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Abstract. In explainable AI there is usually a trade-off between the
fidelity and the complexity of the explanation. In exemplar-based expla-
nation systems, this complexity can be measured by the number or size of
the examples needed for the human to grasp a concept that has sufficient
fidelity with the AI system to be explained. In this paper we analyse a
concept class of Boolean functions that is learned by AI systems (CNN)
as bitmaps of possibly rotated and resized letters. We assume the human
learner behaves like an inductive programming system with a strong prior
(Karnaugh maps over Boolean functions) [1]. Our explanation procedure
then behaves like a machine teaching session minimising a weighted ex-
pression of the complexity of the teaching set (the examples given to the
human) and the fidelity of the taught Boolean function with respect to
the original AI system. We explore the behaviour of this trade-off for
varying numbers of training examples for the AI.

1 Background

The field of Explainable AI (XAI) [6] is becoming ever more critical with the
growth in popularity of machine learning systems. In the field of XAI, there
are multiple directions, one of them is example-based [6, 9, 11], where one aims
to find examples showing how the machine learning system acts in different
situations. Machine Teaching is the research area of actively selecting data sets
used in teaching [14]. The goal is for the teacher to find the smallest training
set —known as the teaching or witness set— that, using a learning algorithm,
produces a target concept. In this work, we develop a simple proof of concept
for using Machine Teaching techniques as a tool for XAI, see also [12, 13, 2]. We
take the learner, who uses her learning algorithm, to be the human user, and the
target concept to be (a part of) the black-box AI system that needs explanation.
The machine teaching algorithm must find a small set of labelled examples that
will allow the human to build her own model of the AI system and thereby
arrive at an explanation of the target concept [8, 7]. We study a parameterised
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framework where we explore the trade-off between Fidelity (squared error of
the guessed model compared to the black box model) and Teaching Complexity
(measured as the complexity of the set of labelled examples used as a teaching
set) [5, 11]. We have the following framework:

T (θAI) = argmin
S:θAI |=S

{δ(S) + µ · λ(θAI , θM ) : LM (S) = θM} (1)

LM (S) = argmin
θM :θM |=S

{β(θM )} (2)

In these equations T is a teacher, aiming to teach a concept θAI to a human
learner LH , by finding a teaching set S such that LH(S) = θAI . To achieve
automation and increase iteration speed a model LM of LH is used, and the
teacher will therefore aim for T (θAI) = S s.t. LM (S) = θAI . We define δ as the
complexity measure of a potential teaching set S, with focus on the size of the
examples, as we have done in previous joint work [10]. The fidelity function λ
measures how closely the guessed concept θM matches the concept θAI , while
the factor µ allows us to balance the influence of complexity (δ) and fidelity (λ).
In this work, we discuss an implementation of Equation 1 and aim to provide a
Proof of Concept (PoC), showing the viability of this framework.

1.1 The AIs

For this PoC we implemented our own θAIs, and we decided their task should
be to learn a Boolean function on four variables, ϕ(A,B,C,D), of all possible
Boolean function. The input to θAI will be a bitmap containing a subset of letters
from the alphabet Σ = {A,B,C,D}. The bitmaps representation of literals, with
letters being rotated and scaled and placed randomly, within certain limits as
indicated in Figures 1, 2 and 3, gives us the possibility of extensive training data
for our AI. The output space of θAI is {0, 1}. For instance, with the concept
ϕ = (A ∧ B) ∨ (C ∧D), we label an example 1 if ϕ evaluates to True, and 0 if
ϕ evaluates to False. For the bitmap in Figure 3, we have ϕ(A = 1, B = 1, C =
1, D = 0) = (1 ∧ 1) ∨ (1 ∧ 0) = 1, and hence a label of 1.

Fig. 1. Bitmap ACD,
too big. Overlapping,
and out of image.

Fig. 2. Bitmap AB, too
small. A is broken up, B
looks like R.

Fig. 3. Bitmap ABC,
within limits, with rota-
tion and scaling.
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We implemented this AI system as a Convolutional Neural Network (CNN).
The fact that CNNs are successful at their task, while at the same time not
interpretable by themselves, makes CNN a good choice for our θAI . We imple-
mented a CNN with 8 layers in Python using Keras and TensorFlow, see the
master thesis [4] for details.

1.2 The model of the human

For simplicity, our model LM of the human learner will not be given bitmaps as
examples. Instead, it takes as input the letters present in each image. We thus
hypothesize that a user will pay attention to the letters present in the bitmap
image and disregard other information such as rotation, size and position.

The hypothesis class of LM will consist of all Boolean functions over the 4-
letter alphabet. Then, given a teaching set like S = {(AC, 0), (AD, 0), (BD, 0),
(AB, 1), (BC, 1), (CD, 1)}, we must decide how LM will act. We assume a human
user would construct something like a partial truth table, in this case with 3
rows out of 24 = 16 rows total filled with True, 3 rows filled with False, and 10
rows filled with Don’t-Cares (x). Applying Occam’s razor, we need to define the
function β, to choose the Boolean function that is most simple and adheres to
these constraints. A commonly accepted answer lies in using Karnaugh maps;
see Figures 4 and 5 for two possible examples for this teaching set S.

Fig. 4. θM = (¬A ∧ C) ∨ (¬C ∧ ¬D) Fig. 5. θM = (C ∧D) ∨ (B ∧ ¬D)

Note we use disjunctive normal form (DNF) which mimics human reasoning.
To verify a positive instance you need only to confirm one clause, whereas to
confirm a negative instance you always need to check all clauses. The resource-
heavy task of confirming a negative compared to a positive is somewhat similar
to how humans are poor at negations [3]. For each teaching set there can be many
DNFs possible, and in the spirit of K-map minimization we use the following
scheme to pick the simplest. Firstly, each clause is sorted, in order, by 1) fewest
variables, 2) fewest negations, 3) lexicographic order, while DNFs are sorted,
in order, by 1) fewest clauses, 2) simplest clause. This defines β and gives us a
unique Boolean formula in DNF form for each teaching set.

1.3 The fidelity function

When we want to compare θAI and θM , we need to view the former as an ap-
proximation to some Boolean function. For each subset of letters, we estimate
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what percentage of the bitmaps containing exactly these letters that θAI evalu-
ates to True, rather than to False. We get values like the top row in Table 1. We
observe that θAI predicts some letter groups the same and is more undecided on
other letter combinations.

Symbol ∅ A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD
θAI predicts 0.00 0.00 0.00 0.95 0.00 0.99 0.02 0.00 0.63 0.02 0.91 1.00 1.00 0.04 0.74 1.00
θM evaluates 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1

Table 1. Top row shows the percentage of bitmaps on letters for that column for which
θAI evaluates to True. Bottom row shows the truth table of θM = (A∧B)∨ (C ∧¬A),
and λ(θAI , θM ) = 0.2222

16
≈ 0.0139 is the MSE of the difference of all 16 columns.

To evaluate how well θM matches θAI , we compare with the truth table for
the Boolean function θM = (A∧B)∨ (C∧¬A) and we get the truth table shown
in Table 1. We then compare the two tables using Mean Square Error (MSE).
We look at the difference between θAI and θM for each row and aggregate the
square difference. For this θAI and θM , we get an error score of 0.2222. To get
MSE, we divide by the 16 groups giving us a score of 0.2222

16 ≈ 0.0139. The
MSE score is the value that λ returns.

1.4 The complexity function

We have experimented with various definitions for the complexity function, to
punish large and complicated teaching sets S. The chosen δ is a simple squared
sum of the number of variables present in each example, plus 0.1 for the empty
set (corresponding to setting no variable to True). We thus keep low the total
number of variables in all examples while simultaneously putting a high cost on
a single large example. Note that the δ values are typically much smaller than
the λ values, so in our first set of experiments we set the multiplicative factor
µ = 800 when computing the aggregated score δ(S) + µ · λ(θAI , θM ).

1.5 The teacher

The goal of the teacher is to find a teaching set explaining θAI , by iterating
over potential teaching sets. For each teaching set S, we compute LM (S) =
θM as described earlier, and the aggregate score δ(S) + µ · λ(θAI , θM ). During
the iteration we retain the best aggregate score. For these first experiments
the iteration is an exhaustive search. In the future we will work with Boolean
formulas on more variables and replace this with some smart local search.

2 Experiments

Given the previous setting we performed a set of experiments using different
concepts and parameters to analyse the effect of several elements to the machine
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teaching process and its result on explaining the behaviour of various AI models.
In particular, we played with AI models trained on different sized training sets,
which approximate the original Boolean function to different levels of accuracy.
Depending on how well the AI is approximated by a Boolean function the trade-
off parameter µ between fidelity (λ) and teaching complexity (δ) has different
effects.

2.1 Fixed µ for varying AIs

We trained nine different AIs with differently sized data sets. In this first ex-
periment, all AIs are trained with the ground truth ϕ = (A ∧ B) ∨ C and the
alphabet Σ = {A,B,C}. The data set sizes used in the experiment are: {10, 50,
100, 500, 1000, 2000, 5000, 10000, 50000}, accordingly we denote the different
AIs: {AI10, AI50, AI100, AI500, AI1000, AI2000, AI5000, AI10000, AI50000}.

In Table 2 we show several results. In the first row we see the expected result
that the accuracy of the AI models wrt the original concept ϕ increases as more
training examples were given to the neural network. In the next rows we show
the Boolean expression that best approximates the AI, with its associated lowest
possible λ-score over all Boolean functions. We see that the language of Boolean
functions obtains a perfect match for the case of AI10 (because the underlying
concept is very simple, always predicting True, which is a Boolean function) and
almost perfect for AI10000 and AI50000 (because the number of training examples
leads to a concept that is very close to ϕ). Note that also in other cases the most
accurate Boolean function is ϕ (from AI2000 and up).

AIs AI10 AI50 AI100 AI500 AI1000 AI2000 AI5000 AI10000 AI50000
Accuracy AB+C 62.50 72.85 78.38 81.01 88.47 91.42 94.74 98.72 99.36
Lowest λ Boolean Always

True
A+B+C A+B+C AB+

AC+BC
AB+
AC+BC

AB+C AB+C AB+C AB+C

Lowest λ 0 0.0730 0.0422 0.0774 0.0157 0.0248 0.0064 0.0006 0.0001
Model taught θM Always

True
A+B+C A+B+C A+C AB+

AC+BC
AB+C AB+C AB+C AB+C

Teaching Set S {(∅,1)} {(∅,0),
(A,1),
(B,1),
(C,1)}

{(∅,0),
(A,1),
(B,1),
(C,1)}

{(∅,0),
(A,1),
(C,1)}

{(A,0),
(AB,1),
(AC,1),
(B,0),
(BC,1),
(C,0)}

{(A,0),
(AB,1),
(B,0),
(C,1)}

{(A,0),
(AB,1),
(B,0),
(C,1)}

{(A,0),
(AB,1),
(B,0),
(C,1)}

{(A,0),
(AB,1),
(B,0),
(C,1)}

δ(S) 0.1 3.1 3.1 2.1 15 7 7 7 7
λ(AIx, θM ) 0 0.0730 0.0422 0.0821 0.0157 0.0248 0.0064 0.0006 0.0001
δ + 800λ 0.1 61.52 36.71 67.82 27.63 26.84 12.17 7.49 7.09

Table 2. Several AI models trained for increasing size of training examples for the
concept ϕ =AB+C, shorthand for (A ∧ B) ∨ C. We show accuracy with respect to ϕ,
then the closest Boolean expression and its λ-value. Then we do teaching with µ = 800,
and show the metrics and values for the Boolean concept taught by the system.

Now let us look at the next few rows showing results for the teaching frame-
work when run with the chosen parameter µ = 800. First we show the Boolean
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concept θM that is actually taught by the system and note that it is almost
always equal to the Boolean concept with lowest λ-value in the 2nd row. The
only exception is AI500 where the trade-off between δ and λ favours the Boolean
concept A∨C instead of (A∧B)∨ (A∧C)∨ (B∧C) because the teaching set for
the former is much simpler (δ = 2.1) than the teaching set for the latter (δ = 15
as can be seen under AI1000). The next rows show the teaching set employed,
its δ value, the λ value and the aggregate score.

There are three clear cases in the table (AI10, AI10000 and AI50000) where a
simple teaching set allows the teacher to convey a concept to the learner that very
closely captures the AI. But there are other cases, such as AI1000 and AI2000,
where the situation is less clear. For AI1000 the fidelity is not bad (λ = 0.0157)
but the complexity of teaching becomes high (δ = 15) so even if a sufficiently
accurate concept can be taught this is at the cost of a higher effort from the
learner. For AI2000 we see that this cost is reduced but the fidelity is worse
(λ = 0.0248).

2.2 Varying µ for a single AI

In a second experiment we trained an AI model on a data set of size 350 for
ϕ = (A ∧ B) ∨ (C ∧ D) = AB + CD on 4 variables/letters. The accuracy was
78.25% and the closest Boolean function, with a fidelity value λ of 0.06, turned
out to be ABC+ABD+ACD+BCD, which can be interpreted as “True if and
only if at least 3 letters present”. To investigate the trade-off between fidelity
and complexity, teaching was done with varying values of µ, see left column in
Table 3. We see that as µ increases more emphasis is put on fidelity at expense
of complexity. Note that at µ = 3200 the fidelity is as good as possible, but at
the expense of a high complexity. The teaching set at µ = 3200 is optimal for
that optimal θM so increasing µ will have no effect. An option worth exploring
is to take the characteristics of the human user into account when deciding on
the fidelity vs complexity trade-off, e.g., having a high value of µ for an expert
and a low value for a non-expert.

This second experiment also shows that it is not difficult to determine when
the language used for the explanation leads to low fidelity and/or complex ex-
planations. Actually, in this case, since the function captured by the AI does not
have a clean Boolean concept, we can detect that teaching will either lead to low
fidelity or complex explanation (or both). In sum, the use of the complexity of
the teaching set in the trade-off is not only the right choice when doing example-
based XAI but it also leads to the same insights as when the complexity of the
concept is taken into account.

3 Next Steps

There are several next steps for this project, all of them focused on a better
exploration of the fidelity vs complexity trade-off:

– Increase the complexity of the Boolean functions by allowing more variables
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Range µ Model taught θM λ δ Teaching set

16 A 0.1880 1.1 {(∅, 0),(A,1)}
160-960 AC+BD 0.0881 12 {(A,0),(B,0),(C,0),(D,0),(AC,1),(BD,1)}
1120-1840 AC+BCD+AD 0.0718 30 {(A,0),(AC,1),(AD,1),(BC,0),(BD,0),(CD,0)}
1920-2400 AC+ABD+BCD 0.0656 42 {(AC,1),(AB,0),(AD,0),(BC,0),(BD,0),(CD,0),

(ABD,1),(BCD,1)}
3200 - ∞ ABC+ABD+

ACD+BCD
0.0600 60 {(AB,0),(AC,0),(AD,0),(BC,0),(BD,0),(CD,0),

(ABC,1),(ABD,1),(ACD,1),(BCD,1)}

Table 3. Results for a single AI model where the closest Boolean function turned out
to be ABC + ABD + ACD + BCD. Teaching was done with varying values of µ, see
left column. As µ increases more emphasis is put on lower fidelity λ = λ(θAI , θM ) at
expense of higher teaching complexity δ.

– Use local search for the teaching set subset selector
– Focus on θAI of intermediate accuracy
– Experiment with different µ values

We also want to test the resulting teaching sets on humans, and update LM

and δ as necessary. In related work Yang et al. [13] measured the effectiveness
of examples-based explanations for AI using Bayesian Teaching, aiming for high
sensitivity and high specificity, and we will compare our results to theirs.
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