I start by defining what “nowhere-dense” and “bounded expansion” means
- but then lot of time is spent by explaining the definitions
- so, let’s start with the algorithms
Subgraph problem

Problem

Input: graphs H and G.
Question: is H a subgraph of G?
General algorithms for subgraph problem

- NP-complete \((H = K_k\) is a special case).
- trivial algorithm in \(O(kn^k)\), where \(n = |V(G)|\) and \(k = |V(H)|\).
- less trivially in \(n^{\omega k/3}\) (Nešetřil and Poljak). Idea:
 - \(K_3 \subseteq G \iff E(G^2) \cap E(G) \neq \emptyset\)
 - \(G^2\) computed by matrix multiplication.
- Can \(f(k)n^{O(1)}\) algorithm exist (FPT)?
 - unlikely – \(W[1]\)-complete.
Restricting G

What if G belongs to some special class of graphs?

- G has tree-width at most t: $f(k, t)O(n)$.
- G has maximum degree at most d: $f(k, d)O(n)$
- G is planar: $f(k)O(n)$ (Eppstein)
- G does not contain K_t as a minor: $f(k, t)n^{O(1)}$ (Dawar, Grohe and Kreutzer)

Using:

- locality
- decompositions
Decompositions of graphs

Idea: partition $V(G)$ to a small number of parts, s.t. union of every $|V(H)|$ of them induces a graph with simple structure (e.g., bounded tree-width).
Decompositions of graphs

Definition

$(p, tw \leq t)$-coloring of G is a coloring such that union of every p color classes induces a graph of tree-width at most t.

Algorithm:

- find a $(k, tw \leq t(k))$-coloring of G by $m(k)$ colors
- for each k color classes C_1, \ldots, C_k, test whether $H \subseteq G[C_1 \cup \ldots \cup C_k]$.

Time complexity $O\left(c(k, n) + \binom{m(k)}{k} f(k, t(k)) n\right)$, where

- $c(k, n)$ is the complexity of finding the coloring
- $f(k, t)O(n)$ is the complexity of finding subgraph in graphs of tree-width at most t.
Example: planar graphs

Theorem (Robertson and Seymour)

A planar graph of radius r has tree-width at most $3r$.

- choose a vertex v
- let $C_i = \{u \in V(G) : d(u, v) \mod (p + 1) = i\}$

C_0, C_1, \ldots, C_p give a $(p, \text{tw} \leq 3p)$-coloring by $p + 1$ colors.
Example: planar graphs

Theorem

For every p, a $(p, tw \leq 3p)$-coloring by $p + 1$ colors can be found in linear time for every planar graph.

Consequently,

Theorem

Testing whether $H \subseteq G$ can be done in $O(kf(k, 3k)n)$ for every planar graph G.

Proper minor-closed classes

Theorem (DeVos, Ding, Oporowski, Sanders, Reed, Seymour and Vertigan)

If \mathcal{C} is a proper minor-closed class of graphs, then for every p, every $G \in \mathcal{C}$ has a $(p, tw \leq p - 1)$-coloring by $f_{\mathcal{C}}(p)$ colors.

- implies FPT for subgraph testing
- but complicated (based on minor structure theory).

Definition

A class of graphs \mathcal{C} has low tree-width colorings if there exists a function g such that for every p, every $G \in \mathcal{C}$ has a $(p, tw \leq p - 1)$-coloring by $g(p)$ colors.
we want a simpler algorithm for finding $(p, tw \leq p - 1)$-coloring

but tree-width is still a rather complicated parameter

can even simpler class of graphs be used instead?

$(2, tw \leq 1)$-coloring \ldots acyclic coloring

- union of any two color classes induces a forest
- no bichromatic cycles

star coloring

- union of any two color classes induces a star forest
- no bichromatic P_4
- needs at most quadratic number of colors wrt. acyclic coloring
Tree-depth

- **depth** of a rooted tree: maximum number of edges on a path to the root
- **closure** $\text{cl}(T)$ of a rooted tree T: for each v, add edges from v to all vertices on the path from v to the root
Definition

Tree-depth $\text{td}(G)$ of a connected graph G is the minimum depth of a rooted tree T such that $G \subseteq \text{cl}(T)$. Tree-depth of disconnected graph is the maximum of the tree-depths of its components.
Properties of tree-depth

1. \(\text{td}(G) = 0 \) ... isolated vertices; \(\text{td}(G) = 1 \) ... star forest
2. minor-monotone
3. \(\text{td}(G) \geq \text{pw}(G) \geq \text{tw}(G) \)
4. \(G \) connected: \(\text{td}(G) = 1 + \min \{ \text{td}(G - v) : v \in V(G) \} \)
5. \(\text{td}(K_n) = n - 1, \text{td}(P_n) = \lfloor \log_2 n \rfloor \)
Tree-depth and paths

Theorem

\[\lceil \log_2 p \rceil \leq td(G) \leq \left(\frac{p+1}{2} \right), \text{ where } p \text{ is the number of vertices of the longest path in } G. \]

Proof.

\(P \subseteq G \) is a path on \(p \) vertices \(\Rightarrow G - V(P) \) does not contain any path on \(p \) vertices:

\[td(G) \leq p + td(G - V(P)) \leq p + \left(\frac{p}{2} \right) \text{ by induction} \]
Tree-depth coloring

Definition

A (p, td ≤ t)-coloring of G is a coloring such that union of every p color classes induces a graph of tree-depth at most t.

Definition

A class of graphs C has low tree-depth colorings if there exists a function g such that for every p, every G ∈ C has a (p, td ≤ p – 1)-coloring by g(p) colors.

Does any non-trivial graph class have this property?
Tree-depth versus tree-width

Claim

There exists a function g such that for every t a p, every graph with tree-width at most t has a $(p, td \leq p - 1)$-coloring by $g(t, p)$ colors.

We will prove a stronger result later. For now:

Corollary

If G has a $(p, tw \leq t)$-coloring by c colors, then it also has a $(p, td \leq p - 1)$-coloring by at most $cg(t, p)^{(c)}$ colors.
Proof of the Corollary.

- Let φ be the $(p, \text{tw} \leq t)$-coloring.
- Let $C_1, C_2, \ldots, C_{c(p)}$ be all possible unions of p color classes and let φ_i be a $(p, \text{td} \leq p - 1)$-coloring of $G[C_i]$ by at most $g(t, p)$ colors.
 - and define φ_i arbitrarily on $V(G) \setminus C_i$
- Assign each vertex v the color
 \[
 \left(\varphi(v), \varphi_1(v), \ldots, \varphi_{c(p)}(v)\right)
 \]
 - any union of at most p color classes in this coloring is a subset of some C_i
 - and thus also a subset of a union of at most p color classes of φ_i
Corollary (of the Corollary)

A class of graphs has low tree-width colorings if and only if it has low tree-depth colorings.
How to find a coloring?

Greedy algorithm:
- remove a vertex v of smallest degree, color the rest of the graph, then color v by the smallest possible color

Reformulation: let v_1, v_2, \ldots, v_n be an ordering of $V(G)$.
- backdegree of v_i is the number of its neighbors among $v_1, v_2, \ldots, v_{i-1}$
- coloring number of the ordering is the maximum of backdegrees of the vertices

Definition

Coloring number $col_1(G)$ is the minimum of coloring numbers of all possible orderings of $V(G)$.

Note: $\chi(G) \leq col_1(G) + 1$.

Nowhere-dense graph classes and algorithms
Z. Dvořák
Introduction
Subgraph problem
Tree-depth
Orderings
Generalized coloring number
Bounded expansion
Nowhere-dense graph classes
Shallow minors
Closures
Orientations
What about acyclic coloring?

Arrangeability: let v_1, v_2, \ldots, v_n be an ordering of $V(G)$.

- v_j is 2-backreachable from v_i if $j < i$ and there exists a path P of length at most two between v_i and v_j, such that the internal vertex v_m (if any) of P satisfies $i < m$.
- 2-backdegree of v is the number of vertices 2-backreachable from v
- arrangeability of the ordering is the maximum of 2-backdegrees of vertices

Definition

Arrangeability $\text{col}_2(G)$ is the minimum of arrangeabilities of all possible orderings of $V(G)$.
Arrangeability

2-backdegree of \(v \) is 4
What about acyclic coloring?

Theorem

G has an acyclic coloring by at most \(\text{col}_2(G) + 1 \) *colors.*

Proof.

- Color vertices in the order certifying the arrangeability, assign colors different from 2-backreachable vertices
- No bichromatic cycle:

![Diagram](image-url)

\(W \) is 2-backreachable from \(V \)
Let v_1, v_2, \ldots, v_n be an ordering of $V(G)$.

- An s-backpath from v_i to v_j with $j < i$ is a path of length at most s such that if v_m is an internal vertex of P, then $i < m$.
- v_j is s-backreachable from v_i if there exists an s-backpath from v_i to v_j.
- The s-backdegree of v is the number of vertices s-backreachable from v.
- The s-coloring number of the ordering is the maximum of s-backdegrees of the vertices.

Definition

The s-coloring number $\text{col}_s(G)$ is the minimum of s-coloring numbers of all possible orderings of $V(G)$.
Working with generalized coloring number

Problems:

- Does generalized coloring number give us low tree-depth colorings?
- How to determine it (and find the ordering)?
 - NP-complete.
 - How to approximate it?
Let \(v_1, v_2, \ldots, v_n \) be an ordering of \(V(G) \).

Definition

\(v_a \) is \((s, r)\)-backreachable from \(v_b \), if there exist indices
\(a = i_0, i_1, \ldots, i_t = b \), where \(t \leq r \), and \(v_{i_j} \) is \(s \)-backreachable from \(v_{i_{j+1}} \) for \(0 \leq j < t \).

If the ordering has \(s \)-coloring number \(d \), then at most
\(d + d^2 + \ldots + d^r < (d + 1)^r \) vertices are
\((s, r)\)-backreachable from any vertex.
Every graph has \((p, \text{td} \leq p - 1)\)-coloring by at most \((\text{col}_s(G) + 1)^s\) colors, where \(s = 2^{p-1}\).

Proof.

- colors different from \((s, s)\)-backreachable vertices
- union of every \(t \leq p\) color classes has \(\text{td} \leq t - 1\):
How to determine s-coloring number?

- greedy algorithm
 - choose vertices v_n, v_{n-1}, \ldots
 - always pick a vertex with smallest s-backdegree
- problem: picking v_i may increase s-backdegrees of remaining vertices
 - it is possible to make a wrong choice
- solution: minimize a different parameter
Let \(v_1, v_2, \ldots, v_n \) be an ordering of \(V(G) \).

- the \textit{s-backconnectivity} of a vertex \(v_i \) is the maximum number of \textit{s}-backpaths from \(v_i \) that intersect only in \(v_i \)
- the \textit{s-admissibility} of the ordering is the maximum of the \textit{s-backconnectivities} of the vertices

\textbf{Definition}

The \textit{s-admissibility} \(\text{adm}_s(G) \) is the minimum of \textit{s-admissibilities} of all possible orderings of \(V(G) \).
Admissibility

Nowhere-dense graph classes and algorithms

Z. Dvořák

Introduction
Subgraph problem
Tree-depth
Orderings
Generalized coloring number
Bounded expansion
Nowhere-dense graph classes
Shallow minors
Closures
Orientations

Admissibility

arrangeability:

2-back degree = 5

2-back connectivity = 4
Admissibility

Observation: greedy algorithm correctly determines $\text{adm}_S(G)$
Problem: determining s-backconnectivity is NP-complete for $s \geq 5$.

- but, testing whether it is less than a given constant is in P, and
- can be approximated within the factor of s (greedily)

Testing whether $\text{adm}_s(G) \leq a$ for fixed a and s can be implemented in $O(n)$ using further results.
Admissibility vs coloring number

Theorem

Let v_1, v_2, \ldots, v_n be an ordering of $V(G)$, c its s-coloring number and a its s-admissibility. Then $a \leq c \leq a^s$.

Proof.

- let T be the tree of shortest s-backpaths from v_i
- $\Delta(T) \leq a$
- hence, T has at most a^s leaves
Definition

A class of graphs \mathcal{C} has bounded admissibilities if there exists a function f such that for every s and every $G \in \mathcal{C}$, $\text{adm}_s(G) \leq f(s)$.

So far, we proved the following.

Theorem (Zhu)

Any class of graphs with bounded admissibilities has low tree-depth colorings.

Which graph classes have bounded admissibilities?
For a graph G,

- the k-subdivision $sd_k(G)$ is the graph created from G by subdividing every edge by exactly k vertices.
- a $(\leq k)$-subdivision is a graph created from G by subdividing every edge by at most k vertices; not necessarily every edge the same number of times; some edges may remain unsubdivided.
- a $(\leq k)$-topological minor of G is any H such that some $(\leq k)$-subdivision of H is a subgraph of G.

Image: 2-subdivision of K_4
Admissibility of subdivisions

Theorem

If H is a $(≤ s − 1)$-subdivision of a graph with minimum degree $d ≥ 3$, then $\text{adm}_s(H) ≥ d$.

Proof.

- let v be the last vertex of degree at least three in the ordering
- the s-backconnectivity of v is at least d
Theorem

If \(\text{adm}_s(G) > (16d)^s \), then \(G \) has a \((\leq s - 1)\)-topological minor \(H \) such that \(\delta(H) > d \).

Proof.

- Otherwise, average degree of any \((\leq s - 1)\)-topological minor is \(\leq 2d \).
- Greedy algorithm fails, with set \(M \) of unchosen vertices:
Subdivisions in high-admissibility graphs

- We have more than $(16d)^s|M|$ paths.
- Almost gives the topological minor, but the paths may overlap.
- We need to clean up the paths; consecutively by levels $(s - 1$ times)
- Assuming levels up to i consist of disjoint paths:
 1. throw away paths ending with the next step: $-4d|M|
 2. if next step of P ends in level $j < i$ of Q, throw away $P
 $ or Q: /3
 3. for each vertex reachable in level $i + 1$, choose one of
 the paths: /4d
- The resulting graph is too dense.
Subdivisions in high-admissibility graphs
Definition

Let $\nabla_s(G)$ be the largest minimum degree of an $(\leq s)$-topological minor of G.

We have

$$\nabla_{s-1}(G) \leq \text{adm}_s(G) \leq (16\nabla_{s-1}(G))^s.$$
Definition

A class of graphs \mathcal{C} has **bounded expansion** if there exists a function f such that for every s and every $G \in \mathcal{C}$, $\nabla_s(G) \leq f(s)$.

Theorem (Zhu; D.)

A class has bounded expansion if and only if it has bounded admissibilities.

Recall: bounded admissibilities \Rightarrow low tree-depth colorings.
Lemma

If $\delta(H) > d$, then every subdivision H' of H has $td(H') > d$.

Proof.

Consider the vertex v of degree greater than d appearing deepest in the tree certifying tree-depth of H':
Low tree-depth colorings and subdivisions

Theorem

If \(sd_s(G) \) has an \((s + 2, \text{td} \leq s + 1)\) coloring by at most \(c \) colors, then \(\delta(G) \leq 2(s + 1)(\binom{c}{s+2}) \).

Proof.

- For \(e \in E(G) \), let \(S_e \) be the set of colors on the corresponding path (including endvertices).
- For \(S \subseteq \{1, \ldots, c\} \) of size \(s + 2 \), let \(G_S \) be the subgraph with edges \(\{e : S_e \subseteq S\} \).
- For some \(S \), \(G_S \) has average degree at least \(\delta(G)/(\binom{c}{s+2}) \), and contains \(G' \subseteq G_S \) with \(\delta(G') \geq \delta(G)/\left[2\binom{c}{s+2}\right] \).
- Observe \(\text{td}(sd_s(G')) \leq s + 1 \) and apply lemma.
Corollary

If a class of graphs has low tree-depth colorings, then it has bounded expansion.

I.e., the following are equivalent:

- bounded expansion
- bounded admissibilities
- having low tree-depth colorings
- having low tree-width colorings
Classes with bounded expansion

Theorem

Any proper class \(\mathcal{C} \) of graphs closed on topological minors has bounded expansion.

Proof.

- \(K_k \not\in \mathcal{C} \) for some \(k \)
- if \(H \in \mathcal{C} \), then \(\delta(H) \leq O(k^2) \) (Komlós)
- closed on topological minors: \(\overline{\nabla}_s(G) \leq O(k^2) \) for every \(G \in \mathcal{C} \) and \(s \geq 0 \).
Corollary

The following graph classes have bounded expansion:

- graphs with bounded maximum degree
- proper minor-closed graph classes, e.g.,
 - graphs with bounded tree-width
 - planar graphs
Remark on bounded tree-width

Bounded tree-width \Rightarrow bounded expansion \Rightarrow low tree-depth colorings, proving

Claim

There exists a function g such that for every t a p, every graph with tree-width at most t has a $(p, td \leq p - 1)$-coloring by $g(t, p)$ colors.

as we promised before.
Other classes with bounded expansion

- graphs drawn in a fixed surface with a bounded number of crossings on each edge
- created by adding edges in mutual distance \(\omega(1) \) to graphs in any class with bounded expansion
- almost all graphs with linear number of edges
Generalizations of the subgraph problem

For all graph classes with bounded expansion (D., Král’, Thomas):

- testing first-order properties in linear time
 - e.g., having dominating set of size at most k (k fixed):
 $$(\exists x_1) \ldots (\exists x_k)(\forall y) \quad y = x_1 \lor \ldots \lor y = x_k \lor$$
 $$E(y, x_1) \lor \ldots \lor E(y, x_k).$$

- data structure for graphs with colored vertices and edges
 - linear-time initialization
 - change color of an element in $O(1)$
 - decide first-order query with bounded number of quantifiers in $O(1)$
A class of graphs \(C \) is nowhere-dense if there exists a function \(f \) such that for every \(s \), \(K_{f(s)} \) is not an \((\leq s)\)-topological minor of any graph in \(C \).

- Equivalently, for every \(s \), the set of \((\leq s)\)-topological minors of graphs in \(C \) does not contain all graphs.
- Bounded expansion \(\Rightarrow \) nowhere-dense
Properties of nowhere-dense classes

If \mathcal{C} is nowhere-dense, then for every $\varepsilon > 0$, integer s and $G \in \mathcal{C}$ with n vertices:

- $\nabla_s(G) = O(n^\varepsilon)$, hence
- $\text{adm}_s(G) = O(n^\varepsilon)$, hence
- G has $(s, \text{td} \leq s - 1)$ coloring by $O(n^\varepsilon)$ colors, hence
- we can test $H \subseteq G$ (for fixed H) in $O(n^{1+\varepsilon})$.
Most results for graph classes with bounded expansion also holds for nowhere-dense graph classes (with $O(n^c)$ replacing constants). Exception:

Problem

Are first-order properties FPT on nowhere-dense graph classes?
Theorem

Assume that the subgraph problem is not FPT on the class of all graphs. If the subgraph problem is FPT on a class of graphs \mathcal{C} closed on subgraphs, then \mathcal{C} is nowhere-dense.

Proof.

For every $s \geq 0$,

$$ H \subseteq G \iff sd_s(H) \subseteq sd_s(G). $$
Examples of nowhere-dense classes

- locally bounded expansion, including
 - locally bounded tree-width
 - locally proper minor closed

Definition

A class of graphs \mathcal{C} has **locally bounded expansion** if there exists a function f such that for every $s, d \geq 0$ and every $G \in \mathcal{C}$, if H is a subgraph of G of radius at most d, then $\nabla_s(H) \leq f(s, d)$.
The class

\[\mathcal{C} = \{ G : \Delta(G) \leq \log \log |V(G)|, \operatorname{girth}(G) \geq \log \log |V(G)| \} \]

- is nowhere-dense: if \(\text{sd}_s(K_k) \in \mathcal{C} \), then \(k - 1 \leq \log \log |V(G)| \leq 3s \).
- does not have bounded expansion: unbounded minimum degree
Bounded expansion has many different characterizations.

But we still did not see the one that came the first chronologically.
Shallow minors

Definition

A depth r minor of G is a graph obtained from a subgraph of G by contracting vertex-disjoint subgraphs of radius at most r.

![Shallow minor example](image)
Definition

Let $\nabla_r(G)$ be the greatest average density $|E(H)|/|V(H)|$ of a depth r minor H of G.

Remark: Greatest Reduced Average Density, hence the ∇ symbol.

Theorem (D.)

For any $r \geq 0$ and any graph G,

$$\nabla_{2r}(G) \leq 2\nabla_r(G) \leq 4(4\nabla_{2r})^{(r+1)^2}.$$

Proof.

Idea: split the spanning trees of the shallow minor on vertices of big enough degree.
Shallow minors and bounded expansion

Corollary

A class of graphs \mathcal{C} has bounded expansion if and only if there exists a function f such that for every r and every $G \in \mathcal{C}$, $\nabla_r(G) \leq f(r)$.

We say that the expansion of \mathcal{C} or of the graph G is bounded by f.

Introduction
Subgraph problem
Tree-depth
Orderings
Generalized coloring number
Bounded expansion
Nowhere-dense graph classes
Shallow minors
Closures
Orientations
Nowhere-dense graph classes and algorithms

Z. Dvořák

Introduction

Subgraph problem

Tree-depth

Orderings

Generalized coloring number

Bounded expansion

Nowhere-dense graph classes

Shallow minors

Closures

Orientations

Conclusions

Small separators

Definition

A set $S \subseteq V(G)$ is a separator if each component of $G - S$ has at most $2|V(G)|/3$ vertices.

Theorem (Plotkin, Rao and Smith)

If a graph G on n vertices does not contain K_h as depth $d \log_2 n$ minor, then G has a separator of size at most $O(n/d + dh^2 \log n)$. Can be found in $O(|E(G)|n/d)$.

Corollary

If there exists $c \geq 0$ such that the expansion of G is bounded by $O(r^c)$, then G has a separator of size $(n \log n)^{1-1/(2c+2)}$. If the expansion of G is bounded by a subexponential function, then G has separator of sublinear size. Tight because of 3-regular expanders.
Consequences of small separators

Corollary

If the expansion of G is bounded by a subexponential function, then G has sublinear tree-width.

Corollary (D., Norine)

For any function f such that \(\limsup_{r \to \infty} \frac{\log \log f(r)}{\log r} < \frac{1}{3} \), there exists $c > 0$ such that the number of non-isomorphic graphs G on n vertices with expansion bounded by f is at most c^n.
Lemma

Let H be the graph obtained from G by blowing up each vertex to a clique of size k. Then $\overline{\Delta}_s(H)$ is bounded by a function of $\overline{\Delta}_s(G)$ and k.

Proof.

Let $F' \subseteq H$ be an $(\leq s)$-subdivision of a graph F with $\delta(F) = \overline{\Delta}_s(H)$. Each $e \in E(F)$ has a path $P_e \subseteq F'$.

- P_e does not contain twins, unless it is an edge
- merge twin branchpoints: min. degree $\geq (\delta - k + 1)/k$
- remove twins of branchpoints: average degree $A \geq (\delta - k + 1)/k - 2(k-1)$

Each P_e now conflicts with $\leq (k - 1)s$ other paths. Choose largest subgraph where all paths are independent.
Blowing up vertices

Nowhere-dense graph classes and algorithms

Z. Dvořák

Introduction

Subgraph problem

Tree-depth

Orderings

Generalized coloring number

Bounded expansion

Nowhere-dense graph classes

Shallow minors

Closures

Orientations

- No twins in paths:

- Merge twin branch vertices:

 - Lose k-1 neighbors

 - Rest of the degree can decrease kX

- Remove twins of branches:

 - \(\leq (k-1) \cdot \Delta(Y) \)

 - Edges lost

- Each conflict with \(\leq (k-1) \cdot S \)
Lemma

Let H be the graph obtained from G by contracting a forest. Then $\nabla_s(H)$ is bounded by a function of $\nabla_{3s+5}(G)$.

Proof.

$$\nabla_s(H) \leq 2\nabla_{\lceil s/2 \rceil}(H) \leq 2\nabla_{3\lceil s/2 \rceil+1}(G) \leq 2f(\nabla_{3s+5}(G))$$
Theorem

For any fixed \(k \geq 0 \), the class of graphs that can be drawn in plane with at most \(k \) crossings on each edge has bounded expansion.

Proof.

Put vertices on crossings and subdivide the edges: planar graph, with bounded expansion. Blow up all vertices to cliques of size two, contract forest: creates crossings. Suppress vertices of degree two (at most \(2k \) contractions of a forest).
Orientations with bounded degree

Claim

\[\nabla_0(G) \leq d \text{ if and only if } G \text{ has an orientation with indegree at most } d. \]

- compare with: if \(\nabla_0(G) \leq d \), then \(G \) is \(2d \)-degenerate (the reverse implication does not hold)
 - equivalently, \(G \) has an acyclic orientation with indegree \(\leq 2d \)
- we will now consider orientations whose acyclic versions correspond to generalized coloring numbers
Augmentations

Let G be a directed graph. An unordered pair $\{u, v\}$ is

- a \textit{transitive pair} if $uw, wv \in E(G)$ for some $w \in V(G)$
- a \textit{fraternal pair} if $uw, vw \in E(G)$ for some $w \in V(G)$

Definition

A directed graph H is an \textit{augmentation} of G if the edge set of the underlying undirected graph of H consists of the edges of G and of all transitive and fraternal pairs in G.

I.e., add the transitive and fraternal pairs as edges and give them arbitrary orientations.
Density of augmentations

Theorem

If H is the underlying undirected graph of an augmentation of G and d is the maximum indegree of G, then $\nabla_s(H)$ is bounded by a function of d and $\nabla_{3s+5}(G)$.

Proof.

H is a subgraph of graph obtained by replacing each vertex by $d + 1$ vertices and contracting a star forest:
Theorem

If H is the underlying undirected graph of an augmentation of G and d is the maximum indegree of G, then $\nabla_s(H)$ is bounded by a function of d and $\nabla_{3s+5}(G)$.

In particular, there exists an augmentation of G with maximum indegree bounded by a function of d and $\nabla_5(G)$. We call such an augmentation steady.
Short paths via augmentations

Lemma

Let $s \geq 2$, let G be a graph, G_0 its orientation and $G_0, G_1, G_2, \ldots, G_s$ a sequence of augmentations. If the distance between u and v in G is at most $(3/2)^{s-1} + 2$, then u and v are either adjacent or have a common in-neighbor in G_s.

Proof.

In each augmentation, the path of length t gives rise to a path of length $\leq 2/3t + 2/3$.
Oracle for short paths

Fix \(s \geq 2 \). Find an orientation \(G_0 \) of \(G \) with bounded indegree and compute augmentations \(G_1, \ldots, G_s \).

- for each edge, remember the length of the shortest corresponding path
- plus one of the ways how it was created
- for bounded expansion classes, if steady augmentations are used:
 - linear-time preprocessing
 - by Lemma, \(O(1) \) queries for paths of length at most \((3/2)^{s-1} + 2 \) (every vertex has only \(O(1) \) in-neighbors).
Dynamic version

- **idea:** maintain the augmentations when edges are added or removed
- **problem:** adding edge can create unbounded number of edges due to transitive pairs
- **solution:** only add edges for fraternal pairs (fraternal augmentation).
Lemma

Let $s \geq 0$, let G be a graph, G_0 its orientation and $G_0, G_1, G_2, \ldots, G_s$ a sequence of fraternal augmentations. If the distance between u and v in G is at most $s + 1$, then there exists a path $P = w_1w_2 \ldots w_t$ between $u = w_1$ and $v = w_t$ in G_s of length at most $s + 1$, and an index $c \leq t$ such that the edges $w_1w_2, w_2w_3, \ldots, w_{c-1}w_c$ are oriented towards u and the rest of the edges is oriented towards v.

To find the path, search in-neighbors up to distance $s + 1$ ($O(1)$ if steady augmentations are used)
Theorem (Brodal and Fagerberg)

For any \(d > 0 \) there exists \(D \) so that an orientation of a \(d \)-degenerate graph on \(n \) vertices with maximum indegree \(D \) can be maintained within the following time bounds:

- an edge can be added in \(O(\log n) \) (amortized)
- an edge can be removed in \(O(1) \)

Each vertex stores a list of in- and out-neighbors.
Maintaining the augmentations

- adding an edge results in $O(\log n)$ reorientations in G_0
- each reorientation adds or removes $O(1)$ edges in G_1
- $O(\log^2 n)$ reorientations in G_1, ...

Gives $O(\log^s n)$ update time for maintaining paths of length at most s.
Theorem

Let $s \geq 1$, let G be a graph, G_0 its orientation and $G_0, G_1, G_2, \ldots, G_p$ a sequence of augmentations, where $p = 3(s + 1)^2$. Let H be the underlying undirected graph of G_p. Then any proper coloring of H gives an $(s, \text{td} \leq s - 1)$-coloring of G.

For bounded expansion classes, linear-time and the number of colors is bounded, if steady augmentations are used. Proof is lengthy and technical.
Theorem

Let $s \geq 1$, let G be a graph, G_0 its orientation and $G_0, G_1, G_2, \ldots, G_p$ a sequence of augmentations, where $p = \binom{s+1}{2}$. Any proper coloring of G_p is an $(s, \text{td} \leq \binom{2s}{2})$-coloring of G.

Proof.

- Show that no path on 2^s vertices uses $\leq s$ colors, since the subgraph induced by the path contains K_{s+1}.
- After $\binom{s}{2}$ augmentations we have two disjoint K_s;
- have directed Hamiltonian paths, starts v_1 and v_2;
- v_1 and v_2 adjacent or a common in-neighbor.
- Say v_1 has an in-neighbor w outside of its clique,
- next s augmentations to add w to the clique.
Low tree-depth colorings via augmentations
Bounded expansion and nowhere-dense serve as good formalization of “structurally sparse” graphs.

Many natural graph classes have these properties.

Problems expressible in first-order logic can be solved efficiently for them.

Many other results for special classes of sparse graphs generalize to this setting.