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Abstract

This thesis investigates the computational complexity of algorithmic prob-
lems defined on graphs. At the abstract level of the complexity spectrum we
discriminate polynomial-time solvable problems from NP-complete problems,
while at the concrete level we improve on polynomial-time algorithms for gen-
erally hard problems restricted to tree-decomposable graphs.

One contribution of this thesis is a precise characterization of vertex parti-
tioning problems which include variants of domination, coloring and packing.
An elaboration of this characterization is given for problems defined over vertex
subsets and over maximal/minimal vertex subsets. We introduce several new
graph parameters as vertex partition generalizations of classical parameters.
The given characterizations provide a basis for a taxonomy of vertex partition-
ing problems, facilitating their common algorithmic treatment and allowing for
their uniform complexity classification.

We explore the computational complexity of two important types of prob-
lems within this taxonomy: vertex subset optimization problems and H-covering
problems. The taxonomy is particularly useful in categorizing and analyzing
the complexity of vertex subset problems, of which there are a great variety.
Our investigation of the complexity of vertex subset problems uncovers sev-
eral infinite classes of NP-complete and of polynomial-time solvable problems.
These results are contrasted and compared with the complexity of classical ver-
tex subset problems. We also develop a methodology useful in analyzing the
complexity of H-covering, a problem parameterized by a fixed graph H. As an
illustration, we settle the complexity of the H-covering problem for any simple
graph H on at most 6 vertices. We design efficient algorithms for H-covering
problems by reduction to the 2-SAT problem and by reduction to factorization
problems in regular graphs.

Another contribution of this thesis is a methodology for the design of prac-
tical algorithms for generally NP-hard problems restricted to partial k-trees.
Based on very simple graph operations, we define a binary parse tree of partial
k-trees that facilitates algorithm derivation. We account for dependency on
the treewidth k in analysis of the computational complexity of the resulting
algorithms.

These contributions culminate in applying the partial k-tree algorithm method-
ology to the general class of vertex partitioning problems. The input graph in
the resulting algorithms is assumed to be given with a width k tree-decomposition,
and the answer is computed by a dynamic programming bottom-up traver-
sal of its binary parse tree. We give the first algorithms for these problems
with reasonable time complexity as a function of treewidth. We also give the
first polynomial-time algorithms on partial k-trees for certain problems, mainly
Grundy Number, not known to have a finite state description even if restricted
to graphs of bounded treewidth.
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Chapter 1

Introduction

Many areas of computer science and many computer applications deal with systems
best modeled as graphs, with vertices denoting entities and edges denoting relations
between entities. The study of algorithmic solutions to graph problems is therefore
of practical importance. While designing an algorithm for the maximum matching
problem in 1965, Edmonds [30] defined the widely accepted notion of a good algo-
rithm as one whose running time on any input is bounded by a polynomial function
of the input size. A problem phrased as a yes/no question belongs to the class P
if there is a good algorithm for solving it. A problem belongs to the class NP if
any “yes” answer has a short proof that can be verified by a good algorithm. The
NP-complete problems are the hardest problems in NP, as formulated by Cook in
1971 [25]. Perhaps the foremost open question in the theory of algorithms is whether
P = NP; equivalently, whether all or none of the NP-complete problems have good
algorithms. The current belief is that P 6= NP. Unfortunately, many useful problems
defined on graphs are NP-complete. The results in this thesis can be viewed as ad-
dressing this situation in two ways: by discriminating graph problems with provably
good algorithms from NP-complete problems, and by designing good algorithms on
restricted classes of graphs for problems which are generally NP-complete. One of
our contributions is a characterization of vertex partitioning problems which include,
e.g., coloring and domination problems. This characterization provides a basis for a
taxonomy of vertex partitioning problems which we employ for, among other things,
the study of their computational complexity in a unified framework. A second contri-
bution is a template for the design of good algorithms on partial k-trees, equivalently
graphs of bounded treewidth, which accounts for dependency on the treewidth k in
both design and time complexity. These results are linked by partial k-tree algo-
rithms for solving vertex partitioning problems, providing the first polynomial-time
algorithms on partial k-trees for certain problems and the first careful investigation
of time complexity as a function of the treewidth.

First, an overview of the presentation. The remainder of this introduction gives,
after some basic definitions, the background for vertex partitioning problems and
partial k-tree algorithms. Chapter II contains a general characterization of vertex
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partitioning problems, and also refined characterizations for vertex subset problems.
These characterizations set the stage for results of subsequent chapters. We introduce
several new classes of graph problems as generalizations of some classical problems
admitting the characterization. In Chapter III, we concentrate on the complexity
of vertex subset optimization problems, giving both efficient algorithms and NP-
completeness results for several infinite classes of problems. Chapter IV studies the
complexity of the H-cover problem, which has a natural definition using our char-
acterization. We develop a methodology that is useful in analyzing the complexity
of H-covering problems, for any fixed graph H, and settle their complexity for any
simple graph H on at most six vertices. Chapter V gives a methodology for the design
of practical algorithms on partial k-trees based on a binary parse tree of the input
graph. In Chapter VI we use this methodology to give partial k-tree algorithms first
for vertex subset problems and then for the more general case of vertex partitioning
problems. We conclude in Chapter VII by sketching some ideas for future research.

1.1 Definitions

We give some basic definitions relating to graphs and algorithms that we will use
throughout the thesis. Notions exclusive to a particular chapter may not be defined
here, e.g., partial k-tree definitions can be found in the opening of Chapter V.

Let N = {0, 1, 2, ...} be the non-negative integers, and let P = {1, 2, 3, ...} be the
positive integers. For sets X and Y , let |X| be the cardinality of X, let X \Y = {x ∈

X : x 6∈ Y } and let
(

X
k

)

= {W : W ⊆ X∧|W | = k} be the set of all k-element subsets
of X. A q-partition X1, X2, ..., Xq of the set X into q classes satisfies X =

⋃

i∈{1,...,q} Xi

and ∅ = Xi ∩ Xj, 1 ≤ i 6= j ≤ q.
A graph G = (V (G), E(G)) is the pair of sets of vertices V (G) and of edges E(G),

where E(G) ⊆
(

V (G)
2

)

. Most of our results can be easily extended to directed graphs
and to graphs containing loops and multiple edges, but they will not be considered
here.

Two vertices u, v ∈ V (G) are adjacent or neighbors if uv ∈ E(G). For a vertex
v ∈ V (G), let NG(v) = {u : uv ∈ E(G)} be the set of neighbors of v and degG(v) =
|NG(v)| its degree. We call NG(v) ∪ v the closed neighborhood of the vertex v. A
path of length k between vertices u and v is a sequence of distinct vertices u =
u0, u1, ..., uk = v such that ui−1ui ∈ E(G) for 1 ≤ i ≤ k. The sequence of vertices
forms a cycle of length k + 1 if also uku0 ∈ E(G).

In a connected graph there is a path between any two vertices. A graph H is a
subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G), it is a spanning subgraph
if, in addition, V (H) = V (G). A component in a graph is a maximal connected
subgraph. The distance(u, v) between vertices u and v in the same component is the
length of a shortest path between them.

A tree T is a connected graph without any cycles, we call its vertices nodes. Its root
r ∈ V (T ) is a distinguished node by which for any v ∈ V (T ) we define children(v) =
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{u : uv ∈ E(T ) ∧ distance(u, r) = distance(v, r) + 1}. The complementary notion
parent(u) for u 6= r is defined to be the unique node v for which u ∈ children(v).

For S ⊆ V (G) let G[S] = (S, {uv : u, v ∈ S ∧ uv ∈ E(G)}) denote the subgraph
induced in G by S. For S ⊆ V (G) let G \ S = G[V (G) \ S], and for F ⊆ E(G) let
G \ F = (V (G), {uv ∈ E(G) : uv 6∈ F}). A separator of a graph G is a subset of
vertices S ⊆ V (G) such that G \ S has more components than G.

Two graphs G and H are isomorphic if there is a bijection f : V (G) → V (H) such
that uv ∈ E(G) ⇔ f(u)f(v) ∈ E(H). The automorphism group of a graph G is the
group Aut(G) of permutations of V (G) preserving adjacencies.

If ∀v ∈ V (G) : degG(v) = k then G is k-regular. A (|V (G)| − 1)-regular graph G
is a complete graph K|V (G)|, also called a |V (G)|-clique. The 0-regular graph is called
a discrete graph. A 1-regular graph is called a perfect matching and a 2-regular
connected graph G a |V (G)|-cycle C|V (G)|. A graph G is bipartite if V (G) has a 2-
partition V1, V2 with E(G) ⊆ {uv ∈ E(G) : u ∈ V1 ∧ v ∈ V2}. The complement graph
of G is G = (V (G), {uv : uv 6∈ E(G)}.

We give some definitions related to time complexity of algorithms. A polytime
algorithm is one for which the number of steps executed on any input is bounded by
a polynomial function of the input size. A decision problem is phrased as a yes/no
question. Any optimization problem discussed in this thesis has a decision version,
e.g., for the optimization problem “given a graph G as input find the maximum
length of any cycle in G”, we have the decision version “given G and an integer
k decide if G has a cycle of length at least k”. It is not hard to show that these
problems are polytime equivalent, in the sense that the optimization version has a
polytime algorithm if and only if the decision version has one. For this reason, we
may be imprecise and not distinguish carefully between an optimization problem and
its decision version.

A decision problem belongs to the class P if it has a polytime algorithm and it
belongs to the class NP if any “yes” answer has a short proof that can be verified by
a polytime algorithm. The decision version of any problem addressed in this thesis
belongs to NP, e.g., a short proof for the above example would be a sequence of
vertices forming a cycle of length at least k. A polytime reduction from a problem A
to a problem B is a polytime algorithm which takes an instance of A and outputs an
instance of B such that their yes/no questions have identical answers. A problem B in
NP is NP-complete if for all problems A in NP there is a polytime reduction from
A to B. Several NP-complete problems are known. The NP-completeness of a new
NP problem C is demonstrated by a polytime reduction from a known NP-complete
problem B. The optimization version of an NP-complete problem is in the class of
NP-hard problems.
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1.2 Background on Vertex Partitioning Problems

A q-coloring of a graph is an assignment of one of q colors to each vertex of a graph
so that no two adjacent vertices receive the same color. Coloring problems on graphs
have been studied since the mid-1800s, starting with the famous Four-Color Conjec-
ture that any planar graph could be 4-colored, resolved with the aid of a computer in
1976 [5]. The q-coloring problem asks whether an input graph has a q-coloring and
is NP-complete for any q greater than two. An important application is the com-
piler optimization problem of register allocation, modeled by representing variables
as vertices and connecting vertices by an edge if the live program ranges of the cor-
responding variables overlap. A q-coloring of the resulting graph corresponds to an
allocation of variables to q registers with no usage conflict. We will view a q-coloring
as a partition V1, V2, ..., Vq of the vertex set with the constraint that any vertex in Vi

have no neighbors in Vi, for 1 ≤ i ≤ q. Our characterization of vertex partitioning
problems in Chapter II generalizes this constraint to allow for any specified number
of neighbors the vertices in Vi can have in Vj, for 1 ≤ i, j ≤ q. We show that many
well-known problems admit such a characterization, and that we can define several
new interesting graph parameters within this framework.

If we restrict attention to 2-partitions (S, V (G) \ S) of vertices of a graph G and
constrain only the number of neighbors in S we get a class of vertex subset problems
which includes variants of domination and independence. Covering a chessboard by
various pieces constitutes a precursor to the general theory of domination in graphs,
with our compatriot Øystein Ore [56] being one of the pioneers in the field. A vari-
ety of special types of domination have been considered since, with applications to
facility location and communication network problems. The current bibliography of
papers related to the general topic of domination in graphs, by Hedetniemi and Laskar
[40], has about 750 entries. A paper in the field of algorithmic theory of domination
in graphs typically introduces a new domination-type parameter, contrasts it with
related domination parameters and gives computational complexity results; all in a
fairly ad-hoc manner. Upon the introduction of a slight variation of the parameter this
work would then usually be repeated. In contrast, the characterization we propose
in Chapter II facilitates the common algorithmic treatment of all these parameters
and allows for their uniform complexity classification, the subject of Chapters III
and VI. These parameters oftentimes arise from various fields, traditionally seen as
separate, with the confusing effect that naming conventions and definitions are not
standardized. The characterization suggested in Chapter II remedies this by explic-
itly focusing attention on the definitional properties of the parameters and on their
relationships.

The vertex partitioning view can also be taken of covering problems on graphs.
Let H be a graph with vertices {v1, v2, ..., vq}. The H-cover problem takes a graph G
as input and asks for a partition of the vertices of G into classes V1, ..., Vq such that if
vi is adjacent to vj in H then any vertex in Vi has exactly one neighbor in Vj; otherwise
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there are no adjacencies between vertices in Vi and Vj. We trace H-coverings to Biggs’
construction of highly symmetric graphs in [15], and to Angluin’s discussion of “local
knowledge” in distributed computing environment in [3]. More recently, Abello et al.

[1] raised the question of computational complexity of H-cover problems, noting that
there are both polynomial-time solvable and NP-complete versions of this problem for
different graphs H. A related question of complexity of H-coloring (also parametrized
by a fixed graph H and definable in our characterization) has been resolved by Hell
and Nešetřil [42] who completely classified graphs for which a polytime algorithm
is known and those for which it is NP-complete. In Chapter IV, we develop a
methodology that is useful in analyzing the complexity of H-covering problems, and
settle their complexity for any simple graph H on at most six vertices.

1.3 Background on Partial k-Tree Algorithms

Since the early days of graph algorithms it has been well known that most parameters
are easily computed on trees. A combination of divide-and-conquer and dynamic
programming techniques can contribute to finding an overall solution by recursively
combining solutions to subproblems on subtrees. In 1982, Takamizawa, Nishizeki
and Saito [62] extended these techniques to deal with many problems on the class of
series-parallel graphs. The quest was on for the most general class of graphs sharing
these algorithmic properties (see [58] for an overview.) Two independent lines of
research led to the exact same answer, the partial k-trees (Arnborg and Proskurowski
[9]) or equivalently graphs of treewidth bounded by k (Robertson and Seymour [59].)
This class is a very promising generalization of trees and encompasses most other
suggested classes.

A graph G is a k-tree if it is a complete graph on k vertices or if it has a vertex
v ∈ V (G) whose neighbors induce a clique of size k and G \ {v} is again a k-tree.
Partial k-trees are subgraphs of k-trees, and we note that any graph on n vertices is a
partial k-tree for some value of k (the maximum value k = n−1 achieved by complete
graphs.) Many natural classes of graphs have bounded treewidth [53], e.g., trees are
exactly the 1-trees and series-parallel graphs are partial 2-trees. Many optimization
problems, while inherently difficult (NP-complete) for general graphs are solvable in
linear time on partial k-trees, for fixed values of k [11]. These solution algorithms
have two main steps, first finding a parse tree (an embedding in a k-tree or a tree-
decomposition of width k [59]) of the input graph, and then computing the solution
by a bottom-up traversal of the parse tree. For the first step, Bodlaender [17] has
given a linear algorithm deciding if a graph is a partial k-tree and if so finding a
tree-decomposition of width k, for fixed k. Unfortunately, the complexity of this
algorithm as a function of the treewidth does not make it practical for larger values
of k. For k ≤ 4, however, practical algorithms based on graph rewriting do exist for
the first step [10, 54, 60].

There are many approaches for the design of the second step of partial k-tree
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algorithms with time complexity polynomial, or even linear, in the number of vertices
[58, 7]. The strongest result in this direction by Courcelle and Mosbah [28] and Arn-
borg, Lagergren and Seese [8] states that any graph problem describable in a certain
logic language, mainly EMSOL, has a polynomial-time algorithm on partial k-trees.
As a rule, proponents of these approaches have tried to encompass as wide a class of
problems as possible, often at the expense of increased complexity in k and also at
the expense of simplicity of the resulting algorithms. Results giving explicit practical
algorithms in this setting are usually confined to a few selected problems on either
partial 1-trees or partial 2-trees [62, 36, 66]. In Chapter V, we try to cover the middle
ground between these extremes and investigate both the practical design of algorithms
for the second step and also their complexity, for varying k. The treewidth k is fixed
for a given algorithm, but we analyze the complexity for growing values of this pa-
rameter. In the paradigm we suggest, the algorithm follows a binary parse tree of the
input graph. This parse tree is based on very simple graph operations, facilitating
the derivation of practical algorithms. We conclude our presentation in Chapter VI
by applying this paradigm to vertex partitioning problems. These algorithms accept
as input a graph G on n vertices and a width k tree-decomposition of G. We perform
the first careful investigation of time complexity as a function of the treewidth for a
general class of problems. For instance, the vertex subset optimization problems are
solved in T (n, k) = O(n2ck) time for small constants c. Since these problems are NP-
complete in general and a tree-decomposition of width n − 1 is trivial for any graph,
we cannot get polynomial dependence on both n and k, unless P = NP. Our results
also include the first polynomial-time algorithms on partial k-trees for some problems
that have not been found to be expressible in EMSOL [50], and not known to have
finite-state descriptions, mainly the Grundy Number problem. This follows from (i)
the description of the Grundy Number problem as a vertex partitioning problem, (ii)
a new logarithmic bound on the Grundy Number of a partial k-tree, and (iii) our
investigation of time complexity of vertex partitioning problems on partial k-trees.
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Chapter 2

Characterization of Vertex

Partitioning Problems

We define vertex partitioning problems and show that many well-known problems,
such as coloring and covering, admit a characterization as such problems. Many of
these problems, including variations of domination, independence and packing, are
defined over 2-partitions of vertices. For these vertex subset optimization problems
we give a separate characterization, mainly for notational purposes. We then extend
this vertex subset characterization to encompass irredundance-type problems, defined
over maximal and minimal vertex subsets. These characterizations provide a basis for
a taxonomy of vertex partitioning problems, facilitating their common algorithmic
treatment and allowing for their uniform complexity classification, the subject of
subsequent chapters. In this chapter we show applicability of the characterization by
introducing some non-trivial new graph problems as variations of classic problems. We
conclude the chapter with an application of the characterization to a graph-theoretic
question.

2.1 General Vertex Partitioning Problems

A q-coloring of a graph is a partition V1, V2, ..., Vq of its vertices where any vertex in
Vi has no neighbors in Vi, for 1 ≤ i ≤ q. In the following we generalize this constraint
to allow for any specified number of neighbors the vertices in Vi can have in Vj, for
1 ≤ i, j ≤ q.

Definition 2.1 A degree constraint matrix Dq is a q by q matrix with
entries being subsets of N = {0, 1, 2, ...}. A Dq-partition in a graph G
is a q-partition V1, V2, ..., Vq of V (G) such that for 1 ≤ i, j ≤ q we have
∀v ∈ Vi : |NG(v) ∩ Vj| ∈ Dq[i, j].

For technical reasons, we will allow the possibility of some Vi = ∅ in a Dq-partition
V1, ..., Vq. We limit attention to non-empty graphs, |V (G)| ≥ 1. For a simple example,
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a b

c
d

V1 V2 V3

V1

V2

V3

D3 =

V1 = {a,d}  V2 = {b} V3 = {c}

(V1)(0 1 1) (V2)(2 0 1)

(V1)(0 1 1)(V3)(2 1 0)

{0}  N  N

N  {0}  N

N  N  {0}

Figure 2.1: The degree constraint matrix D3 for deciding if there exists a 3-coloring
(N={0, 1, 2, ...}). Also, a given partition on a graph, with vertices of the graph labeled
by the class they belong to (Vi) and a 3-vector (a b c) giving the number of neighbors
it has in classes V1, V2 and V3, respectively. Note that each vertex satisfies the
constraint imposed by D3, so this partition is a 3-coloring of the graph.

using a degree matrix D1 with entry {k}, k ∈ N, a graph G will have a D1-partition
iff it is k-regular. We define problems over Dq-partitions as follows:

Definition 2.2 For fixed degree constraint matrices D1, D2, ... and a given
graph G:

For fixed q, the ∃Dq-problem decides if G has a Dq-partition.

The minDq-problem asks for the minimum q such that G has a Dq-
partition.

The maxDq-problem asks for the maximum q such that G has a Dq-
partition.

We next show several well-known graph problems defined in this framework. 1

• The q-COLORING problem [GT4] is the ∃Dq-problem over the degree con-
straint matrix with diagonal entries {0} and off-diagonal entries N. See Fig-
ure 2.1 for an example.

• The CHROMATIC NUMBER problem [GT4] is the minDq-problem over ma-
trices with diagonal entries {0} and off-diagonal entries N.

• The DOMATIC NUMBER problem [GT3] is the maxDq-problem over matrices
with diagonal entries N and off-diagonal entries P. Note that the constraints
imposed by Dq in this case will enforce all partition classes to be non-empty.

1[GTx] as a citation refers to the Graph Theory problem number x in Garey and Johnson [34]
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• The PARTITION INTO PERFECT MATCHINGS problem [GT16] is the minDq-
problem over matrices with diagonal entries {1} and off-diagonal entries N.

• The GRAPH GRUNDY NUMBER problem [GT56, undirected version] is the
maxDq-problem over matrices with diagonal entries {0}, above-diagonal entries
N and below-diagonal entries P. For this definition we must explicitly add the
requirement that a Dq-partition V1, ..., Vq have only non-empty partition classes.

• The H-COVER problem [3] is the ∃D|V (H)|-problem with D|V (H)| the adjacency
matrix of H (with singleton entries {0} and {1}).

• The H-COLOR problem [42] is the ∃D|V (H)|-problem with D|V (H)| the matrix
obtained from the adjacency matrix of H by replacing 1-entries with N and
0-entries with {0}.

• The VERTEX SUBSET problems defined in the next section, see Table 2.2,
have degree constraint matrices D2 of the form

(

σ N

ρ N

)

Most of these definitions follow immediately from the standard definitions of the
problems. The GRAPH GRUNDY NUMBER problem is traditionally defined as a
coloring problem where vertices are colored using non-negative integers, in such a
way that a vertex with color i is forced to have neighbors with colors 1 through i− 1.
The problem asks for the highest color we can use while observing this constraint.
In our characterization, the partition class Vi is the set of vertices with color i, with
the constraint that a vertex in Vi have no neighbors in Vi and at least one neighbor
in each of the sets Vi−1, Vi−2, ..., V1. Since we are looking for the highest number of
partition classes possible, we require that all classes be non-empty. This constraint is
not enforced by the degree constraint matrix itself, as it is in the case of DOMATIC
NUMBER, thus it must be added explicitly to the definition of the problem. We
return to this definition of GRAPH GRUNDY NUMBER in section 4 of this chapter.

The H-COLOR problem asks for the existence of a labeling f : V (G) → V (H)
such that uv ∈ E(G) ⇒ f(u)f(v) ∈ E(H). In our characterization, we fix an
ordering V (H) = {v1, v2, ..., v|V (H)|} with the partition class Vi the set of vertices
labeled vi. Thus the constraint of the partition is that for all pairs (i, j) with i 6= j
and vj 6∈ NH(vi), no vertex in Vi is adjacent to a vertex in Vj. To frame this as an
∃Dq problem, like we did above, requires that we do allow a partition V1, ..., Vq to
have some empty partition classes. The H-COVER problem is examined in detail in
chapter 4.

We discuss some problems definable by extensions of the given vertex partition
characterization. The first extension involves optimizations over the cardinality of

10



certain partition classes, the main optimization concern of the vertex subset prob-
lems dealt with in the next section. The DISTANCE ≤ q DOMINATION problem
[51] asks for the smallest vertex subset S with the property that any vertex x 6∈ S
have a neighbor in S at distance ≤ q. This can be defined as an ∃Dq+1 problem
over the degree constraint matrix Dq+1 with diagonal and above-diagonal entries N,
entries directly below the diagonal P and remaining entries {0}. For a Dq+1 partition
V1, ..., Vq+1, the vertex subset V1 will have the required domination property, with
vertices in class Vj at distance j − 1 from some vertex in V1. The problem is thus
defined by minimizing |V1| over all Dq+1-partitions V1, V2, ..., Vq+1. Note that this
definition allows for classes Vi, Vi+1, ..., Vq+1, i ≥ 2 to all be empty.

For the second extension, we allow entries of the matrix to be simple arithmetic
expressions involving the cardinality of a partition class. This allows the definition
of e.g. PARTITION INTO CLIQUES [GT15]. For example, a graph is a SPLIT
graph [35] if its vertices can be partitioned into a clique and an independent set or
equivalently if it has a D2-partition with D2[1, 1] = |V1|− 1, D2[2, 2] = {0}, D2[1, 2] =
D2[2, 1] = N.

The problems BALANCED COMPLETE BIPARTITE SUBGRAPH [GT24] and
MAXIMUM CLIQUE [GT19] can be defined if we allow both extensions discussed
above.

To express the PARTITION INTO TRIANGLES problem [GT11], we must en-
force non-empty partition classes, and allow the size q of the matrix Dq to be a
function of the size of the input graph, in this case q = |V (G)|/3, with the matrix
containing {2} on the diagonal and N off the diagonal.

In the next section, we consider problems defined over D2-partitions with con-
straints only on the number of neighbors in V1, i.e., D2[1, 2] = D2[2, 2] = N.

2.2 Vertex Subset Problems

If every vertex in a selected subset S of vertices of a graph has zero selected neighbors
then S is an independent set, and similarly if every vertex not in S has at least one
selected neighbor then S is a dominating set. This suggests a common characteri-
zation of independent sets and dominating sets based on the constraints imposed on
the number of selected neighbors the vertices in S, and vertices not in S, can have.

Let the symbols σ and ρ indicate membership in S and membership in V (G)\S =
{v ∈ V (G) : v 6∈ S}, respectively.

11



Figure 2.2: Dark vertices form the vertex subset S; vertices labelled by stateS

Definition 2.3 Given a graph G and a set S ⊆ V (G) of selected vertices

• The state of a vertex v ∈ V (G) is

stateS(v)
df
=

{

ρi if v 6∈ S and |NG(v) ∩ S| = i
σi if v ∈ S and |NG(v) ∩ S| = i

• Define syntactic abbreviations

ρ≤i ≡ ρ0, ρ1, ..., ρi σ≤i ≡ σ0, σ1, ..., σi ρ≥i ≡ ρi, ρi+1, ... σ≥i ≡
σi, σi+1, ...

Each of the latter two abbreviations represents an infinite set of states. Mnemon-
ically, σ represents a vertex selected for S and ρ a vertex rejected from S, with the
subscript indicating the number of neighbors the vertex has in S. See Figure 2.2 for
an example. A variety of vertex subset properties can be defined by allowing only a
specific set L as legal states of vertices. For instance, S is a dominating set if state ρ0

is not allowed for any vertex, giving the legal states L = {ρ≥1, σ≥0}. Table 2.1 relates
some of the established terminology to our formalism. For example, the subset shown
in Figure 2.2 is an independent dominating set. Optimization problems over these
sets often maximize or minimize the size of the set of vertices with states in a given
M ⊆ L. For instance, in the minimum dominating set problem, M = {σ≥0}.

Term Expressed in our formalism
Dominating ρ0 not a legal state
Independent σ0 the only legal σ-state
Perfect Dominating ρ1 the only legal ρ-state
Nearly Perfect ρ0 and ρ1 the only legal ρ-states
Total P effect of property P on ρ-states is extended to σ-states
Induced ρ≥0 legal state (no non-legal ρ-states)

Table 2.1: The established terminology and our formalism
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Definition 2.4 Given sets M and L of vertex states and a graph G:

• S ⊆ V (G) is an [L]-set if ∀v ∈ V (G) : stateS(v) ∈ L;

• ∃[L] is the problem asking whether there exists any [L]-set S ⊆ V (G);

• minM [L] (or maxM [L]) is the problem of minimizing (or maximiz-
ing) |{v : stateS(v) ∈ M}| over all [L]-sets S ⊆ V (G);

• min[L] (or max[L]) is shorthand for minM [L] (or maxM [L]) when
M consists of all σ-states in L, in effect optimizing the size of the
selected set of vertices.

Thus, a dominating set is a [ρ≥1, σ≥0]-set, with the square brackets implying the
set notation. Table 2.2 shows some of the classical vertex subset properties [34, 23,
32, 12, 24, 33, 22, 44].

Our notation Standard terminology
[ρ≥0, σ0]-set Independent set
[ρ≥1, σ≥0]-set Dominating set
[ρ≤1, σ0]-set Strong Stable set or 2-Packing
[ρ1, σ0]-set Efficient Dominating set or Perfect Code
[ρ≥1, σ0]-set Independent Dominating set
[ρ1, σ≥0]-set Perfect Dominating set
[ρ≥1, σ≥1]-set Total Dominating set
[ρ1, σ1]-set Total Perfect Dominating set
[ρ≤1, σ≥0]-set Nearly Perfect set
[ρ≤1, σ≤1]-set Total Nearly Perfect set
[ρ1, σ≤1]-set Weakly Perfect Dominating set
[ρ≥0, σ≤p]-set Induced Bounded-Degree subgraph
[ρ≥p, σ≥0]-set p-Dominating set
[ρ≥0, σp]-set Induced p-Regular subgraph

Table 2.2: Some vertex subset properties.

Table 2.2 can be used as a quick reference guide to the exact definitions of the
various properties represented and their derived problems. Naming conventions are
not standardized. As an example, Biggs [15] and later Kratochv́ıl [46] consider Perfect
Codes in graphs (as a generalization of error-correcting codes), Bange et al. [12] study
Efficient Dominating Sets in graphs (a variant of domination), and Fellows et al. [32]
investigate what they call Perfect Dominating Sets. In fact, they are all studying the
exact same property, namely [ρ1, σ0]-sets.

In the next chapter we study the computational complexity of the problems de-
fined over these and other vertex subset properties, see Table 3.1. Properties tra-
ditionally defined using closed neighborhoods are easily captured by the characteri-
zation. The vertex weighted versions of these parameters will optimize the sum of
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Our notation Standard terminology
∃[ρ1, σ0] Perfect Code Problem
min[ρ≥1, σ≥0] Minimum Dominating Set Problem
max[ρ≥0, σ0] Maximum Independent Set Problem
min{ρ≥0}[ρ≥0, σ0] Minimum Vertex Cover Problem
max{ρ1}[ρ≥0, σ≥0] Efficiency Problem

Table 2.3: Examples of graph problems.

the weights of vertices with state in M , with the cardinality version corresponding to
unit weights. For directed graphs we consider NG(v) as {u : 〈u, v〉 ∈ Arcs(G)} to ob-
tain directed versions of these domination-like properties and parameters. Table 2.3
shows examples of graph problems [13, 66] expressed using our characterization. Note
that complementary problems, e.g. Maximum Independent Set and Minimum Vertex
Cover, are both expressible.

2.3 Maximal and Minimal Vertex Subset Prob-

lems

We give a refinement of the vertex subset characterization of the last section, useful
for describing maximal and minimal vertex subsets with a given property.

Definition 2.5 Given a set L of vertex states and a graph G

• S ⊆ V (G) is a maximal (minimal) [L]-set if there is no vertex v 6∈ S
(v ∈ S) such that S ∪ {v} (S \ {v}) is an [L]-set.

Parameters related to irredundant sets in graphs are also expressible using the
refinement. Irredundant sets require some vertices to have at least one neighbor
with a given state. This motivates the definition of a refined vertex state as the
juxtaposition, denoted by · , of the state of the vertex with the state of one of its
neighbors.

Definition 2.6 Given a graph G and a selected set of vertices S ⊆ V (G):

• The set of refined vertex states of v ∈ V (G) is

rstateS(v) = {stateS(v)} ∪ {stateS(v) ·stateS(w) : w ∈ N(v)};

• For a set R of refined states, S is an [R]-set if ∀v ∈ V (G) : rstateS(v)∩
R 6= ∅ ;

• For sets R and M of vertex states minM [R] (maxM [R]) is the pa-
rameter minimizing (maximizing) |{v : rstateS(v)∩M 6= ∅}| over all
[R]-sets S.
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Our notation Standard terminology
[ρ≥0, σ0, σ≥1 ·ρ1]-set Irredundant set (closed-closed)
[ρ≥0, σ0, σ≥1 ·ρ1, σ≥1 ·σ1]-set closed-open Irredundant set
[ρ≥0, σ≥0 ·ρ1, σ≥0 ·σ1]-set open-open Irredundant set
[ρ≥0, σ≥0 ·ρ1]-set open-closed Irredundant set
[ρ≥0, σ≤k−1, σ≥k ·ρk]-set k-Irredundant set
[ρ≥1, σ0, σ≥1 ·ρ1]-set Minimal Dominating set
[ρ≤1 ·ρ1, σ≥0]-set Maximal Nearly Perfect set
max{σ≥0}[ρ≥0, σ0, σ≥1 ·ρ1] Upper Irredundance parameter
max{σ≥0}[ρ≥1, σ0, σ≥1 ·ρ1] Upper Dominating parameter

Table 2.4: Some vertex subset properties and graph parameters defined using refined
states

Abbreviations like σ≥1·ρ1 denote σ1·ρ1, σ2·ρ1, ... , in analogy with earlier definitions.
For example, irredundant sets have legal refined states R = {ρ≥0, σ0, σ≥1·ρ1}, meaning
that for an R-set S ⊆ V (G) we have stateS(v) ∈ {σ1, σ2, ...} ⇒ ∃w ∈ NG(v) :
stateS(w) = ρ1 (a selected vertex having at least one selected neighbor must also
have a private non-selected neighbor.)

Table 2.4 gives examples of vertex subset properties and graph parameters [24,
31, 33, 44] admitting a characterization using refined states. The discriminating term
“closed-closed” for irredundant sets arises from the definition of an irredundant set S
as one for which ∀v ∈ S the union of the closed neighborhoods of vertices in S \ {v}
is strictly smaller than the union of the closed neighborhoods of vertices in S.

For a given set of (non-refined) vertex states L we now give a general procedure
constructing sets of refined vertex states Lmax and Lmin such that the [Lmax]-sets
are exactly the maximal [L]-sets and the [Lmin]-sets are exactly the minimal [L]-sets.
Given L, we define the following vertex states:

Amax = {ρi : ρi ∈ L ∧ σi 6∈ L}
Amin = {σi : σi ∈ L ∧ ρi 6∈ L}
Bmax = {ρi : ρi ∈ L ∧ ρi+1 6∈ L} ∪ {σi : σi ∈ L ∧ σi+1 6∈ L}
Bmin = {ρi : ρi ∈ L ∧ ρi−1 6∈ L} ∪ {σi : σi ∈ L ∧ σi−1 6∈ L}

Let Lρ and Lσ be the sets of ρ-states and σ-states in L, respectively, so that
L = Lρ ∪ Lσ. We define states for maximal and minimal [L]-sets as follows:

Lmax
df
= Amax ∪ Lσ ∪ {a ·b : a ∈ Lρ \ Amax ∧ b ∈ Bmax}

Lmin
df
= Amin ∪ Lρ ∪ {a ·b : a ∈ Lσ \ Amin ∧ b ∈ Bmin}

Theorem 2.1 A vertex subset S is a maximal (respectively, minimal)
[L]-set in G if and only if S is a [Lmax]-set (respectively, [Lmin]-set) in
G.
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Proof. We argue only for maximal sets as the proof for minimal sets is very similar.
Let S be a maximal [L]-set in G. We show that rstateS(v) ∩ Lmax is non-empty for
any v ∈ V (G). Since stateS(v) ∈ rstateS(v) it suffices to show stateS(v) ∈ Lmax.
If v ∈ S then the above clearly holds since stateS(v) ∈ Lσ ⊆ Lmax. If v 6∈ S then
S ′ = S∪{v} is not an [L]-set so there exists at least one vertex u with stateS′(u) 6∈ L.
Since stateS(w) = stateS′(w) for any w 6∈ NG(v) ∪ {v} we consider two cases. case
(i) stateS′(v) 6∈ L. Let stateS(v) = ρi so that stateS′(v) = σi 6∈ L. But then
stateS(v) ∈ Amax ⊆ Lmax. case (ii) stateS′(v) ∈ L. We have stateS′(u) 6∈ L for
some u ∈ NG(v) and either u ∈ S or u 6∈ S. We argue only for u ∈ S as the reasoning
for u 6∈ S is very similar. Let stateS(u) = σi so that stateS′(u) = σi+1 6∈ L. Note
that stateS(u) ∈ Bmax and stateS(v) ∈ Lρ \Amax so that among the refined states
rstateS(v) of vertex v we have stateS(v) ·stateS(u) ∈ Lmax. We leave out the other
direction of the proof as it is basically a reversal of the above arguments. 2

As an example, Table 2.4 shows the resulting characterizations for minimal dom-
inating sets and maximal nearly perfect sets. Note that maximal [L]-sets (similarly,
minimal [L]-sets) are exactly the [L]-sets themselves if Amax (Amin) contains every
ρ-state (every σ-state) in L or if Bmax = L (Bmin = L) and the graph G has no
isolated vertices.

2.4 Some New Vertex Partitioning Problems

We define some new vertex partitioning problems as generalizations of the old prob-
lems encountered in earlier sections. Several new vertex subset problems are intro-
duced in the next chapter. For instance, the new vertex subset problem max{ρ1, σ1}[ρ≥0, σ≥0],
which we call TOTAL EFFICIENCY is derived from the old EFFICIENCY [13] prob-
lem max{ρ1}[ρ≥0, σ≥0]. This problem arises in communication networks, if we assume
that a communication round has two time-disjoint phases, send and receive, and that
a processor receives a message whenever it has a single sending neighbor. The maxi-
mum number of processing elements that can receive a message in one communication
round is the Total Efficiency of the graph underlying the network topology.

The CHROMATIC number problem is the problem of minimizing the number
of independent sets the vertices of a graph can be partitioned into. Similarly, DO-
MATIC number maximizes the number of dominating sets, PARTITION INTO PER-
FECT MATCHING minimizes the number of induced 1-regular subgraphs and q-
COLORING asks about the existence of a partition into q independent sets. For
each vertex subset property in Table 2.2 and also Table 2.4 we can similarly define a
partition maximization, a partition minimization and q-partition existence problems.
We call the resulting problems [ρ, σ]-PARTITION problems. By a [ρ, σ]-property we
will mean the property enforced by the degree constraint matrix

(

σ N

ρ N

)
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For a [ρ, σ]-property we define these partition problems simply by taking the degree
constraint matrix Dq with diagonal entries σ and off-diagonal entries ρ.

For example, the [ρ1, σ0]-PARTITION problem asking for the existence of a q-
partition turns out to be exactly the Kq-COVER problem, solvable in polynomial
time for q ≤ 3, but NP-complete otherwise. It may be interesting to investigate the
cutoff points at which the q-partition existence problems for various vertex subset
properties become intractable.

Let us consider a [ρ1, σ≥0]-PARTITION problem. We define the PERFECT
MATCHING CUT problem as the ∃D2 problem with D2 the degree constraint matrix

(

N 1
1 N

)

In other words, does the graph have a subset of vertices S ⊆ V (G) such that the
spanning subgraph on edges crossing the cut (S, V (G)\S) is 1-regular? As an example,
the binomial trees and also the hypercube graphs have a perfect matching cut, which
follows immediately from their iterative definition. We have not found any earlier
references to this problem.

A more general class of problems arises if we consider partitions into differ-
ent vertex subset properties, e.g. a SPLIT graph is one which has a partition
into an independent set and a clique. In general, take vertex subset properties
[1ρ, 1σ], [2ρ, 2σ], ..., [qρ, qσ], and construct a degree constraint matrix Dq with col-
umn i having entry iσ on the diagonal (position i) and iρ off the diagonal. The
∃Dq-problem asks if a graph G has a partition V1, V2, ..., Vq of V (G) where Vi is an
[iρ, iσ]-set in G. We call these NON-UNIFORM PARTITION problems.

A variation of these problems arises by asking if a graph G has a partition
V1, V2, ..., Vq where Vi is a [ρ, σ]-set in G \ (∪Vj, j < i). To define this we use the
degree constraint matrix Dq with diagonal entries σ, above-diagonal entries N and
below-diagonal entries ρ. We call the resulting problems [ρ, σ]-REMOVAL problems,
since V1 is a [ρ, σ]-set in G1 = G, while V2 is a [ρ, σ]-set in G2 = G1 \ V1, and in gen-
eral Vi is a [ρ, σ]-set in Gi = Gi−1 \ Vi−1. Here we may have to add the requirement
that all partition classes be non-empty. For example, the [ρ≥1, σ0]-REMOVAL prob-
lem ([ρ≥1, σ0]-sets are Independent Dominating sets) asking for the maximum q such
that a graph has the appropriate Dq-partition, with non-empty classes, is exactly the
GRAPH GRUNDY NUMBER problem.

For another example, we consider a [ρ≥1, σ≥0]-REMOVAL problem. Define matri-
ces D1, D2, ... with below-diagonal entries P and with diagonal and above-diagonal en-
tries N. We call the maxDq-problem over these matrices the UPPER-DOMINATING-
REMOVAL problem. This parameter is the maximum number of times we can re-
peatedly remove dominating sets from a graph, before the graph becomes empty.
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2.5 A Non-Algorithmic Application

As an example of a non-algorithmic application of our characterization, we consider a
generalization of perfect codes ([ρ1, σ0]-sets) and extend to this generalization a result
that holds for perfect codes.

Lemma 2.1 For p ∈ P, q ∈ N if both A and B are [ρp, σq]-sets of a graph
G then |A| = |B|.

Proof: Let XI = A ∩ B, XA = A \ B and XB = B \ A, so that XA, XI , XB is a
partition of A∪B. By a counting argument, we will show that |XA| = |XB|. Consider
the edge-disjoint subgraphs F = (XA ∪ XB, {uv ∈ E(G) : u ∈ XA ∧ v ∈ XB}) and
H = (A ∪ B, {uv ∈ E(G) : (u ∈ XI ∧ v ∈ XB) ∨ (u ∈ XI ∧ v ∈ XA)}). Note
F contains the edges between XA and XB while H contains the edges with one
endpoint in XI and the other endpoint in XA or XB. Since A, B are [ρp, σq]-sets,
we have ∀v ∈ XA ∪ XB : degF (v) + degH(v) = p. Since F is a bipartite graph we
have

∑

v∈XA
degF (v) =

∑

v∈XB
degF (v). Since A, B are [ρp, σq]-sets, both G[A] and

G[B] are q-regular, so we have ∀v ∈ XI : |N(v) ∩ XA| = |N(v) ∩ XB|, which gives
∑

v∈XA
degH(v) =

∑

v∈XB
degH(v). But then

p|XA| =
∑

v∈XA

degF (v) +
∑

v∈XA

degH(v) =
∑

v∈XB

degF (v) +
∑

v∈XB

degH(v) = p|XB|

and since p > 0 we have |XA| = |XB| which implies |A| = |B|. 2

Theorem 2.2 For a set of vertex states L, the statement “For any graph
G, all [L]-sets have the same size” is true if and only if (i) or (ii) holds

(i) L = {ρp, σq} for some p ∈ P, q ∈ N

(ii) L has either no ρ-states or no σ-states

Proof: If L has no ρ-states then the only possible [L]-set is S = V (G) and if L
has no σ-states then the only possible [L]-set is S = ∅. The sufficiency of (i) and
(ii) then follows from Lemma 2.1. For necessity we will consider sets L not of type
(i) or (ii), and construct graphs with two [L]-sets of different sizes. First note that
if ρ0 ∈ L then S = ∅ is an [L]-set and it is easy to construct a graph with some
larger [L]-set. The remaining cases (when ρ0 6∈ L) are covered by two arguments,
depending on whether there is more than one legal state for selected vertices, or more
than one legal state for non-selected vertices. In both cases, we construct a graph G
with appropriate subsets A and B (each set inducing a collection of complete graphs)
of different sizes.

Case 1: Suppose {ρa, ρb, σc} ⊆ L where a < b. For A and B disjoint, let G =
(A ∪ B, E) where A induces a copies of Kc+1 and B induces b copies of Kc+1, clearly
both c-regular. The remaining edges form a perfect matching between each pair of
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Figure 2.3: I) A graph having [ρa, ρb, σc]-sets A and B. II) A graph having two
[ρa, σb, σc]-sets of size b + 1 and c + 1 (a ≤ b + 1)

Kc+1’s, one from each of A and B. See Figure 2.3-I. Thus a vertex in A has b neighbors
in B and a vertex in B has a neighbors in A. |A| = a(c + 1) < b(c + 1) = |B| since
a < b.

Case 2: Suppose {ρa, σb, σc} ⊆ L where b < c. If a ≤ b + 1 let G = (A ∪ B, E)
such that A and B induce Kb+1 and Kc+1, respectively, and A∩B induces Ka, these
adjacencies accounting for all the edges. See Figure 2.3-II. If a > b + 1 we use the
graph depicted in Figure 2.4. As before, A induces the Kc+1’s and B induces the
Kb+1’s (shaded in the figure). The remaining edges are between A \B and B \A and
can be added in any way such that each vertex of A\B gets a−b−1 additional edges
and each vertex of B \ A gets a additional edges. Thus, the bipartite graph between
A\B and B \A must have (c+1−(b+1))(a−b−1)a(b+1) = (b+1)a(a−b−1)(c−b)
edges, counting from A \ B or B \ A respectively, and since a − b − 1 < a we have
|A| > |B|. 2
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Figure 2.4: A graph having [ρa, σb, σc]-sets A and B (a > b + 1)
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Chapter 3

Complexity of Vertex Subset

Optimization Problems

We study the computational complexity of vertex subset optimization problems in a
unified framework, using the characterization given in Chapter 2.2. In recent years,
a variety of domination-type parameters in graphs have been introduced, and the
number of papers devoted to this topic is steadily increasing [39, 40]. We give a table
cataloging the computational complexity of computing some of these, and other,
parameters. We also investigate the computational complexity of the general class
of all problems admitting our characterization. For a given vertex subset property,
we concentrate on the existence, maximization and minimization problems. The
existence problem merely decides if a graph has any vertex subset with the property,
while the maximum and minimum problems can be used to find the largest and
smallest such vertex subset. Several infinite classes of NP-complete and of polynomial
time solvable problems are shown. We completely resolve the complexity of the
existence version for those problems having a finite number of legal states, up to P
vs. NP. We also give NP-completeness results for the existence version of problems
with an infinite number of legal states, e.g., deciding if a graph has a [ρ≥1, σ1]-set,
which we call a Dominating Induced Matching. For some problems we show NP-
completeness even when the input graph is restricted to be a planar, bipartite graph
of maximum degree three. The vertex subset property [ρ≥1, σ≤1] is shown to share
complexity status with [ρ≥1, σ0], Independent Dominating sets, in that both minimum
and maximum problems are hard while the existence problem is easy. Finally, we give
greedy polynomial-time algorithms for solving a class of maximization problems. A
natural by-product is the introduction of several new domination-type parameters in
graphs. The results given here are a step towards our goal of a complete complexity
classification of the problems admitting the characterization.

3.1 Complexity of Old Problems

We use the characterization given in Chapter 2.2. Table 3.1 shows some of the classical
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[L]-set Standard terminology ∃[L] max[L] min[L]
[ρ≥0, σ0]-set Independent set P NPC P
[ρ≥1, σ≥0]-set Dominating set P P NPC
[ρ≤1, σ0]-set Strong Stable set or 2-Packing P NPC P
[ρ1, σ0]-set Efficient Dominating set or Perfect Code NPC NPC NPC
[ρ≥1, σ0]-set Independent Dominating set P NPC NPC
[ρ1, σ≥0]-set Perfect Dominating set P P NPC
[ρ≥1, σ≥1]-set Total Dominating set P P NPC
[ρ1, σ1]-set Total Perfect Dominating set NPC NPC NPC
[ρ≤1, σ≥0]-set Nearly Perfect set P P P
[ρ≤1, σ≤1]-set Total Nearly Perfect set P NPC P
[ρ1, σ≤1]-set Weakly Perfect Dominating set NPC NPC NPC
[ρ≥0, σ≤n]-set Induced Bounded-Degree subgraph (n ≥ 0) P NPC P
[ρ≥n, σ≥0]-set n-Dominating set (n ≥ 1) P P NPC
[ρ≥0, σn]-set Induced n-Regular subgraph (n ≥ 0) P NPC P

Table 3.1: Some vertex subset properties and the complexity of derived problems.

vertex subset properties and also the complexity of derived problems, with P denoting
Polytime and NPC denoting NP-Complete. Most of these complexity results are old
[34, 23, 32, 12, 24, 33, 22, 44], and others are among the results given in the next
section. Table 3.1 can be used as a quick reference guide to the exact definitions of
the various properties represented and the complexity of the associated problems.

We are mainly interested in classifying problems admitting the given character-
ization as NP-complete or as solvable in polynomial time. The objective functions
most studied in the past involve minimizing or maximizing the cardinality of the set
of selected vertices, and for each entry in Table 3.1, except Nearly Perfect Sets, there
is at least one NP-complete problem related to such a parameter. We continue this
trend, and the optimization problems we concentrate on are of the form min[L] and
max[L]. For certain subset properties, such as Perfect Code, it is well known that
even deciding if a graph has any such set is an NP-complete problem. In the following
Lemma we observe several consequences of NP-completeness of an ∃[L] problem.

Lemma 3.1 If ∃[L] is NP-complete on a class of graphs C then any
decision problems of the form max[L], min[L], maxM [L], minM [L] or
maxL[P ], L ⊆ P are NP-complete on C. Conversely, if any of the latter
problems have a polynomial time algorithm, then so does ∃[L].

Proof. The decision version of maxM [L] takes a graph G and an integer k as input,
and asks if G has an [L]-set S with |{v : stateS(v) ∈ M}| ≥ k. Thus, with an
algorithm for the decision version of maxM [L], we can decide ∃[L] by a single call
of that algorithm providing the integer k = 0 as the second part of the input. For
minM [L] and maxL[P ] problems we would use the integer k = |V (G)| for the input
graph G as the second part of the input. 2
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In particular, Theorems 3.1,3.2,3.3,3.4 and 3.7 can each be combined with Lemma 3.1
to yield corollaries of this kind. We will not state these corollaries explicitly. We ob-
serve from Table 3.1 that the vertex subset properties attracting most interest in
the past are characterizable by two syntactic states (using the abbreviations) with
vertices having zero, one, at least zero, or at least one selected neighbors. Our focus
partially continues this trend.

3.2 NP-Completeness Results

We show NP-completeness of several infinite classes of vertex subset problems by
reducing from the NP-complete problem Exact 3-Cover (problem [SP2] in [34].)

Definition 3.1Exact 3-Cover (X3C)

Instance: Set U and T ⊆
(

U
3

)

.

Question: ∃T ′ ⊆ T , where T ′ a partition of U?

We introduce each NP-completeness result by way of a short comparison with the
complexity of some related problem from Table 3.1. In contrast to the NP-complete
problem of deciding existence of [ρ1, σ0]-sets (Perfect Codes), our first result shows
the NP-completeness of certain ∃[L] problems with L containing an infinite number
of states.

Theorem 3.1 The decision problems ∃[ρ≥q, σ0] are NP-complete for all
q ∈ {2, 3, ...}.

Proof. We give a reduction from X3C to ∃[ρ≥q, σ0] for any q ∈ {2, 3, ...}. Given an
instance (U, T ) of X3C we construct a graph G such that ∃T ′ ⊆ T with T ′ a partition
of U if and only if G has a [ρ≥q, σ0]-set S. Let T = {t1, ..., t|T |}. For each u ∈ U , let
Tu = {t ∈ T : u ∈ t} = {tu1, tu2, ..., tuk} be the triples containing u. For each u ∈ U
the graph G will contain a subgraph Gu consisting of a complete graph on vertices
{xu, uu1, uu2, ..., uuk} and q − 1 leaves Lu, each adjacent only to xu. For each ti ∈ T
with ti = {u, v, w} we construct a subgraph Gi sharing the vertices ui, vi, wi with
Gu, Gv, Gw, respectively, as follows: (case q = 2) Gi is a 6-cycle on vertices Ai ∪ Bi

such that Ai = {ui, vi, wi} are mutually non-adjacent; (case q ≥ 3) Gi is a complete
bipartite graph Kq,q with partition (Ai, Bi) and with {ui, vi, wi} ⊆ Ai. This completes
the description of G, see Figure 3.1.

Let S be a [ρ≥q, σ0]-set of G. Note that every leaf in Lu must be in S, since ρ0 and
ρ1 are not legal vertex states. In turn, their common neighbor xu cannot be in S since
σ1 is not legal. Since |Lu| = q − 1 and ρq−1 is not legal at least one other neighbor
of xu, besides its Lu-neighbors, must be in S, i.e. |{uu1, uu2, ..., uuk} ∩ S| ≥ 1. But
{uu1, uu2, ..., uuk} induce a complete graph in G, and σ0 is the only legal σ-state, so
exactly one of these vertices must be in S. Let ui ∈ S with ti = {u, v, w}. We would
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want ti to cover u, v, w and show that indeed we must have {ui, vi, wi} ⊆ S. Note
that these three vertices are all in the same partition Ai of the bipartite graph Gi.
We argue first the case q ≥ 3. No vertex in partition Bi can be in S since already
ui ∈ S and σ0 is the only legal σ-state. Moreover, since the neighborhood of any
vertex in Bi is exactly Ai and |Ai| = q we must have Ai ⊆ S since ρk is not legal for
any k < q. If q = 2 we have Gi a cycle and ui ∈ S again forces Ai ⊆ S. With this in
mind, we have that T ′ = {ti : Ai ⊆ S} must be an exact 3-cover of U .

For the other direction, if T ′ ⊆ T is an exact 3-cover of U , it is easy to check that
S = {v : v ∈ Lu∧u ∈ U}∪{v : v ∈ Ai∧ti ∈ T ′}∪{v : v ∈ Bi∧ti 6∈ T ′} is a [ρ≥q, σ0]-set
of G. NP-completeness of the ∃[ρ≥q, σ0] problem follows, since in polynomial time it
is easy to verify a [ρ≥q, σ0]-set and compute the transformation. 2

In contrast to [ρ≥1, σ0]-sets (Independent Dominating sets) which are easily found
using a greedy algorithm, our next result shows that [ρ≥1, σ1]-sets, which we call
Dominating Induced Matchings, are difficult to find.

Theorem 3.2 The decision problem ∃[ρ≥1, σ1] (Dominating Induced Match-
ing) is NP-complete.

Proof. We again reduce from X3C and adopt all the notation from the proof of
Theorem 3.1, constructing gadgets Gu and Gi sharing a vertex ui if u ∈ ti ∈ T . Gu

will consist of a complete graph on the vertices {xu, uu1, uu2, ..., uuk} and for each pair
ui, uj, i 6= j we add three new vertices and edges forming a 5-path from ui through the
new vertices to uj. See Figure 3.2 which also shows the gadget Gi for ti = {u, v, w}.
Let S be a [ρ≥1, σ1]-set in the graph G thus constructed from an instance of X3C. We
note right away that for any any vertex v ∈ V (G) we have N(v)∩S 6= ∅ since neither
ρ0 nor σ0 are legal states. Employing this argument to xu of the gadget Gu shows
that |{uu1, uu2, ..., uuk} ∩ S| ≥ 1. Moreover, we cannot have ui, uj ∈ S for i 6= j since
the middle vertex on the 5-path from ui to uj would have no S-neighbors. Hence,
|{uu1, uu2, ..., uuk} ∩ S| = 1. The gadget Gi for a triple ti = {u, v, w} forces either
ui, vi, wi ∈ S or ui, vi, wi 6∈ S, see Figure 3.2. Thus, if we let T ′ be the triples ti which
have the shared vertices of Gi selected then T ′ must be an Exact 3-Cover of U . For
the other direction of the proof, it is not hard to see from Figure 3.2 that an Exact
3-Cover of the instance (U, T ) likewise gives rise to a [ρ≥1, σ1]-set in G. 2

The ∃[L] problem has trivially the affirmative answer if ρ0 ∈ L. If L contains no ρ-
states the ∃[L]-problem on G is solved by checking whether for each vertex v we have
σdegG(v) ∈ L. If L contains no σ-states the ∃[L]-problem on G is solved by checking
whether ρ0 ∈ L. In light of this, our next theorem gives a complete characterization,
up to P vs. NP, of the complexity of ∃[L] problems when L has a finite number of
states. The reduction given is a generalization of a reduction used in [46].

Theorem 3.3 The ∃[L] problem is NP-complete if ρ0 6∈ L and L contains
a finite positive number of both ρ-states and σ-states.
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Proof. Let L = {ρp1
, ρp2

, ..., ρpm
, σq1

, σq2
, ..., σqn

}, where n, m ≥ 1 and pi, qi non-
negative integers satisfying 0 < p1 < p2 < ... < pm and q1 < q2 < ... < qn. We
reduce from X3C. Given an instance (U, T ) of X3C we want a graph G such that G
has an [L]-set S ⊆ V (G) if and only if ∃T ′ ⊆ T , a partition of U . The gadget for
ui ∈ U is simply the vertex ui, which will be shared by gadgets Gt for all triples t with
ui ∈ t ∈ T . The graph G will be defined by describing the gadgets Gt, one for each
t ∈ T . For all t = {ut1, ut2, ut3} ∈ T we construct a graph Gt with private vertices Pt

and shared vertices ut1, ut2, ut3, i.e. V (Gt) = Pt ∪ {ut1, ut2, ut3}, having the property:
In the graph Gt, all S ⊆ V (Gt) that assign ∀v ∈ Pt a state stateS(v) ∈ L assigns

to ut1, ut2, ut3 either
(i) stateS(ut1) = stateS(ut2) = stateS(ut3) = ρ0 or
(ii) stateS(ut1) = stateS(ut2) = stateS(ut3) = ρpm

.
Moreover, sets of type (i) and sets of type (ii) should exist for Gt.

Assuming we can construct such Gt, the theorem will follow:
Claim1: G = ∪t∈T Gt has [L]-set S ⊆ V (G) ⇔ ∃T ′ ⊆ T , a partition of U .
(⇐:) Note the parts Gt of the graph G share only the vertices representing U . For

each t ∈ T ′ choose a set St ⊆ V (Gt) of type (ii) for Gt. For each t 6∈ T ′ choose a set
St ⊆ V (Gt) of type (i) for Gt. Let S = ∪t∈T St.

(⇒:) For any [L]-set S of G we must have S ∩ V (Gt) be either a set of type (i) or
a set of type (ii) for Gt. This since only Gt contains the vertices Pt, and also {w : w ∈
N(v) ∧ v ∈ Pt} ⊆ V (Gt). Since ρ0 6∈ L, and since a vertex u 6∈ S can have at most
pm neighbors in S, we must have that T ′ = {t : V (Gt)∩S is a set of type (ii) for Gt}
is a partition of U .

Construction of Gt: Let V (Gt) = A∪B ∪X ∪ Y ∪Z ∪ {c}∪ {ut1, ut2, ut3}. See
Figure 3.3 for a rough sketch of how these components are connected together. As
a preview, we mention that {A ∪ Y } will be a selected set of type (ii) and {B ∪ Y }
a selected set of type (i) for Gt. X and Y will be such that a selected set must
contain all vertices from Y but cannot contain any vertex from X. The vertex c,
which cannot be selected, will be connected to enough vertices of Y so that none of
its other neighbors, namely Z ∪ {ut1, ut2, ut3}, can be selected. The vertices Z will
ensure that either all or none of the neighbors of utk are selected.

Let A = A1
.
∪ ... ∪ Apm and B = B1 ∪ ... ∪ Bpm with Ai = {ai

1, ..., a
i
q1+1} and

Bi = {bi
1, ..., b

i
q1+1}, and let G[Ai], G[Bi], ∀i be complete graphs on q1 + 1 vertices,

with no other edges between As or between Bs. Edges connecting vertices of A with
vertices of B are restricted to (ai

k, b
j
k), ∀i, j, k. Edges incident with {ut1, ut2, ut3} in

Gt are restricted to (c, utk) and (ai
1, utk), ∀i, k.

Let β = max{pm, qn} > 0 and α = d β
(p1(qn+1))

e > 0.

Let Y = Y 1 ∪ ... ∪ Y p1α and G[Y i], ∀i, a complete graph on qn + 1 vertices.
Let X = {x1, x2, ..., x(qn+1)(β+1)α} with G[X] containing no edges.
We add edges connecting X-vertices with Y -vertices such that each vertex of X

gets p1 neighbors in Y and each vertex of Y gets β + 1 neighbors in X. This can be
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done since |X| = α(qn + 1)(β + 1) and |Y | = α(qn + 1)p1.
The vertex c is connected to pm vertices of Y , note |Y | ≥ pm > 0, and c is also

connected to every vertex of Z ∪ {ut1, ut2, ut3}.
It remains to describe the vertices and edges contributed by Z. Let Z = Z1 ∪

Z2 ∪ Z3 ∪ {z′} with Zk = {zk
1 , ..., zk

pm
} for k ∈ {1, 2, 3}.

The vertex z1
i , ∀i, is connected to a1

1 and to bi
1 and has p1 − 1 neighbors in Y .

The vertex z2
i , ∀i, is connected to a1

1 and to bi
1 and has pm − 1 neighbors in Y .

The vertex z3
i , ∀i, is connected to ai

1 and to bi
1 and has p1 − 1 neighbors in Y .

The vertex z′ is connected to {a1
1, ..., a

pm

1 , b1
1, ..., b

pm

1 }.
This completes the description of Gt.

Claim2: A ∪ Y is a set of type (ii) and B ∪ Y is a set of type (i) for Gt.
Proof of claim: We consider A ∪ Y first. G[A ∪ Y ] is a collection of pm copies of

Kq1+1 for the As and p1α copies of Kqn+1 for the Y s, so stateA∪Y (a) = σq1
, ∀a ∈ A and

stateA∪Y (y) = σqm
, ∀y ∈ Y . Moreover, ∀x ∈ X we have N(x) ⊆ Y and |N(x)| = p1

so stateA∪Y (x) = ρp1
. For the vertex c we have N(c) ⊆ Y ∪ Z ∪ {ut1, ut2, ut3} and

|N(c) ∩ Y | = pm, so stateA∪Y (c) = ρpm
. The vertices z ∈ Z1 ∪ Z3 have |N(z) ∩ {A ∪

Y }| = p1, so stateA∪Y (z) = ρp1
. Similarly, ∀z ∈ Z2 we have |N(z) ∩ {A ∪ Y }| = pm,

so stateA∪Y (z) = ρpm
. The vertex z′ has N(z′) ⊆ A ∪ B and |N(z) ∩ A| = pm, so

stateA∪Y (z′) = ρpm
. So far, the argument for B ∪ Y being a set of type (i) can be

obtained from the above by replacing B for A and vice-versa.
Since ∀b ∈ B, N(b) ⊆ A ∪ Z and |N(b) ∩ A| = pm, we have stateA∪Y (b) = ρpm

.
Similarly, ∀a ∈ A we have N(a) ⊆ B ∪ Z ∪ {ut1, ut2, ut3} and |N(a) ∩ B| = pm, so
stateB∪Y (a) = ρpm

.
What remains is the argument for the vertices {ut1, ut2, ut3}. We have for k ∈

{1, 2, 3}, N(utk) = {a1
1, ..., a

pm

1 }, so stateA∪Y (utk) = ρpm
and stateB∪Y (utk) = ρ0 so

that A∪ Y is a set of type (ii) and B ∪ Y is a set of type (i), completing the proof of
the claim.

Claim3: For any St ⊆ V (Gt) which assigns ∀w ∈ V (Gt) \ {ut1, ut2, ut3} a state
stateSt

(w) ∈ L, we have Y ⊆ St and also (Z ∪ {ut1, ut2, ut3}) ∩ St = ∅.
Proof of claim: ∀y ∈ Y we have |N(y)∩X| = β+1 > max{pm, qn}, so ∃x ∈ N(y) :

x 6∈ St. But |N(x) ∩ Y | = p1, so stateSt
(x) = ρp1

and y ∈ St. Since |N(y) ∩ Y | = qn

we must have stateSt
(y) = σqn

. Since |N(c)∩Y | = pm we must have stateSt
(c) = ρpm

and (Z ∪{ut1, ut2, ut3})∩St = (N(c) \Y )∩St = ∅, completing the proof of the claim.

Claim4: For any St ⊆ V (Gt) which assigns ∀w ∈ V (Gt) \ {ut1, ut2, ut3} a state
stateSt

(w) ∈ L, we have either ai
1 ∈ St, 1 ≤ i ≤ pm or ai

1 6∈ St, 1 ≤ i ≤ pm.
Proof of claim: From Claim3 we have Z ∩ St = ∅ and Y ⊆ St. In particu-

lar, stateSt
(z1

i ) ∈ {ρp1
, ρp1+1}, similarly stateSt

(z2
i ) ∈ {ρpm−1, ρpm

} and stateSt
(z3

i ) ∈
{ρp1

, ρp1+1}. In turn, we consider the two cases a1
1 ∈ St and a1

1 6∈ St. a1
1 ∈ St gives

stateSt
(z2

i ) = ρpm
, ∀i, so bi

1 6∈ St, ∀i. This in turn gives stateSt
(z3

i ) = ρp1
so ai

1 ∈ St, ∀i,
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completing the first case. a1
1 6∈ St implies bi

1 ∈ St, ∀i so that stateSt
(z1

i ) = ρp1
, ∀i.

This in turn gives stateSt
(z′) = ρpm

so ai
1 6∈ St, ∀i, completing the proof of the claim.

Each of {ut1, ut2, ut3} is adjacent to exactly {a1
1, ..., a

pm

1 } and by Claim3 cannot
be in St. Hence, Claim4 actually shows that any St ⊆ V (Gt) which assigns ∀w ∈
V (Gt) \ {ut1, ut2, ut3} a state stateSt

(w) ∈ L has either
(i) stateSt

(ut1) = stateSt
(ut2) = stateSt

(ut3) = ρ0, or
(ii) stateSt

(ut1) = stateSt
(ut2) = stateSt

(ut3) = ρpm
.

Thus Gt has the claimed properties and the theorem follows. 2

As our next theorem shows, some of these decision problems are NP-complete
even for very restricted classes of graphs. The reduction we use is a simple special
case of the one just given, and uses the NP-complete problem Planar 3-Dimensional
Matching (P3DM). A similar reduction is used in [32].

Definition 3.2 3-Dimensional Matching (3DM) [SP1]

Instance: Disjoint sets U1, U2, U3 with U = U1 ∪ U2 ∪ U3 and T ⊆ U1 ×
U2 × U3.

Question: ∃T ′ ⊆ T , where T ′ a partition of U?

With an instance I of 3DM, we associate the bipartite graph GI where V (GI) =
U ∪ T and E(GI) = {(u, t) : u ∈ U ∧ u ∈ t ∈ T}. In [29] it is shown that Planar
3-Dimensional Matching, 3DM restricted to instances where GI is planar, is still
NP-complete.

Theorem 3.4 The problem of deciding whether a planar bipartite graph
of maximum degree three has any [ρ1, σ1]-set (Total Perfect Dominating
Set) is NP-complete.

Proof. Given an instance I of P3DM, we construct a graph G having a [ρ1, σ1]-set if
and only if ∃T ′ ⊆ T , a partition of U . Let G be the graph GI augmented by adding,
for each t ∈ T , the vertices at and bt, and edges connecting at to both t and bt. Since
this reduction does not distinguish between the sets U1, U2, U3, the instance I can be
viewed as an instance of X3C, and the argument that G has a [ρ1, σ1]-set if and only
if ∃T ′ ⊆ T , a partition of U , is left out since it is in easy analogy with the argument
used for the previous theorem.

Note that GI and G are both planar bipartite graphs. We next show an easy
transformation of a graph G having a vertex of degree larger than three to a graph
G′ with the following properties:

(i) if G planar and bipartite then G′ planar and bipartite,
(ii) Σ{v:degG(v)≥4}degG(v) > Σ{v:degG′ (v)≥4}degG′(v)
(iii) G has a [ρ1, σ1]-set if and only if G′ has a [ρ1, σ1]-set.
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Hence, applying such a polytime transformation repeatedly, starting with G, until
the resulting graph has no vertices of degree larger than three, yields a graph proving
the theorem.

We define the transformation by describing the resulting graph G′. Let v be a
distinguished vertex of G with NG(v) = {v1, v2, ..., vk} and k ≥ 4. Let G′ have vertices
V (G′) = V (G) ∪ {w, x, y, z} and edges

E(G′) = E(G) \ {(v1, v), (v2, v)} ∪ {(v1, w), (v2, w), (w, x), (x, y), (y, z), (z, v)}

See Figure 3.4. Note the transformation is local, with changes only to the neighbor-
hoods of v1, v2 and v.

We prove the stated properties of the transformation:
(i) Planarity is obviously preserved. If A, B is an appropriate bipartition of V (G)

then w.l.o.g. we must have v ∈ A, N(v) ⊆ B so that A∪{w, y} and B ∪{x, z} forms
an appropriate bipartition of V (G′). (ii) The new vertices all have degree less than
4, whereas the degree of v decreases to k − 1. (iii) Let S and S ′ be [ρ1, σ1]-sets in G
and G′, respectively. Note that {w, x, y, z, v} induces a 5-path in G′ so there are 4
possibilities for {w, x, y, z, v} ∩ S ′, namely {y, z}, {w, z, v}, {w, x, v} and {x, y}. We
similarly split the possibilities for choice of S into 4 classes, namely

|{v1, v2} ∩ S| = 1 ∧ v 6∈ S ∧ |{v3, ..., vk} ∩ S| = 0,
|{v1, v2} ∩ S| = 1 ∧ v ∈ S ∧ |{v3, ..., vk} ∩ S| = 0,
|{v1, v2} ∩ S| = 0 ∧ v ∈ S ∧ |{v3, ..., vk} ∩ S| = 1,
|{v1, v2} ∩ S| = 0 ∧ v 6∈ S ∧ |{v3, ..., vk} ∩ S| = 1.
It is easy to check that the 4 possibilities for choice of S ′ have, in the order given,

characterizations in terms of effect on v and N(v) which are identical to those just
given for S, and indeed property (iii) holds. 2

To our knowledge, the complexity of problems defined over Total Perfect Domi-
nating Sets in graphs, had not been studied previously [23].

Combining Lemma 3.1 with Theorem 3.4 gives the NP-completeness on planar
bipartite graphs of maximum degree three of the problem max{ρ1, σ1}[ρ≥0, σ≥0], which
we call Total Efficiency. This problem arises in communication networks, if we assume
that a communication round has two time-disjoint phases, send and receive, and that a
processor receives a message whenever it has a single sending neighbor. The maximum
number of processing elements that can receive a message in one communication round
is the Total Efficiency of the graph underlying the network topology.

The following strong result is due to Kratochv́ıl.

Theorem 3.5[46] The problem of deciding whether a planar 3-regular
graph has a [ρ1, σ0]-set (perfect code) is NP-complete.

We state the implications of this result for some other problems admitting our
characterization.
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Corollary 3.1 Any decision problem of the form min[L] with ρ0 6∈ L and
{ρ1, σ0} ⊆ L is NP-complete on planar 3-regular graphs.

Proof. Let G be a planar 3-regular graph. We show that G has a perfect code if and
only if the value of min[L] on G is |V (G)|/4. Since every vertex of G has degree 3,
a perfect code of G has size |V (G)|/4 and is clearly a dominating set. Moreover, a
dominating set of G which is not a perfect code will have more than |V (G)|/4 vertices.
An [L]-set in G is a dominating set since ρ0 is not legal and it could be a perfect code
since ρ1 and σ0 are legal. The corollary follows. 2

While every graph has an Independent Dominating Set ([ρ≥1, σ0]-set), that can
be easily found by a greedy algorithm, it is well-known that both minimizing and
maximizing the size of such a set is NP-hard. Our next result shows another vertex
subset property with this complexity classification.

Theorem 3.6 The decision problems min[ρ≥1, σ≤1] and max[ρ≥1, σ≤1] are
both NP-complete, while ∃[ρ≥1, σ≤1] can be solved in linear time.

Proof. Any graph has a [ρ≥1, σ≤1]-set, take for example a [ρ≥1, σ0]-set, easily found in
O(|E(G)|+ |V (G)|) by a greedy algorithm. NP-completeness of min[ρ≥1, σ≤1] follows
from Corollary 1. We show NP-completeness of max[ρ≥1, σ≤1] by reduction from
max[ρ≥1, σ0]. Given a graph G, construct the graph G′ with V (G′) = {u1, u2 : u ∈
V (G)} and E(G′) = {(u1, u2) : u ∈ V (G)} ∪ {(u1, v1), (u2, v2),
(u1, v2), (u2, v1) : (u, v) ∈ E(G)}, see Figure 3.5. Let S be a maximum-size [ρ≥1, σ0]-
set in G and let S ′ be a maximum-size [ρ≥1, σ≤1]-set in G′. We show that 2|S| = |S ′|.
Let A be [ρ≥1, σ0] in G. Then A′ = {u1, u2 : u ∈ S} is [ρ≥1, σ≤1] in G′. We have
2|A| = |A′|, so this shows that 2|S| ≤ |S ′|. Let B′ be [ρ≥1, σ≤1] in G′, with C =
{(ui, vj) ∈ E(G′) : {ui, vj} ⊆ B′}, the edges of G′[B′]. Choose one endpoint of each
edge from C and call this set of vertices D. Define B = {v ∈ V (G) : stateB′(v1) =
σ0 ∨ stateB′(v2) = σ0 ∨ v1 ∈ D ∨ v2 ∈ D}. Since we have removed one endpoint from
each edge of G′[B′] it is clear that B is an independent set in G and 2|B| ≥ |B ′|. In
our notation, B is [ρ≥0, σ0] in G, and can be greedily augmented to a [ρ≥1, σ0]-set,
which shows that 2|S| ≥ |S ′|. The transformation is easily computed in polynomial
time, and the theorem follows. 2

Minimization problems of the form min[L] have the empty vertex subset as solu-
tion if ρ0 ∈ L. Similarly, if L has no σ-states then the empty vertex subset is the only
possible solution. If L has no ρ-states then the only possible [L]-set in a graph G is
V (G) which is checked by degree computation as described earlier. A min[L] problem
where L does not satisfy any of the above is asking for a minimum-size dominating set
S of a certain kind. We have reason to believe that finding such a set is, in general,
NP-hard.

Conjecture 3.1 Assuming P 6= NP the decision problem min[L] is NP-
complete if and only if ρ0 6∈ L and L contains both some ρ-state and some
σ-state.
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3.3 Efficient Algorithms

We now turn to vertex subset problems which have an easy solution algorithm, and
focus our attention on optimization problems. Based on Lemma 3.1 such results have
as corollaries the polynomial-time solvability of the associated existence problems.
For min[L] problems, we believe the argument given above for one direction of Con-
jecture 3.1 constitute the only polynomial-time cases. For max[L] problems we have
the following.

Theorem 3.7 The problem max[L] is solvable in polynomial time by a
greedy algorithm if σ≥k is the only σ-state in L and either (i), (ii), (iii) or
(iv) holds

(i) ρ1, ρ2..., ρk−1 ∈ L

(ii) ρ0, ρ1, ..., ρk−1 6∈ L

(iii) ρ≥h is the only ρ-state in L, for some h

(iv) ρ0 and ρ≥h are the only ρ-states in L, for some h

Proof. We give two greedy algorithms, named ALG1 and ALG2, with input a graph
G and output a set achieving max[L] for G, if any [L]-set exists. ALG2 is used in
case (iv) when h ≥ 2 in which case there is a crucial gap in the legal ρ-states while
ALG1 is used in the remaining cases. The algorithms use data structures Bσ,Bρ of
type set.

ALG1(G)

Bσ, Bρ := V (G), ∅;
while (I: ∃v ∈ Bσ : |N(v) ∩ Bσ| < k) do Bσ, Bρ := Bσ \ {v}, Bρ ∪ {v};
if (∃v ∈ Bρ : stateBσ(v) 6∈ L) then output(6 ∃[L]-set) else output(Bσ);

ALG2(G)

Bσ, Bρ := V (G), ∅;
while (I: ∃v ∈ Bσ : |N(v) ∩ Bσ| < k) or (II: ∃w ∈ Bρ : |N(w) ∩ Bσ| < h) do

Case I : Bσ, Bρ := Bσ \ {v}, Bρ ∪ {v};
Case II: Bσ, Bρ := Bσ \ {N(w) ∩ Bσ}, Bρ ∪ {N(w) ∩ Bσ} \ {w};

output(Bσ);

We first prove correctness, for both algorithms, of the loop invariant: “A vertex
v 6∈ Bσ cannot be a member of any [L]-set S of G.” The loop invariant is true initially
since Bσ = V (G). Let Bσ and Bσ′ be the values before and after an iteration of the
loop. From the loop invariant we have S ⊆ Bσ and show that S ⊆ Bσ ′.

Case I (both algorithms): Bσ \ Bσ′ = {v} and v ∈ Bσ : |N(v) ∩ Bσ| < k. Since
σ≥k is the only σ-state in L, S ⊆ Bσ cannot contain v.
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Case II (ALG2 only, i.e. ρ0 and ρ≥h the only legal ρ-states): v ∈ Bσ \ Bσ′ and
∃w : v ∈ N(w) where w ∈ Bρ and |N(w)∩Bσ| < h. When a vertex is added to Bρ it
is also removed from the non-growing set Bσ so that Bρ ∩ Bσ = ∅ and in particular
w 6∈ S. Since ρ1, ρ2, ..., ρh−1 6∈ L we must have stateS(w) = ρ0 so that N(w) ∩ S = ∅.
Since v ∈ N(w) this completes the proof of the loop invariant.

At termination of both algorithms all vertices in Bσ = S have at least k neighbors
in S. We first argue correctness of ALG1. At termination of ALG1 all vertices not in
S (in Bρ) have less than k neighbors in S, so if for some v ∈ Bρ we have stateS(v) =
ρi 6∈ L there cannot be any [L]-set in G since for no j < i is ρj ∈ L. However, if such
a vertex does not exist S is a maximum-size [L]-set, proving correctness of ALG1. At
termination of ALG2 all vertices not in Bσ = S have either at least h neighbors in
S (these vertices are in Bρ) or no neighbors in S. Since ρ0 and ρ≥h are both legal
ρ-states we have S a maximum [L]-set, and ALG2 is correct. 2

31



Figure 3.1: Gadgets Gi, Gu, Gv, Gw for the triple ti = {u, v, w} with q ≥ 3.
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Figure 3.2: NP-completeness of Dominating Induced Matchings. Left: Gadget Gu

with uk = 3 and uu2 ∈ S. Middle: Gadget Gi for triple ti = {u, v, w} and ui, vi, wi ∈
S. Right: The only other possibility for Gi is ui, vi, wi 6∈ S.
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Figure 3.3: A rough sketch of the components of Gt where the absence of a line
between two components reflects the absence of an edge in Gt connecting any two
vertices from those two components.
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Figure 3.4: Transformation of G to G′
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Figure 3.5: Given G on the left, the reduction constructs the graph G′ on the right
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Chapter 4

Complexity of H-Covering

Problems

Efficient algorithms for certain graph covering problems are designed according to
two basic techniques. The first one is a reduction to the 2-SAT problem. The second
technique exploits necessary and sufficient conditions for the existence of regular
factors in graphs. For other infinite classes of graph covering problems we derive
NP-completeness results by reductions from graph coloring problems. We illustrate
this methodology by classifying all graph covering problems defined by simple graphs
with at most 6 vertices.

4.1 Motivation and Overview

For a fixed graph H, the H-cover problem admits a graph G as input and asks
about the existence of a “local isomorphism”: a labeling of vertices of G by vertices
of H so that the label set of the neighborhood of every v ∈ V (G) is equal to the
neighborhood (in H) of the label of v. We trace this concept to Biggs’ construction
of highly symmetric graphs in [15], and to Angluin’s discussion of “local knowledge”
in distributed computing environments in [3]. More recently, Abello et al. [1] raised
the question of computational complexity of H-cover problems, noting that there are
both polynomial-time solvable (easy) and NP-complete (difficult) versions of this
problem for different graphs H. Our own interest in the subject comes from viewing
H-covering as a vertex partitioning problem. Using the adjacency matrix D|V (H)| of H
as a degree constraint matrix (with singleton entries), the H-cover problem is simply
the ∃D|V (H)| problem. A related question of complexity of H-coloring, where the
degree constraint matrix is obtained from the above matrix by replacing {1}-entries
with N, has been resolved by Hell and Nešetřil [42] who completely classified graphs
for which the problem is easy and those for which it is difficult. Our goal is to extend
our current findings to achieve a complete classification also for the complexity of the
H-cover problem.

We develop a methodology that is useful in analyzing the complexity of graph
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Figure 4.1: G labeled by a covering projection of H, their common degree refinement
R and the degree partition of H.

covering problems. In designing efficient algorithms that solve easy graph covering
problems, we reduce those problems to regular factorization problems and/or to the
2-SAT problem. We introduce these tools and present the corresponding results. To
prove NP-completeness of the difficult graph covering problems, we use polynomial
time reductions from known NP-complete restrictions of vertex, edge and H-coloring
problems and also reductions between covering problems. These last reductions are
based on properties of the automorphism groups of the relevant graphs. We set up
a paradigm to construct such reductions and then present our findings. At the end
of this chapter, we give a catalogue of the complexity of the covering problem for all
simple graphs with at most 6 vertices. There are 208 such graphs, with 81 having
non-trivial polytime solution algorithms and 36 being NP-complete (the remaining
graphs defining trivial covering problems).

We give some useful definitions. The H-cover (decision) problem on an input
graph G has the affirmative answer iff there is a function (called covering projection)
f : V (G) → V (H) which preserves the identity of the neighborhood of any vertex v
of G, {f(u)|u ∈ NG(v)} = NH(f(v)) with degG(v) = degH(f(v)). Fixing the graph
H, and allowing any graph G as the input, one can pose the question: “Does G cover
H?” The computational complexity of this problem, called the H-cover problem for
the particular graph H, is the subject of this chapter.

The degree partition of a graph is the partition of its vertices into the minimum
number of blocks B1, . . . , Bt for which there are constants rij such that for each
i, j (1 ≤ i, j ≤ t) each vertex in Bi is adjacent to exactly rij vertices in Bj. The
t × t matrix R (R[i, j] = rij) is called the degree refinement.

The degree partition and degree refinement of a graph are easily computed by a
stepwise refinement procedure. Start with vertices partitioned according to degree
and keep refining the partition until any two nodes in the same block have the same
number of neighbors in any other given block. See Figure 4.1 for an example. Graph
coverings are related to degree partitions and degree refinements (see, for instance,
Leighton [52]):
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Fact 4.1 If f is a covering projection of H by G then H and G have
the same degree refinement and have degree partitions B1, B2, ..., Bt and
B′

1, B
′
2, .., B

′
t so that for every v ∈ B ′

i we have f(v) ∈ Bi, i = 1, 2, ..., t.

Without loss of generality, we will consider only connected graphs, because of the
following observations (whose proofs are left to the reader.)

Fact 4.2 Given a connected graph H, a graph G covers H if and only if
every connected component of G covers H.

Fact 4.3 For a disconnected graph H, the H-cover problem is polynomi-
ally solvable if and only if the Hi-cover problem is polynomially solvable
for every connected component Hi of H.

Fact 4.4 For a disconnected graph H, the H-cover problem is NP-
complete if for some connected component Hi of H the Hi-cover problem
is NP-complete.

As an appendix to this chapter, we list every connected, simple graph H on at
most six vertices and at least two cycles, showing the complexity of the H-covering
problem. Covering of simple graphs with at most one cycle is easy by Fact 4.7, stated
below.

4.2 Efficient Algorithms

For a given graph G and a fixed graph H, it is easy to compare degree partitions
and degree refinements in polynomial time. Surprisingly, for many graphs H, the
necessary condition for the existence of a covering given by Fact 4.1 is also sufficient.
For many other graphs H (including some infinite classes of graphs), for which those
conditions are not sufficient, we are able to design an efficient solution algorithm
paradigm by constructing an equivalent instance of the 2-SAT problem, and/or by
reducing to a factorization problem in a regular graph. Before we present these results,
we observe some fairly obvious facts about trees and unicyclic graphs.

Fact 4.5 A graph G covers a given tree H if and only G is isomorphic
to H.

Fact 4.6 A graph G covers a cycle H if and only if G is a cycle with the
length that is a multiple of the length of H.

The two preceding facts imply indirectly the following observation.

Fact 4.7 For a graph H with at most one cycle, the H-cover problem is
solvable in polynomial time.
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4.2.1 Reductions to 2-Satisfiability

The 2-SAT problem where clauses have at most two variables is solvable in polynomial
time. We reduce a class of H-covering problems to an instance of the 2-SAT problem.

Theorem 4.1 The H-COVER problem is solvable in polynomial time if
every block of the degree partition of H contains at most two vertices.

Proof. Denote the vertices of the i-th block Bi of H by Li, Ri (or Li only, if Bi is
a singleton). Suppose that G has the same degree refinement as H and its degree
partition is B′

1, B
′
2, . . . , B

′
t, where the blocks are numbered so that every covering

projection sends B′
i onto Bi, 1 ≤ i ≤ t. This structure of G can be checked in

polynomial time, and G does not cover H unless it satisfies these assumptions.
The crucial part of the algorithm is to decide which vertices of B ′

i should map
onto Li and which onto Ri. This can be done via 2-SAT. For every vertex u of G,
introduce a variable xu. In a truth assignment φ, these variables would encode

φ(xu) =

{

true if f(u) = Li

false if f(u) = Ri
(4.1)

for a corresponding covering projection f (here i is such that u ∈ B ′
i). We construct

a formula Φ as a conjuntion of the following subformulas:

1. (xu) for every u ∈ B′
i such that Bi is a singleton;

2. (xu ∨ xv) ∧ (¬xu ∨ ¬xv) for any pair of adjacent vertices u, v which belong
to the same block B ′

i (i.e., LiRi ∈ E(H));

3. (xu ∨¬xv)∧ (¬xu ∨xv) if u and v belong to distinct blocks (say u ∈ B ′
i and

v ∈ B′
j) and there are exactly the two edges LiLj, RiRj between Bi and Bj in

H;

4. (xu ∨xv)∧ (¬xu ∨¬xv) if u and v belong to distinct blocks (say u ∈ B ′
i and

v ∈ B′
j) and there are exactly the two edges LiRj, RiLj between Bi and Bj in

H;

5. (xw ∨ xv) ∧ (¬xw ∨ ¬xv) if v and w belong to the same block (say B ′
j) and

are both adjacent to u which belongs to a block (say B ′
i) such that LiLj, LiRj ∈

E(H).

Note that in case 2, every u ∈ B ′
i has exactly one neighbor v in the same block, in

cases 3 and 4, every u ∈ B ′
i has exactly one neighbor v ∈ B ′

j, and in case 5, every
u ∈ B′

i has exactly two neighbors v, w ∈ B ′
j.

It is clear that Φ is satisfiable if and only if f defined by (4.1) is a covering
projection from G onto H. The clauses derived from 2 guarantee, if LiRi ∈ E(H),
that every vertex mapped on Li has a neighbor which maps onto Ri and vice versa,
the clauses from 3-5 control adjacencies to vertices from different blocks, and the
technical clauses from 1 control the singletons. 2
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4.2.2 Reductions to factorization

A spanning subgraph H of a graph G is a k-factor if all vertices of H have degree
k. When k = 1, the 1-factor is often referred to as perfect matching. The existence
of perfect matchings in bipartite graphs is a subject of the celebrated König-Hall
theorem. A graph G is k-factorable if its edges can be partitioned into k-factors. An
application of the Hall-König marriage theorem states that a regular bipartite graph
is 1-factorable ([37],[49]). We will use this fact to show that the obvious necessary
conditions are also sufficient for a class of graph covering problems.

Theorem 4.2 Let H be a graph with all but two vertices of degree 2,
all of them lying on paths connecting the two vertices of degree k > 2.
Then a graph G covers H if and only if H and G have the same degree
refinement and the multigraph obtained from G by replacing the paths
between vertices of degree k by edges is bipartite. It follows that the
H-cover problem is solvable in polynoimal time.

Proof. The ‘only if’ part of the statement is obvious. For the ‘if’ part, note first
that since G is connected, the bipartition of its degree k vertices into V1, V2 is unique.
Denote the vertices of degree k in H by v1, v2, and let the paths between them have
lengths n1 < n2 < . . . < nm, with exactly ki paths of length ni. Number the paths of
length ni from 1 to ki. For every i, consider an auxiliary multigraph Gi with vertex
set V1 ∪ V2 and edges being in one-to-one correspondence with the paths of length
ni between the vertices of V1 ∪ V2 in G. Since degree refinements of G and H are
identical, Gi is ki-regular bipartite. It is therefore 1-factorable, which means that its
edges can be colored by ki colors, say 1, 2, . . . , ki, so that every vertex is incident to
exactly one edge of each color. We then define the covering projection by

f(x) = vi if x ∈ Vi, i = 1, 2, and otherwise
f(x) = u where u is a vertex of degree 2 on the j th path of length ni which leads

from v1 to v2 and x is the corresponding vertex on the path in G (from a vertex in V1

to a vertex in V2) that is represented by an edge colored by color j in the auxiliary
multigraph Gi. 2

If the H-covering problem is easy one may ask for what supergraphs of H the
covering problem remains easy. In a forthcoming paper we will treat this question in
detail. Presently, to encompass all 6-vertex graphs, we mention that we can safely
add a degree 1 vertex to a graph falling under Theorem 4.2.

A classical result of Petersen [57] states that any 2k-regular graph is 2-factorable.
We will use this fact to show that the obvious necessary conditions are also sufficient
for a class of graph covering problems.

Theorem 4.3 Let H be a graph with all but one vertex of degree 2. Then
the H-cover problem is solvable in polynomial time, and a graph G covers
H if and only if its degree refinement is the same as the degree refinement
of H.
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Proof. The structure of H is such that it contains one vertex, say A, of degree 2k
and all other vertices lie on cycles which pass through A. Let the lengths of the cycles
be n1 < n2 < . . . nm and let there be ki cycles of length ni, i = 1, 2, . . . , m.

The obvious necessary condition for a graph G to cover H is for G to contain only
vertices of degree 2 and 2k, and for every i = 1, 2, . . . , m, every vertex of degree 2k is
an endpoint of exactly 2ki paths of length ni which contain only vertices of degree 2
and every such path is between degree 2k vertices (possibly the same vertex). This
is just an explicit reformulation of the fact that G has the same degree refinement as
H. We will show that this obvious necessary condition is also sufficient.

It suffices to consider only paths of the same length, say ni. Consider a multigraph
G′ whose vertex set are the vertices of degree 2k in G, and edges correspond to
paths of length ni. This graph is 2ki-regular, and hence 2-factorable [57]. Let E ′

j,
j = 1, 2, . . . , ki, be the edge sets of ki disjoint 2-factors. Each such E ′

j is a disjoint
union of cycles, which in the original graph G correspond to cycles formed by paths
of length ni. These paths of G must map to paths P1, P2, . . . , Pki

of H, with Pj

having vertices Aj1, Aj2, . . . , Ajni
. In fact, the paths in G represented by a 2-factor

E ′
j can all be mapped onto the same path Pj in H. If x1, x11, . . . , x1ni

, x2, x21, . . . , x2ni
,

. . . , xr, xr1, . . . , xrni
is such a cycle (with x1, x2, . . . , xr being its vertices of degree 2k),

then the vertices xab will map onto Ajb, 1 ≤ a ≤ r, 1 ≤ b ≤ ni. 2

Theorems 4.2 and 4.3 can be unified in the following general statement, which is
again an example of the ‘obvious necessary conditions are also sufficient’ scheme.
The proof, which we omit, is more or less a confluence of the proofs of Theo-
rems 4.2 and 4.3.

Theorem 4.4 Let H be a graph with all but two vertices of degree 2 and
let these two vertices of higher degree be L and R. Further suppose that
for every i > 1, L belongs to li cycles of length i, R belongs to ri cycles
of length i and there are mi paths of length i joining L and R. If

a) there is an i such that li 6= ri, or

b) limi = 0 for every i,
then H-COVER is solvable in polynomial time, and a graph G covers H
if and only if it has the same degree refinement as H and, in case b), if
the vertices of degree > 2 in G can be partitioned into classes U and V
so that every path of length i such that mi 6= 0 connects a vertex from
U to a vertex from V , and every path of length i such that li 6= 0 either
connects vertices from U or vertices from V .

Let us state without proof that in all remaining cases, i.e., when li = ri for all i and
there is an i0 such that l0 6= 0 and m0 6= 0, the H-COVER problem is NP-complete.

Fact 4.7, Theorems 4.1, 4.2 and Theorem 4.3 encompass all but three graphs of
at most 6 vertices for which the covering problem is easy. One of these graphs is a
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particularly easy case of Theorem 4.4. The covering problems for the two remain-
ing graphs, which will be treated in detail in a forthcoming paper, are solved by a
modification of the 2-SAT method.

4.3 NP-Completeness

For any graph H the H-cover problem is in NP. We will show NP-completeness of
H-cover problems for several infinite classes of graphs. We first mention an earlier
result.

Theorem 4.5 [46] For every k ≥ 4, the Kk-cover problem is NP-complete.

4.3.1 Reductions from Coloring Problems

In this section we reduce from NP-complete problems: edge coloring, vertex coloring
and H-coloring. The H-coloring problem asks for the existence of a labeling of vertices
of G by vertices of H, h : V (G) → V (H), which preserves adjacencies, uv ∈ E(G) ⇒
h(u)h(v) ∈ E(H). This problem is easy if H is bipartite but NP-complete otherwise
[42]. The vertex k-coloring problem is equivalent to the Kk-coloring problem. The
edge k-coloring problem asks if each edge of a graph can be assigned one of k colors
so that no two edges incident with the same vertex are assigned the same color. Edge
3-coloring of cubic graphs is NP-complete [43]. The following observation is used in
our reductions.

Fact 4.8 If G covers H by f : V (G) → V (H) and π ∈ Aut(H) then π ◦ f
(the composition of f and π) is also a covering projection of H by G.

The reductions are by vertex and edge gadget construction, providing a graph G′

which covers H if and only if a given graph G can be colored appropriately. The
general outline of the reductions is as follows:

1. Define vertex gadget for a vertex v ∈ V (G) by a subgraph of a cover of H, with
degG(v) ’port’s to be used for edge gadgets (edge-coloring requires covers of H
with distinct projections for each port and automorphisms of H that allow any
permutation of the ports as distinct covers by Fact 4.8, whereas for k-vertex
coloring we need equivalent projections for each port and k distinct covers)

2. Define edge gadget connecting two ports by a subgraph of a cover of H, so
that the ’only if’ direction of the reduction is met (for edge-coloring (vertex
coloring) this amounts to ensuring that the two ports must cover H equivalently
(distinctly)).
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Figure 4.2: K2,2,2 upper left. Vertex gadgets Gu and Gv connected by an edge gadget
at bottom. Lacking neighbors for a, b, c provided by the 3-cycle A, B, C at top left.

3. Neighborhoods left unspecified are completed, possibly with added vertices, so
that the ’if’ direction of the reduction is met (this amounts to extending any
partial covering projection defined in step 2 to a cover of H).

Theorem 4.6 The K2,2,2-cover problem and the C6-cover problem are
both NP-complete.

Proof. Let H = K2,2,2. For a given cubic graph G we construct a graph G′ such that
G is edge 3-colorable if and only if G′ covers H. The gadget for a vertex v ∈ V (G)
is a 3-cycle, with one vertex for each port. The association of V (H), as labels of the
vertex gadget ports, with the 3 edge colors is that each pair of non-adjacent vertices
of H corresponds to a unique color.

For the next step of this reduction, we define the edge gadget for uv ∈ E(H)
as a subgraph of a cover of H, see Figure 4.2. We show that if the graph we are
constructing covers H by a projection f then the two ports connected to this edge
gadget, called 3 and 16 in the figure, must be labelled by the same color. The
vertex gadget cannot have two vertices labelled by two non-adjacent vertices of H.
Assume wlog that f(1) = b, f(2) = c, f(3) = a, see Figure 4.2. We show that
f(16) = f(3) = a. We have NH(a) = {a, c, B, C} so wlog let f(4) = B, f(5) = C.
Since NH(C) = {a, b, A, B} we have f(7) equal to A or b, and similarly f(6) equal to
A or c. But if f(7) = A then f(10) = b so f(6) = c and f(9) = A which cannot be
since vertices 7 and 9 are adjacent. We conclude f(7) = b, f(10) = A and similarly
f(6) = c, f(9) = A. This forces f(8) = a. Now, f(11) is b or B and similarly f(12) is
c or C. Any of the 4 possible pairs for f(11), f(12) have as common neighbors only a
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Figure 4.3: Gadgets for proof of case H[Q] discrete, with vertices of Q marked q

and A, but 11 and 12 already have a neighbor labelled A, so f(13) = a. It is not hard
to check that for all 4 cases we have f(3) = f(16) = a so that G is edge 3-colorable
whenever the constructed graph covers H.
Case 1: f(11), f(12) = b, c ⇒ f(14), f(15) = C, B ⇒ f(16) = a.
Case 2: f(11), f(12) = B, c ⇒ f(14), f(15) = C, b ⇒ f(16) = a.
Case 3: f(11), f(12) = b, C ⇒ f(14), f(15) = c, B ⇒ f(16) = a.
Case 4: f(11), f(12) = B, C ⇒ f(14), f(15) = c, b ⇒ f(16) = a.

For the other direction of the proof, we complete the neighborhoods left unspeci-
fied. Note that we can now assume that G is 3-edge colorable and freely specify the
covering projection. For each u ∈ V (G), we have three vertices, e.g. vertex 8 for u
in Figure 4.2, each lacking two neighbors. Following the projection given above, let
these three vertices be labelled a, b, c, lacking neighbors {B, C}, {A, C} and {A, B},
respectively. We add a 3-cycle for each u ∈ V (G), label its vertices A, B, C and use
them as the lacking neighbors, see Figure 4.2. The constructed graph G′ thus covers
H whenever G is edge 3-colorable.

The reduction for C6, which we leave out, is again from edge 3-coloring of cubic
graphs. 2

We next give a series of NP-completeness results for graphs whose vertices have
a partition Q, R, S, with Q a block in the degree-partition whose vertices share all
their neighbors S and induce a certain subgraph.

Theorem 4.7 The H-cover problem is NP-complete if for some block
Q in the degree-partition of H, H[Q] is a discrete graph, |Q| = 3 and
∃S ⊆ V (H), |S| ≥ 3 such that ∀v ∈ Q, N(v) \ Q = S.

Proof. We have H[Q] a discrete graph on 3 vertices and |S| ≥ 3. For a given
cubic graph G, we construct a graph G′ such that G′ covers H if and only if G is
3-edge colorable. Let {x, y, z} ⊆ S and Q = {q1, q2, q3}. The vertex gadget Vv for
a vertex v ∈ V (G) will consist of an almost complete copy of H but lacking the

45



edges connecting x and Q, xq1, xq2, xq3. The edge gadget for an edge uv ∈ E(G)
will consist of two almost complete copies of H, call them Euv, Evu, each lacking the
edges xq1, yq2, zq3. The edges yq2, zq3 will instead connect together Euv and Evu by
a total of four edges, ensuring that in a successfull cover of H we have both copies
of q2 (similarly both copies of q3) in Euv and Evu labeled by the same vertex, which
in turn will imply that both copies of q1 have the same label. The edge gadget is
connected to the vertex gadgets by an edge from x of Vv to q1 of Evu and an edge
from x of Evu to one of the Q-vertices of Vv, say qau

(the other Q-vertices of Vv are
connected to the remaining two edge gadgets adjacent to Vv). Similar edges xq1 and
xqav

are added for Euv, Vu, completing the construction of G′. See Figure 4.3. Note
that in a cover of H by G′ the two copies of q1 in the gadget of edge uv and qau

, qav

in vertex gadgets of v and u, respectively, all receive the same label, corresponding
to the unique color of edge (u, v).

Assuming G is 3-edge colorable with the edge uv being assigned the color c ∈
{1, 2, 3} we label both copies of q1 of the edge gadget of (u, v) by qc. Since any
permutation of V (H) which moves only Q is an automorphism of H, this labeling is
easily extended to make a cover of H by G′.

In the other direction, if G′ covers H then since Q is a block in the degree partition
of H, if we color edge uv of G by the label of both copies of q1 in edge gadget of uv
the result will be a 3-coloring of E(G) such that edges incident with the same vertex
receive distinct colors. 2

Theorem 4.8 The H-cover problem is NP-complete if for some block
Q in the degree-partition of H, H[Q] is a k-cycle (k ≥ 3) and ∃S ⊆
V (H), |S| ≥ 1 such that ∀v ∈ Q, N(v) \ Q = S.

Proof. For a given graph G, we construct a graph G′ such that G can be k-colored if
and only if G′ covers H. The gadget for a vertex v is a cycle Cv of length degG(v)×k.
In the case of a positive answer Cv will cover H[Q]. Cv is broken naturally into
degG(v) consecutive paths of length k, one for each edge incident with v, so that the
first endpoint of each path receives the same label in any cover of H[Q] by Cv. We call
these endpoints the designated vertices of the gadget, with their label providing the
corresponding color of vertex v. The gadget for an edge uv hooks up with one of these
paths, say cu

1 , ..., c
u
k from Cv and also with cv

1, ..., c
v
k from Cu. The edge gadget itself

consists of the k-cycles C1, ..., Ck − 2, cycle Ci having consecutive vertices ci
1, ..., c

i
k,

together with the (H \Q)-copies R1, ..., Rk. Vertices cv
i , c

u
i , c

1
i , c

2
i , ..., c

k−2
i are given all

their remaining adjacencies (S-neighbors) from Ri, for i = 1, ..., k. This also satisfies
Ri locally and completes the description of G′, see Figure 4.4 for an example.

Assume f : V (G)′ → V (H) is a covering projection and let uv ∈ V (G) as above.
Since Q is a block in the degree partition of H, the vertices of vertex gadgets must
be sent to Q. The designated vertices cu

1 and cv
1 share a neighbor in R1 (|S| ≥ 1)

and hence f(cu
1) 6= f(cv

1). Hence we use the labels of the designated vertices of vertex
gadgets as a k-coloring of the graph G.
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Figure 4.4: Case H[Q] a 4-cycle. Vertex gadgets Cv and Cu and an edge gadget
consisting of R1, R2, R3, R4, C1, C2, labeled so that vertices v and u are colored v1
and v3, respectively.

Assume G can be colored with colors 1, 2, ..., k, with Q = {v1, ..., vk}. A vertex v
colored c has its designated vertices labeled vc in a cover of H[Q] by its vertex gadget.
In the gadget for an edge uv the (H \Q)-copies naturally cover H \Q. The k-cycles in
the edge gadget are labeled uniquely to cover H[Q] while satisfying neighborhoods of
(H \Q)-copies. This will result in a labeling where cv

i , c
u
i , c

1
i , c

2
i , ..., c

k−2
i , with naming

conventions as above, are given k distinct labels from Q, with G′ covering H, see
Figure 4.4 for an example. 2

Theorem 4.9 The H-cover problem is NP-complete if for some block
Q in the degree-partition of H, H[Q] is a k-cycle (k ≥ 5) and ∃S ⊆
V (H), |S| ≥ 1 such that ∀v ∈ Q, N(v) ∩ Q = S.

Proof. For the case H[Q] a 5-cycle we have H[Q] also a 5-cycle and use Theorem 4.8.
For k ≥ 6 and H[Q] a k-cycle we have H[Q] connected and follow a proof very similar
to that of the proof just given. The unique ordering when given a starting point (up
to reflection) of adjacent vertices around the k-cycle used in the proof of Theorem 4.8
is replaced by the identical unique ordering of non-adjacent vertices around H[Q],
and an analogous reduction is used. For edge gadgets replace the k − 2 k-cycles in
the earlier proof by k − 2 complements of k-cycles, Ck. For vertex gadgets use the
same number of vertices, visualized in a circle. No vertex will be adjacent to its 1st
successor or 1st predecessor in the circle, but will be adjacent to its ith successor and
ith predecessor in the circle, for 2 ≤ i ≤ b(k − 1)/2c.

We consider two cases, k odd or k even, and argue that in a covering projection
f of Ck by this vertex gadget, every kth vertex around the circle has the same label.
For k odd, consider a vertex x and assume (wlog) f(x) = v1. We show that the
successor and predecessor of x are labeled by the two unique vertices of Ck which
are not adjacent to v1, namely vk, v2. Let the ith successor and predecessor of x be
si(x) and pi(x), respectively. We have N(s(x)) − N(x) = {p(x), s(k+1)/2(x)} hence

47



x and s(x) share k − 5 neighbors and f(s(x)) must be one of {v1, v2, v3, vk−1, vk}.
But f(s(x)) = v1 means that s3(x) gets two v1 neighbors. If f(s(x)) = v3, since
v1 ∈ N(v3) − N(v1) we must have either f(p(x)) = v1 or f(s(k+1)/2(x)) = v1, but
both possibilities mean that f(s2(x)) gets two v1 neighbors. Similarly, we cannot
have f(s(x)) = vk−1 and conclude that f(s(x)) is either vk or v2. The argument for
f(p(x)) is analogous and since p(x), s(x) are adjacent we conclude that the covering
projection f enforces the same label for every kth vertex around the circle, as desired.

If k even, in addition to these connections, alternating sequences of k/2 vertices
around the circle will be adjacent to their k/2th successors or k/2th predecessors,
respectively. These sequences are thus naturally paired up in blocks of k vertices. In
a covering projection f of Ck by this vertex gadget let x be the k/2th vertex of a given
block B of k vertices and assume (wlog) f(x) = v1. Since |N(s(x)) ∩ N(x)| = k − 4
(they share every vertex in B but {p(x), x, s(x), s2(x)}), we must have f(s(x)) be v2

or vk and assume (wlog) that f(s(x)) = v2. Since B = N(x) ∪ N(s(x)) we must
have f(B) = {v1, v2, ..., vk}. The only vertex in B − N(x) which has not yet been
assigned a label is p(x) and the only vertex in {v1, v2, .., vk} − N(f(x)) which is not
already covered by a vertex of B is vk, so f(p(x)) = vk. Similarly, the only vertex
in B − N(s(x)) which has not yet been assigned a label is s2(x) and the only vertex
in {v1, v2, ..., vk} − N(f(s(x))) which is not already covered by a vertex of B is v3,
so f(s2(x)) = v3. Since f(s(x)) = v2 and f(s2(x)) = v3 have already been assigned,
if f(s3(x)) 6= v4 then f(s3(x)) ∈ N(v3). But s2(x) is not adjacent to s3(x) and
N(s2(x)) − {B ∪ N(s3(x))} = ∅, so s2(x) could not get its f(s3(x)) neighbor. We
conclude that f(s3(x)) = v4. The above argument showing that f(s3(x)) = v4 so that
the successor and predecessor of s2(x) are labeled by the two unique vertices of Ck to
which f(s2(x)) is not adjacent can be generalized to all but two of the remaining ver-
tices of B if applied in the order s3(x), s4(x), ..., s(k−2)/2(x), p2(x), p3(x), ..., p(k−4)/2(x).
For the remaining two vertices sk/2(x) and p(k−2)/2(x) we thus have two choices, but
the wrong choice for sk/2(x) entails that s2(x) would get two neighbors with the same
label. In addition, if the vertex of G represented by this vertex gadget has degree
larger than one, the vertex s2(x) has a single neighbor s(k+2)/2(x) in a neighboring
block to B so that f(s(k+2)/2(x)) is fixed to be f(p(k−2)/2(x)) which in turn fixes all
labels for that neighboring block. This suffices to enforce the same label for every kth
vertex around the circle. With this observation in mind, the remainder of the proof
follows the same logic as the case H[Q] a k-cycle. 2

Theorem 4.10 The H-cover problem is NP-complete if for some block
Q (|Q| = 2k ≥ 4) in the degree-partition of H, H[Q] is a perfect matching
and ∃S ⊆ V (H), |S| ≥ 2 such that ∀v ∈ Q, N(v) \ Q = S.

Proof. We first consider the case H[Q] a perfect matching on two edges. Let Q =

{a1, b1, a2, b2} with
(

Q
2

)

∩ E(G) = {a1b1, a2b2}. For a given graph G, we construct a

graph G′ such that G can be 4-colored if and only if G′ covers H. Let A ∈ S. Let
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Figure 4.5: Case H[Q] a matching. Vertex gadget for a vertex v of degree k and color
a1 at bottom, edge gadget vertices BW, BE, connected to a vertex colored a2 at top.
Expanding copies of Bx will give the general case H[Q] a matching on 2 edges.

v ∈ V (G) with degG(v) = d. The gadget v will consist of 2(d + 1) copies of both
H[Q] and A, call these M0, ..., M2d+1 and A0, A1, ..., A2d+1, respectively. Let the four
vertices of Mi be NWi, NEi, SWi, SEi, with edges NWiNEi and SWiSEi. The copies
of H[Q] and A will form a cycle of 6-cycles by having the vertex Ai ∀i connected to
NEi, SEi, NWi+1, SWi+1 (addition modulo 2d + 2). The vertex gadget contains also
d + 2 copies of H \Q, L0, L1, L3, L5, ..., L2d+1, where Li, for these subscripts, contains
the previously described vertex Ai. Let Si be the copy of S = N(Q) \ Q in Li. L0

and L1 play distinct roles and we describe their remaining connections first. Vertices
x ∈ S0 \ A0 are connected to NW0, SW0, NW1, SW1, while vertices x ∈ S1 \ A1

are connected to NE0, SE0, NE1, SE1. Since Q is a block in the vertex partition
of H, in a cover of H the edges of Mi ∀i are sent to edges of H[Q]. Moreover,
L0 and L1 enforce that to satisfy neighborhoods of A0 and any x ∈ S0 \ A0 6= ∅
all edges in M2i ∀i must be sent to a single edge of H[Q], while edges of M2i+1 ∀i
are sent to the other edge of H[Q]. Vertices x ∈ Si \ Ai for i = 3, 5, ..., 2d − 1 are
connected to SEi−1, SWi, SEi, SWi+1, while any x ∈ S2d+1 \ A2d+1 is connected to
SE2d, SW2d+1, SE2d+1, SW2. This completes the description of the vertex gadget.
Figure 4.5 gives the construction for a special case of H a 6-vertex graph, where Li is
the graph induced by Bi and Ai. In a cover of H, NW2i and NW2i+2 must cover the
same vertex, since otherwise a vertex x ∈ S2i+1 \ A2i+1 6= ∅ will have two neighbors
with the same label. Thus we have a unique label for NW2i ∀i, which will correspond
to the color of v ∈ V (G) for the instance G of the 4-coloring problem. Note however,
that the label of a NW2i+1 vertex is not fixed.
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In this vertex gadget the only vertices lacking connections are A2i,NW2i, NE2i,
NW2i+1,NE2i+1 for i = 1, 2, ..., d. The edge gadget for an edge uv consists of two
copies of H \ Q, LW and LE, and will provide the remaining connections for some
M2ui

, M2ui+1 from u’s gadget and M2vi
, M2vi+1 from v’s gadget. A2ui

from u’s gadget
and A2vi

from v’s gadget are already contained in LW and LE, one in each. Addi-
tionaly, any x ∈ SW \ AW is connected to the four NW vertices of these four copies
of H[Q] and any x ∈ SE \AE is connected to the four NE vertices. This ensures that
labels of the NW vertex of M2ui

and M2vi
will differ while still allowing for any other

combination from {a1, b1, a2, b2}.
The construction of G′ is completed, see Figure 4.5. If G′ covers H then we color G

using the four colors {a1, b1, a2, b2}, with vertex v receiving the same color as the label
of the NW2i vertices in its gadget. By the observations made above, this constitutes
a 4-coloring of G. Conversely, if G is vertex colorable by colors {a1, b1, a2, b2}, we
label the NW2i vertices of vertex gadgets accordingly. This labeling can be extended
to a covering projection of H by G′, see Figure 4.5 for an example where the adjacent
vertices have colors a1 and a2.

We next consider the case when H[Q] is a perfect matching of 2k edges, where
k ≥ 3. For a given graph G, we construct a graph G′ such that G can be k-colored if
and only if G′ covers H. Let A ∈ S, and let Q = {a1, b1, ..., ak, bk} with ai, bi adjacent
in H[Q]. The gadget for a vertex v of G, will consist of degv + 1 copies of H[Q],
M0, M1, ..., Mdegv

and degv + 1 copies of H[V (H) − Q], L0, ..., Ldegv
. In V (Li), let Ai

be the copy of vertex A and Si be the copies of S. Let Ai be adjacent to the copies
of aj, ∀j in Mi and also to bj, ∀j in M

(i−1)mod degv
, thus forming a degv + 1 ’cycle’

of copies of H[Q]. M0 will ensure that every copy of H[Q] indeed maps to H[Q]
in a successfull cover, by having every vertex of S0 − A0 (not empty since |S| ≥ 2)
connected to every vertex of M0. For 1 ≤ i ≤ degv connect every vertex of Si −Ai to
every vertex of V (Mi) except the copies of {a1, b1}. For i > 1 connect every vertex of
Si −Ai to the copy of b1 in V (Mi−1) and connect every vertex of S1 −A1 to the copy
of b1 in V (Mdegv

). This will enforce that in a covering projection of H, the copy of
vertex a1 in each of M1, ..., Mdegv

get the same label, determining the color of vertex
v ∈ V (G). The only vertices of a vertex gadget that have not yet been assigned all
its neighbors are the copies of a1 and Si − Ai in M1, ..., Mdegv

.
The gadget for an edge (u, v) consists of an almost complete copy of H but leaving

out the edges a1, x and a2, x for all x ∈ {S − A}. These remaining edges will be
matched up with the missing edges for some Mui

of u’s gadget and Mvi
of v’s gadget.

Thus, a1 (respectively a2) of (u, v)’s gadget is made adjacent to every vertex in Sui
−

Aui of u’s gadget (respectively Svi
− Avi of v’s gadget), and the copies of a1 in

both Mui
of u’s gadget and Mvi

of v’s gadget are made adjacent to the copies of all
x ∈ {S − A} of (u, v)’s gadget. Thus, in a cover of H, assuming the copies of a1 in
u’s gadget are labeled by a vertex ai or bi of Q, then in either case the copies of a1 in
v’s gadget cannot be labeled ai nor bi since the copy of H[Q] in (u, v)’s gadget must
cover H[Q], so that a vertex x ∈ {S − A} would get too many ai (or bi) neighbors.
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This completes the description of G′.
For sufficiency, suppose f is a covering projection of H by G′. Since Q is a block

in the degree partition of H, copies of H[Q] in G′ must map to H[Q]. As we argued
above, if a vertex v ∈ V (G) is given the color i where in the vertex gadget of v the
copies of a1 map to ai or bi, then no two adjacent vertices in G receive the same
color, and G is k-colorable. For the other direction, if vertex v of G receives color i
in a k-coloring of that graph, we easily construct a covering projection of H by G′ by
labeling the copies of a1 in v’s gadget by ai. 2

Theorem 4.11 The H-cover problem is NP-complete if for some block
Q (|Q| = 2k ≥ 4) in the degree-partition of H, H[Q] is a perfect matching
and ∃S ⊆ V (H), |S| ≥ 2 such that ∀v ∈ Q, N(v) \ Q = S.

Proof. The case H[Q] a perfect matching of 2 edges implies H[Q] a 4-cycle which is
NP-complete by Theorem 4.8. For the case that H[Q] is a perfect matching of k ≥ 3
edges, we merely replace every copy of a matching of k edges in the construction
given in the last proof by a copy of the complement of a matching of k edges. Since
the only use we made of these copies was to pair up vertices by adjacencies, a pairing
which can equally well be done by non-adjacencies, the exact same logic as given
above shows that this latter case is also NP-complete. 2

The k-starfish graph has k vertices of degree two and k vertices of degree four
with the vertices of degree four inducing a cycle and any two consecutive vertices of
this cycle sharing a neighbor of degree two, see Figure 4.6.

Theorem 4.12 For every i ≥ 1 the (2i + 1)-starfish-cover problem is
NP-complete.

Proof. Let k = 2i + 1. Given a graph G, we construct a graph G′ such that G
is Ck-colorable if and only if G′ covers the k-starfish. The vertex gadget Cv for
v ∈ V (G) consists of a cycle of length k × degG(v), broken naturally into degG(v)
consecutive paths of length k. The first endpoint of each path, the designated vertices
of this gadget, receive the same label in any cover of a Ck-cycle. The edge gadget
for uv ∈ E(G) hooks up with two such paths, say F0 = c0

1, c
0
2, ..., c

0
k from Cu and

F1 = c1
1, c

1
2, ..., c

1
k from Cv. The edge gadget contains the degree-2 vertices vi

j for
i = 0, 2, ..., k − 1 and j = 1, 2, ..., k and also contains k − 2 k-cycles, call them
F2, F3, ..., Fk−1, with Fi having consecutive vertices ci

1, c
i
2, ..., c

i
k. F0, F1, ..., Fk−1 are

hooked up by the degree-2 vertices to form a cycle, with ci
j adjacent to vi

j and to

vi+1modk
j . This completes the description of G′, see Figure 4.6.

Let f be a cover of k-starfish by G′, and let uv ∈ E(G), with naming conventions
as above. Since the designated vertices c0

1 from Cu and c1
1 from Cv have a common

degree-2 neighbor, we must have f(c0
1)f(c1

1) an edge in the k-starfish. Thus, we
construct a Ck-coloring of G by focusing on the k-cycle induced by degree-4 vertices
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Figure 4.6: Case 5-starfish, with vertex gadgets Cu and Cv connected by an edge
gadget.

in the k-starfish, and sending u ∈ V (G) to the f -label of the designated vertex in its
vertex gadget.

For the other direction of the proof we reverse this process, labeling designated
vertices by the Ck-coloring induced on the degree-4 vertices of the k-starfish, see
Figure 4.6 for an example. 2

4.3.2 Reductions from Covering Problems

A graph H may have an induced subgraph H ′ for which the H ′-cover problem is NP-
complete. In general, the H-cover problem could itself be easy. Our next theorem
shows NP-completeness in a restricted case by reducing the H-cover problem to the
H ′-cover problem.

Theorem 4.13 The H-cover problem is NP-complete if for some block
Q = {v1, v2, ..., vk} in the degree partition of H the H[Q]-cover prob-
lem is NP-complete and there exists an order k latin square L over Q
whose columns are elements of Aut(H[Q]), and whose rows are elements
of Aut(H \ E(H[Q]))|Q (projections onto Q of automorphisms fixing Q
setwise)

Proof. We reduce from the H[Q]-cover problem. Given a graph G, we construct a
graph G′ such that G covers H[Q] if and only if G′ covers H. Let V (G) = {x1, ..., xn}
and V (H) = Q ∪ R. G′ will contain k copies of G (G1, ..., Gk) and n copies of H[R]
(R1, ..., Rn). A vertex xi ∈ V (G) thus has k copies x1

i , x
2
i , ..., x

k
i in G′ (xj

i ∈ V (Gj)),
which will be used as the remaining neighbors for vertices of Ri. We let the vertex xj

i

play the role of vertex vj ∈ Q and connect vertices of Ri to its remaining neighbors,
as specified by H, thereby completing the construction of the graph G′, see Figure 4.7
for an example.
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1 2

3 4

Figure 4.7: Case H[Q] = K4, and the graph G′ constructed by the reduction based
on automorphism properties

Suppose G′ covers H. Since Q is a block in the degree-partition of H the vertices
of the n copies of H[R] in G′ cannot map to Q, so we have an n-fold cover. The
vertices of each of the k copies of G must then map to Q and thus G covers H[Q].

For the other direction, suppose f : V (G) → Q is a covering projection of H[Q] by
G. Let ∆1, ∆2, ..., ∆k be the columns of the latin square L and let π1, π2, ..., πk be its
rows. Since ∀i : ∆i ∈ Aut(H[Q]), we have by Fact 4.8 that ∆1 ◦ f, ..., ∆k ◦ f are also
cover projections of H[Q] by G and we label the vertices of the copy Gj of G by ∆j ◦f .
By construction we have that Ri is connected to vertices x1

i , x
2
i , ..., x

k
i . Assuming that

f(xi) = vj we label these vertices by the respective labels ∆1(vj), ∆2(vj), ..., ∆k(vj),
corresponding to a row πr of L, when taken in this order. Since πr ∈ Aut(H \
E(H[Q]))|Q, we can send V (Ri) to R by an element of Aut(H \ E(H[Q])) which has
projection πr on Q, locally getting a covering projection from Ri to H[R] by Fact 4.8,
and with correct labels for remaining neighbors of Ri as well. The same is done for
all n copies of H[R] resulting in a mapping of V (G′) to V (H) where each copy of
G covers H[Q] and each copy of H[R] covers H[R] and the remaining neighbors of
copies of both G and H[R] have correct labels, hence we have a covering projection
of H by G′. 2

As an example of application of this result, consider the graph H depicted in Fig-
ure 4.7. Q = {v1, v2, v3, v4} is a block in the degree partition of H inducing a complete
graph and the K4-cover problem is NP-complete by Theorem 4.5. Moreover, for the
following 4 by 4 matrix











v1 v2 v3 v4

v2 v1 v4 v3

v3 v4 v1 v2

v4 v3 v2 v1










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both its rows and columns are in Aut(H)|Q, so by Theorem 4.13 the H-cover problem
is NP-complete (note Aut(H)|Q ⊆ (Aut(H \ E(H[Q]))|Q ∩ Aut(H[Q])).

Theorem 4.14 The H-cover problem is NP-complete if for some block
Q (|Q| ≥ 4) in the degree-partition of H, H[Q] is a complete graph and
∃S ⊆ V (H), such that ∀v ∈ Q, N(v) \ Q = S.

Proof. By Theorem 4.5 the H[Q]-cover problem is NP-complete and Aut(H)|Q is
the symmetric group on |Q| points, so the conditions in Theorem 4.13 are easily
satisfied. 2

As an appendix, we list every connected, simple graph H on at most six vertices
and at least two cycles, showing the complexity of the H-covering problem. Covering
of simple graphs with at most one cycle is easy by Fact 4.7. By Facts 4.3 and 4.4 this
resolves also the complexity of disconnected graphs having components on at most six
vertices. The listing thus completes pages 1 ≤ p ≤ 6 of the book on the complexity
of the covering problem for simple graphs on p vertices.
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Chapter 5

Practical Partial k-Tree Algorithms

Many NP-hard problems on graphs have polynomial, in fact usually linear as a
function of input graph size, dynamic programming algorithms when restricted to
partial k-trees (graphs of treewidth bounded by k), for fixed values of k. We improve
on the practicality of such algorithms, both in terms of their complexity and their
derivation, by accounting for dependency on the treewidth k. The algorithms are for
fixed k; we consider a class of algorithms parameterized by k. We define a binary
parse tree of partial k-trees which is based on two very simple graph operations. Then
we discuss the derivation of dynamic programming solution algorithms, with a focus
on the concepts of vertex states, separator states, table indices and equivalence classes
of solutions. We also contrast our approach with related previous work.

5.1 Introduction

A graph G is a k-tree if it is a complete graph on k vertices or if it has a vertex
v ∈ V (G) whose neighbors induce a clique of size k and G\{v} is again a k-tree. The
class of partial k-trees (the subgraphs of k-trees) is identical with the class of graphs
of treewidth bounded by k. Many natural classes of graphs have bounded treewidth
[53]. These classes are of algorithmic interest because many optimization problems,
while inherently difficult (NP-hard) for general graphs are solvable in linear time
on partial k-trees, for fixed k. These solution algorithms have two main steps, first
finding a parse tree (tree-decomposition of width k [59]) of the input graph, and then
computing the solution by a bottom-up traversal of the parse tree. For the first step,
Bodlaender [17] gives a linear algorithm deciding if a graph is a partial k-tree and if
so finding a tree-decomposition of width k, for fixed k. Unfortunately, the complexity
of this algorithm as a function of the treewidth does not make it practical for larger
values of k. For k ≤ 4, however, practical algorithms based on graph rewriting do
exist for the first step [10, 54, 60]. In this chapter we investigate the complexity of the
second step as a function of k. There are many approaches to finding a template for
the design of algorithms on partial k-trees with time complexity polynomial, or even
linear, in the number of vertices [58, 7]. As a rule, proponents of these approaches
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have tried to encompass as wide a class of problems as possible, often at the expense
of increased complexity as a function of k and also at the expense of simplicity of
the resulting algorithms. Results giving explicit practical algorithms in this setting
are usually confined to a few selected problems on either (full) k-trees [26], partial
1-trees or partial 2-trees [62, 36, 66]. We try to cover the middle ground between
these two extremes, by investigating the time complexity as a function of both input
size and the treewidth k. We define a binary parse tree of a partial k-tree which is
easily derived from a tree-decomposition of the input graph. This parse tree is based
on very simple graph operations, and we next show how this simplifies the design
of dynamic programming algorithms on partial k-trees. We compare this approach
to other strategies giving polytime algorithms on partial k-trees. Finally, we discuss
a class of problems where a vertex state can be defined that will further ease the
development and analysis of partial k-tree algorithms.

5.2 Binary Parse Tree

We give some standard definitions relating to partial k-trees before describing its
binary parse tree. A partial k-tree G has at least k vertices and is a subgraph of
a k-tree H, meaning E(G) ⊆ E(H). The fact that we can assume V (H) = V (G)
follows from a simple technical lemma [6].

A k-tree H has a perfect elimination ordering of its n vertices, peo = v1, ..., vn

such that ∀i : 1 ≤ i < n − k the set of k + 1 vertices Bi = {vi} ∪ NH(vi) ∩ {vi, ..., vn}
induces a (k + 1)-clique in H. The vertex vi is simplicial in H[{vi, vi+1, ..., vn}],
meaning that its closed neighborhood, Bi, induces a clique. It is not hard to show
that Bi \ {vi}, i ∈ {1, ..., n − k − 1} is a (minimal) separator of the graph H. See
Figure 5.1 for an example of a partial 3-tree embedded in a 3-tree.

We call Bi, 1 ≤ i ≤ n − k the (k + 1)-bag of vi in G under peo and each of its
k-subsets is similarly called a k-bag of G under peo. The remaining definitions in this
section are all for given G, H, peo = v1, ..., vn and bags Bi as above. We first define a
peo-tree P of G:

Definition 5.1 The peo-tree P of G based on peo has nodes V (P ) =
{B1, ..., Bn−k}. The node Bi has as its parent in P the node Bj such that
j > i is the minimum bag index with |Bi ∩ Bj| = k, except for the root
Bn−k of P which has no parent.

The (k+1)-ary peo-tree P is a clique tree of H and also a width k tree-decomposition
of both G and H. See Figure 5.2 for an example of a peo-tree.

We sketch an algebra on graphs with operations Primitive, Reduce and Join,
needed to define a binary parse tree T of G based on the peo-tree P .
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Definition 5.2 A binary parse tree of a graph G is the expression tree of
an algebraic expression over the graph operations Primitive, Reduce and
Join, evaluating to the graph G.

Let a graph with k distinguished vertices (also called sources, terminals, bound-
aries) have type (sort) Gk. For our purposes, sets of sources will always be (k+1)-bags
and k-bags of G. We define the graph operations:

• Primitive: → Gk+1. This 0-ary operation is used to introduce the graphs G[B],
for some (k + 1)-bag B, as leaves of the parse tree.

• Reduce: Gk+1 → Gk. The unary operation Reduce takes the source vertex to be
eliminated, which will be clear from context, and discards it as a source, leaving
the graph itself unchanged.

• Join: Gk+1 ×Gk → Gk+1. The binary operation Join takes the union of its two
argument graphs (A and B), where the sources of the second graph (a k-bag
SB) are a subset of the sources of the first graph (a (k+1)-bag SA); these are the
only shared vertices, and adjacencies for shared vertices are the same in both
graphs. In other words, V (A) ∩ V (B) = SB ⊆ SA and E(A[SB]) = E(B[SB]),
giving the resulting graph Join(A, B) = (V (A) ∪ V (B), E(A) ∪ E(B)) with
sources SA.

We employ these graph operations to describe the binary parse tree T of G based
on the peo-tree P :

Definition 5.3 The binary parse tree T of G can be decomposed into
|V (P )| disjoint leaf-towards-root paths. Each of these paths is associated
with a distinct node Bi of the peo-tree P . Let Bi have c children and
parent p(Bi). The path associated with Bi starts with the Primitive graph
G[Bi] as the leaf endpoint, has c Join operations as interior nodes and
terminates with a node of a Reduce operation. The Reduce operation
discards the vertex vi as a source, and its node is the second child of the
node of a Join operation associated with p(Bi) (except for the root of T ,
which is the Reduce node in the path associated with the root node of P .)

Note the degree of freedom in the above definition in choosing parents for Reduce
nodes. The parent of a Reduce node associated with Bi could be any one of the Join
nodes associated with its parent p(Bi). This degree of freedom, and also a possible
choice of peo, can be exploited to keep the resulting parse tree shallow. We intend to
investigate this possibility in future work on parallell partial k-tree algorithms. See
Figure 5.3 for an example of a binary parse tree (note the leaf-towards-root paths are
identified by starting at a Primitive node and moving towards the root until the first
Reduce node is encountered, which forms the end of the path.)
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Figure 5.1: A partial 3-tree G, embedded in a 3-tree H, dashed edges in E(H)−E(G),
with peo=1,2,3,4,5,6,7,8,9,10

7 8 9 10

6 7 8 9

5 6 7 9 3 6 7 8

4 7 8 9

2 6 7 81 5 6 9

Figure 5.2: The peo-tree P of the partial 3-tree G.
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G[9 8 7 6]

987(654321)

9876(54321)

9876(541) 876(32)

987(4)

976(51)

G[10 9 8 7]

G[8 7 6 3]

G[9 8 7 4] G[8 7 6 2]

G[9 6 5 1]

G[9 7 6 5] 965(1)

9765(1)

9876(4)

876(2)

8763(2)

JOIN

REDUCE

PRIMITIVE

sources(non−sources)

10 9 8(7654321)

10 9 8 7(654321)

Figure 5.3: The binary parse tree T of the partial 3-tree G based on the peo-tree P .
Nodes u ∈ V (T ) labeled by V (Gu) with non-sources in parenthesis.
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Note that the underlying algebraic expression for the binary parse tree T does
indeed evaluate to G since the primitive graphs in T contain all vertices and edges of
G, while Join and Reduce merely identify vertices of the primitive graphs, in the order
given by P , to form G. We say that T represents G with sources {vn−k+1, ..., vn}.
Since P is a tree with n − k nodes, the Binary Parse Tree T of G has

• n − k Primitive leaves, one for each node of P

• n − k Reduce operations, one for each node of P

• n − k − 1 Join operations, one for each edge of P

5.3 Dynamic Programming Algorithms

A dynamic programming solution algorithm for a problem R on G will follow a
bottom-up traversal of the binary parse tree T . As usual, at each node u of T a data
structure table is kept that contains optimal solutions to the problem R restricted to
Gu, the subgraph of G represented by the subtree of T rooted at u. The table of a
leaf is initialized according to the base case, the table of an interior node is filled in
a bottom-up traversal of T based on tables of its children and the overall solution
is obtained from the table at the root. The following information will complete the
algorithm description for a given problem

• Description of Tables

• Operation Initialize-Primitive-Table

• Operation Join-Tables

• Operation Reduce-Table

• Operation Root-Optimization

An algorithm for a given problem must describe the tables involved and also
describe how tables are updated. Derivation of algorithms starts with the definition
of table indices. Each table index represents an equivalence class of solutions to
subproblems, equivalent in terms of forming parts of larger solutions. A subproblem
at a node u of the parse tree T is the problem R restricted to Gu and constrained
on its sources. This subproblem solution interacts with the solutions to R on G only
through the sources of Gu, which are a separator of G. Equivalent solutions affect
the separator in the same manner, and hence we can define a separator state for each
equivalence class (each table index). A candidate set of separator states is verified
by the correctness proof of table update procedures for all operations involved. The
introduction of the operations Reduce and Join greatly simplifies this verification
process. In general, the algorithm computing a parameter P (G) for a partial k-tree
G given with a tree-decomposition follows the binary parse tree T of G, as follows:
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Algorithm-R, where R is a graph parameter

Input: G, k,tree-decomposition of G of width k

Output: R(G)

(1) Find a binary parse tree T of G with Primitive, Reduce and Join nodes.

(2) Initialize Primitive Tables at leaves of T .

(3) Bottom-up traversal of T using Join-Tables and Reduce-Table.

(4) Table-Optimization at root of T gives R(G).

For a given graph G on n vertices and any fixed k, Bodlaender [17] gives an O(n)
algorithm (with a coefficient that is exponential in a polynomial in k) for deciding if
the treewidth of G is at most k and in the affirmative case finding a tree-decomposition
of G of width k. From this tree-decomposition it is straightforward to find a binary
parse tree of G in time O(nk2), see e.g. [53] for how to find an embedding in a k-tree,
then find a peo and finally follow the description given in section 2 of this chapter for
constructing the binary parse tree.

5.4 Comparisons with Related Work

Many strategies have been proposed for solving problems on graphs of bounded
treewidth using a variant of the dynamic programming described above. We can
classify these strategies by whether there is a procedure for automatic (mechanical)
construction of a solution algorithm from a formal description of the problem, or such
an algorithm has to be constructed “by hand”.

One of the many automatic techniques, see e.g. [16, 28, 20], is the EMSOL
approach of Arnborg, Lagergren and Seese [8], influenced by work of Courcelle [27].
A linear time algorithm solving a given problem can be constructed automatically
from the problem description in the logic formalism extended monadic second-order
logic (EMSOL). Although very powerful for showing assymptotic complexity results,
this technique, and others like it, are unsatisfactory for practical algorithm design
since the resulting complexity in k involves towers of powers of k. Currently, there
is no automatic algorithm design strategy giving algorithms which are practical for
increasing values of k without hand derivation of a large part of the algorithm.

The dynamic programming strategy on partial k-trees of Arnborg and Proskurowski
[11], differs from our approach primarily in that a vertex vi in a (k + 1)-bag B was
eliminated by combining tables of all k + 1 k-bags in B in a single (k + 1)-ary opera-
tion. Assuming the table for a k-bag has index set Ik, this operation has complexity
Ω(|Ik|k+1) when all combinations of entries from each table are considered. Intuitively,
the binary parse tree approach described above replaces a single such (k + 1)-ary op-
eration by at most k pairs of binary Join and Reduce operations, for complexity
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O(k|Ik||Ik+1|). Moreover, the single (k + 1)-ary operation used in the strategy of [11]
is more complicated than the Join and Reduce operations employed here. Naturally,
this plays an important role in the practical development of the algorithms.

We contrast our approach with dynamic programming algorithms that directly
follow a tree-decomposition, as defined by Robertson and Seymour [59]. A tree-
decomposition of width k of a graph G is a tree D where each node w of D is assigned
a set Xw ⊆ V (G) such that (i) |Xw| ≤ k + 1, (ii) if uv ∈ E(G) then ∃w ∈ V (D)
with {u, v} ⊆ Xw and (iii) for any v ∈ V (G) the subgraph induced in D by the
nodes {w : v ∈ Xw} is connected. We have mentioned before that a graph is a
partial k-tree iff it has a tree-decomposition of width k. Such a tree-decomposition
is often used as the basis for a dynamic programming algorithm. Filling in the
details of table updates in such algorithms is complicated by the generality of the
tree-decomposition definition, which leads to a multitude of different cases of table
operations. Although many algorithmic results follow a “nice” tree-decomposition,
usually with the underlying tree being binary, we have not seen any previous approach
which drastically lowers the number of different graph operations involved. The binary
parse tree we defined above can itself be viewed as a nice tree-decomposition with
particularly strong restrictions on the sets of vertices identified with each node in the
binary tree. However, we believe it is most naturally described and understood in
terms of the partial k-tree terminology.

There are several previous approaches to good algorithms on tree-like graphs that
do employ a few simple graph operations [67, 14]. In particular, these strategies
have been restricted to classes of graphs originally defined by an algebra on a few
graph operations. A parse tree must be found in terms of these graph operations,
and a dynamic programming strategy must be devised where table operations are
designed according to the graph operations. Our approach can be viewed as providing
a very simple algebra for constructing partial k-trees together with an algorithm for
finding a parse tree founded on these operations from an arbitrary tree-decomposition.
Certain approaches, e.g. Bern, Lawler and Wong [14], take an algebraic view of the
resulting algorithms. For a class of graphs Γ given by an algebra over certain graph
operations and primitive graphs, a subgraph property P is said to be regular if there
is a homomorphism from ΓS = {(G, S) : G ∈ Γ, S ⊆ V (G)} to a finite set CP with
its own operations, which respects both the graph operations on Γ and the property
P . In our case CP corresponds to the set of equivalence classes of solutions making
up the table index set for a particular problem, and the operations on CP are the
table update procedures given for each graph operation. A further comparison with
this approach is given in Chapter 6.1.4 when we discuss algorithmic extensions to
compute parameters defined over maximal and minimal vertex subsets.
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5.5 Vertex State Problems

In section 3 we outlined the derivation of dynamic programming algorithms on par-
tial k-trees using the method of bottom-up table updates along a parse tree of the
input graph. Our approach to design such algorithms starts by defining the table
indices involved. We look at a class of vertex state problems for which this process
is particularly uniform. Each table index represents an equivalence class of solutions
to subproblems, equivalent in terms of forming parts of larger solutions. A solution
to a subproblem at a node u of the parse tree T is restricted to Gu. This subproblem
solution interacts with the solutions to larger problems only through the sources of
Gu, which constitute a separator of G. Equivalent solutions affect the separator in
the same manner, and hence we can define a separator state for each equivalence class
(table index).

For any vertex state problem, we can define a set A of vertex states, that represent
the different ways that a solution to a subproblem can affect a single (source) vertex,
such that |A| is (usually) independent of n, and preferably also independent of k.
For the Grundy Number problem, discussed in chapter 6.2.4, we will see that we can
achieve a polytime algorithm even when |A| is not independent of n. The Cartesian
product of vertex states of separator vertices defines the state of the separator. A
separator with k vertices has then a distinct separator state for each different k-vector
of vertex states so its table index set has size |Ik| = |A|k. For a vertex state problem
R having a dynamic programming algorithm on partial k-trees as outlined in section
6.3, consider a node u, with sources Bu, of the binary parse tree T of an input graph
G. The following sets are all in a natural one-to-one correspondence:

1. The equivalence classes of solutions to subproblems on Gu

2. The table index set for the node u of T

3. The set of separator states for the sources Bu of node u of T

4. The set of |Bu|-vectors of vertex states

We will not define vertex state problems explicitly, except to note that a decision
problem asking for a partition of vertices for which a purported solution S can be
verified by a simple local check of how the neighbors of each vertex intersects with S
will be a vertex state problem. For instance, any of the vertex partitioning problems
defined in Chapter 2.1 is a vertex state problem. On the other hand, the Hamilton
cycle problem does not satisfy these criteria. One of the goals of our future research
is to explore vertex state problems in a wider class than vertex partitioning problems.

To design algorithms for vertex state problems on partial k-trees we focus on the
solution verification method through a local check of vertex neighborhoods. We first
define a set of legal vertex states that will provide the information necessary to infer
a solution to the original problem. In the case of vertex partitioning problems, a row
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of the degree constraint matrix is the starting-point for defining a set of legal vertex
states. Note that for a subgraph Gu the vertex state information will be maintained
only for the source vertices Bu. The subgraph Gu interacts with the remainder of
the input graph G only through these sources. Vertex states must carry information
telling us whether a suggested solution not satisfying the problem constraints on Gu

can be augmented to good solutions on a supergraph of Gu by adding neighbors to
its sources Bu. Such a suggested solution carries the need for additional information
beyond that captured by the legal states. With this in mind, we define an equivalence
relation on solutions to subproblems:

Definition 5.4 Two potential solutions S1 and S2 to a subproblem on Gu

are equivalent if for every extension of S1 and S2 to S ′
1 and S ′

2, respectively,
such that the new vertices are added as neighbors of Bu-vertices, with the
new vertices playing the same role in S ′

1 and S ′
2, has the effect that either

both S ′
1 and S ′

2 are solutions or none of them are.

This equivalence relation is a refinement of the original classification of solutions
into simple yes/no classes. The set of vertex states needed to capture this refinement
constitute the augmented vertex states, a superset of the legal vertex states. The
set of vertex states A for a specific problem as mentioned earlier refers to the set
of augmented vertex states as described here. A candidate set of augmented vertex
states gives rise to a set of separator states. Finally, a candidate set of separator
states is verified by the correctness proof of table update procedures for all operations
involved. The introduction of the operations Reduce and Join greatly simplifies this
verification process. See the next chapter for an example.

Let R be a vertex state problem with vertex state set A. In the next chapter, we
will see that in our algorithm for solving R on a partial k-tree of n vertices, the most
expensive operation is computation of the binary Join operation. The complexity of
the Join operation at a node of the parse tree is proportional to the number of pairs
of indices, one index from the table of each of its two children. The table index set
for the problem R at a node with k sources has size |A|k, and there are less than n
Join nodes in the parse tree. The overall complexity of the algorithm, given a tree-
decomposition, is then T (n, k, L) = O(n|L|2k+1) since the children of a Join node
have k and k + 1 sources, respectively. In the next chapter we show an application of
these ideas.
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Chapter 6

Algorithms for Vertex Partitioning

Problems on Partial k-Trees

In this chapter we first give algorithms for solving vertex subset optimization problems
on partial k-trees, based on the algorithm design template given Chapter 5 and the
characterization of problems given in Chapter 2. We then extend these algorithms
to the more general case of vertex partitioning problems. These algorithms take a
graph G and a width k tree-decomposition of G as input. Earlier work by Arnborg
et al. [8] establishes the existence of pseudo-efficient algorithms for most, but not all,
of these problems. They are pseudo-efficient in the sense that their time complexity
is polynomial in the size of the input for fixed k, but with horrendous multiplicative
constants (“towers” of powers of k). In contrast to this behavior, the algorithms
presented here have running times with more reasonable bounds as a function of both
input size and treewidth, e.g. O(n24k) for well-known vertex subset optimization
problems. Since these problems are NP-hard in general and a tree-decomposition
of width n − 1 is easily found for any graph on n vertices, we should not expect
polynomial dependence on k. As an extension of our methodology we provide the
first polynomial-time algorithms on partial k-trees for the Grundy Number, a problem
not known to be expressible in EMSOL even when restricted to graphs of bounded
treewidth [50], and neither known to have a finite-state description. This follows from
(i) the description of the Grundy Number problem as a vertex partitioning problem,
(ii) a new logarithmic bound on the Grundy Number of a partial k-tree, and (iii) the
careful investigation of time complexity of vertex partitioning problems on partial
k-trees.

6.1 Vertex Subset Algorithms

In general, the algorithm computing the vertex subset optimization problem optM [L](G)
for a partial k-tree G follows the binary parse tree T of G as outlined in the previ-
ous chapter. Recall that opt can be either max or min, with the maxM [L] problem
maximizing over all [L]-sets S in G the value of |{v : stateS(v) ∈ M}|, see Chapter
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2.2. The somewhat easier algorithms for ∃[L] problems can be seen as a special case
of an optimization problem where M = ∅.

Algorithm-optM[L], where opt is either max or min.

Input: G, k,tree-decomposition of G of width k

Output: optM [L](G)

(1) Find a binary parse tree T of G with Primitive, Reduce and Join nodes.

(2) Initialize Primitive Tables at leaves of T .

(3) Traverse T in the bottom-up manner using Join-Tables and Reduce-Table.

(4) Table-Optimization at root of T gives optM [L](G).

We first discuss the pertinent vertex and separator states and give a description
of the tables involved in the algorithm. We then fill in details of table operations,
prove their correctness and give their time complexities. Finally, we look at some
extensions of this approach.

6.1.1 Vertex States

Before giving an algorithm to compute a parameter optM [L], we discuss some issues
related to the concept of vertex states in the algorithmic context. In Chapter 2,
the notation σ≥0 was used merely as an abbreviation for the infinite set of vertex
states σ0, σ1, .... The tables involved in the algorithms of this chapter will be indexed
by all possible states that vertices can have, so for complexity reasons we want as
few distinct vertex states as possible, and for certain problems, we will view, e.g.,
σ≥0 as a single augmented vertex state. For an optM [L] problem, as defined in
Chapter 2, we now define the set of augmented vertex states A and define AstateS(v)
for v ∈ V (G) and S ⊆ V (G). For instance, consider dominating sets where L =
{ρ1, ρ2, ...} ∪ {σ0, σ1, ...} = {ρ≥1, σ≥0}. In our algorithms, a vertex may start out
in the non-legal state ρ0 and acquire σ-neighbors as the algorithm progresses, so we
must allow vertices to have state ρ0 at some point during the algorithm. On the other
hand, for the minimum dominating set problem the algorithm need not discriminate
ρ1 from ρ2 since vertices will not lose (σ-) neighbors in the course of the algorithm.
For the same reason, an algorithm to find maximum independent sets, max[ρ≥0, σ0]
would not keep track of any σ-state other than σ0. We must also ensure that we can
optimize correctly, so for the problem min{σ1}[ρ≥1, σ≥0], we will need to discriminate
between σ1 and σ≥2, getting the augmented vertex state set A = {ρ0, ρ≥1, σ0, σ1, σ≥2}.
We next define this formally:

Definition 6.1

For a problem optM [L], define
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Mρ = {i ∈ N : ρi ∈ M} Dρ = {i ∈ N : ρi ∈ L}

Mσ = {i ∈ N : σi ∈ M} Dσ = {i ∈ N : σi ∈ L}

For the above example, we would get Mσ = {1} and Dρ = {1, 2, 3, ...}. To formally
define the range of subscripts for the augmented ρ-states, we need

Definition 6.2

Yt
df
= {0, 1, 2, ..., t}

Wt
df
= Yt−1 ∪ {≥ t}

R
df
= {Yt : t ∈ N} ∪ {W≈ : ≈ ∈ N} ∪ {N}

Note that |Yt| = |Wt| = t + 1, i.e., ≥ t is a single element of Wt. We now
define a function α : 2N×2N → R such that α(Mρ, Dρ) and α(Mσ, Dσ) gives the set of
subscripts used in the algorithm for the augmented ρ-states and σ-states, respectively.
We assume that Mρ ⊆ Dρ and Mσ ⊆ Dσ since optimizing over vertices with non-legal
states is not interesting.

Definition 6.3

α(Mρ, Dρ) =



















Yt if ∃t ∈ Dρ s.t. t = max{Dρ}
Wt if ∃t ∈ Dρ with t minimum s.t. t > max{Mρ} and {t, t + 1, ...} ⊆ Dρ

Wt if ∃t ∈ Dρ with t minimum s.t. {t, t + 1, ...} ⊆ Dρ, Mρ

N otherwise

The definition for α(Mσ, Dσ) is analogous. We assume 0 > max{∅}, and note
that our algorithmic template will not capture the last case above when α returns
N, as this would imply an infinite augmented vertex state set. For our example we
get α(Mρ, Dρ) = α(∅, {1, 2, 3, ...}) = W1 = {0,≥ 1}. We define formally the set of
augmented states.

Definition 6.4 A problem optM [L] has the augmented vertex state set

A = {ρx : x ∈ α(Mρ, Dρ)} ∪ {σx : x ∈ α(Mσ, Dσ)}

For instance, the augmented vertex state set for min{σ1}[ρ≥1, σ≥0] is A = {ρx :
x ∈ α(∅, {1, 2, 3, ...})} ∪ {σx : x ∈ α({1}, {0, 1, ...})} = {ρx : x ∈ {0,≥ 1}} ∪ {σx : x ∈
{0, 1,≥ 2}} = {ρ0, ρ≥1, σ0, σ1, σ≥2}.

A central operation in our algorithms is a⊕b	c which adds the subscripts of either
two augmented ρ-states a, b or two augmented σ-states a, b and subtracts c ∈ N. This
operation returns the subscript of an augmented ρ-state or σ-state, respectively, unless
undefined. The definition of a ⊕ b 	 c depends on whether subscripts of augmented
states a, b are over Yt or Wt.
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Definition 6.5 For a, b ∈ Yt and c ∈ N

a ⊕ b 	 c =

{

a + b − c if a + b − c ∈ Yt

↑ otherwise

For a, b ∈ Wt and c ∈ N

a ⊕ b 	 c =



















≥ t if either a or b is ≥ t
≥ t if a + b − c ∈ {t, t + 1, ...}
a + b − c if a + b − c ∈ {0, 1, ..., t − 1}
↑ otherwise

The notions defined above will also be used for solving vertex partitioning prob-
lems.

6.1.2 Table Description

We next describe the tables involved in an algorithm for a vertex subset optimization
problem optM [L] given by the legal states L, augmented states A and optimizing
(min or max) the set of vertices with state in M. When using the notation AstateS(v)
in the following, we follow the definition of augmented states. For instance, the
algorithm for min{σ≥0}[ρ≥1, σ≥0], the Minimum Dominating Set problem, which has
A = {ρ0, ρ≥1, σ≥0} uses the following natural interpretation of AstateS (for S ⊆ V (G))

AstateS(v) =











ρ0 if v 6∈ S and |NG(v) ∩ S| = 0
ρ≥1 if v 6∈ S and |NG(v) ∩ S| ≥ 1
σ≥0 if v ∈ S

In this algorithmic context, we naturally view the legal states L and optimized vertex
states M as a subset of the augmented states A. For instance, in the min{σ1}[ρ≥1, σ≥0]
problem we have L = {ρ1, ρ2, ...}∪{σ0, σ1, ...}, A = {ρ0, ρ≥1, σ0, σ1, σ≥2}, and interpret
the legal vertex state set L as {ρ≥1, σ0, σ1, σ≥2} ⊆ A. Let a node u of the parse tree T
represent the subgraph Gu of G with sources Bu = {w1, ..., wk}. The table at node u,
Tableu, has index set Ik = {s = s1, ...sk : si ∈ A}, so that |Ik| = |A|k. We define Ψ,
with respect to Gu and s, to be the family of sets S ⊆ V (Gu) such that in the graph
Gu, for wi ∈ Bu, AstateS(wi) = si, 1 ≤ i ≤ k and for v ∈ V (Gu)\Bu, AstateS(v) ∈ L.

Definition 6.6 For problem optM [L] with augmented states A, graph Gu

with sources Bu = {w1, w2, ..., wk} and k-vector s = s1, ...sk : si ∈ A we
define

Ψ
df
= {S ⊆ V (Gu) : ∀v ∈ V (Gu) \ Bu ∀wi ∈ Bu AstateS(v) ∈ L and

AstateS(wi) = si}
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Ψ forms an equivalence class of solutions to the subproblem on Gu, and its elements
are called Ψ-sets respecting Gu and s. Note that in a Ψ-set vertices of Bu are allowed
to have any state from the augmented set A, whereas vertices already “eliminated”
must have a legal state in L. The value of Tableu[s] is the optimum (max or min)
number of vertices in V (Gu) \ Bu that have state in M over all Ψ-sets respecting Gu

and s, and ⊥ if no such Ψ-set exists.

Definition 6.7

Tableu[s]
df
=

{

⊥ if Ψ = ∅
optimumS∈Ψ{|{v ∈ V (Gu) \ Bu : AstateS(v) ∈ M}|} otherwise

The result of an addition when one or more of the operands have the value ⊥
is again ⊥, and this value is considered to be smaller, respectively larger, than any
integer under maximization, respectively minimization.

6.1.3 Table Operations

We now elaborate on the operations of Table-Initialization, Table-Reduce, Join-Tables
and Table-Root-Optimization. Each of the following subsections defines the appro-
priate procedure, gives the proof of its correctness and analyzes its complexity.

Table Initialization. A leaf u of T is a Primitive node and Gu is the graph G[Bu],
where Bu = {w1, ..., wk+1}. Following the above definition we initialize Tableu in two
steps,

(1) ∀s ∈ Ik+1 : Tableu[s] := ⊥

(2) ∀S ⊆ Bu: Tableu[s] :=











0 if s = s1, ..., sk+1 and AstateS(wi) = si ∈ A
in the graph G[Bu]

⊥ otherwise

The complexity of this initialization for each leaf of T is O(|A|k+1 + 2k+2 log k).

Reduce Table. A Reduce node u of T has a single child a such that Bu = {w1, ..., wk}
and Ba = {w1, ..., wk+1}. We compute Tableu based on correct Tablea as follows

∀s ∈ Ik : Tableu[s] := optimum{Tablea[p](+1 if pk+1 ∈ M)}

where the optimum (min or max) is taken over all p ∈ Ik+1 such that pk+1 ∈ L
and 1 ≤ i ≤ k, pi = si. Correctness of the operation follows by noting that Ga and Gu

designate the same subgraph of G, and differ only by wk+1 not being a source in Gu.
By definition, an entry of Tableu optimizes over solutions where the state of wk+1 is
one of the legal states L and wk+1 contributes to the entry value if it has state in M .
The complexity of this operation for each Reduce node of T is O(|A|k+1).
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Join Tables. A Join node u of T has children a and b such that Bu = Ba =
{w1, ..., wk+1} and Bb = {w1, ..., wk} is a k-subset of Ba. Moreover, Ga and Gb share
exactly the subgraph induced by Bb, G[Bb]. We compute Tableu by considering all
pairs of table entries of the form Tablea[p], T ableb[r]. Recall that the separator state
p consists of k + 1 vertex states p1, p2, ..., pk+1 where the state pi ∈ A is associated
with vertex wi. In the procedure for the Join operation, we first check that p, r is a
compatible separator state pair, meaning that for each wi, i ∈ {1, ..., k} both p and
r agree on whether wi ∈ S. To define this operation, let selected(state) for a vertex
state be σ if state is a σ-state and ρ otherwise.

compatible(p, r) :=

{

1 if selected(pi) = selected(ri) ∀i ∈ {1, ..., k}
0 otherwise

We then combine, for each wi, i ∈ {1, ..., k + 1} the contributions from p and r

to give the resulting separator state combine(p, r) = s, and update Tableu[s] based
on Tablea[p] and Tableb[r]. The resulting state for a vertex wi under s is computed
by addition, using ⊕, of subscripts of states under p and r. Let size(s) denote the
subscript of a vertex state s. Moreover, since the neighbors wi has among Bb =
{w1, ..., wk} are the same in both Ga and Gb we must subtract, using 	, the shared
S-neighbors wi has in Bb under p and r. We use the operation size(pi)⊕ size(ri)	 c
defined earlier.

combine(p, r) := s where ∀i ∈ {1, ..., k} selected(si) = selected(pi) and

size(si) = size(pi) ⊕ size(ri) 	 |{wq ∈ Bb : wiwq ∈ E(G) ∧ selected(pq) = σ}|

and sk+1 = pk+1

We can now give the two-step procedure for the Join operation:

(1) ∀s ∈ Ik+1 : Tableu[s] := ⊥;

(2) ∀(p ∈ Ik+1, r ∈ Ik) : if compatible(p, r) then s := combine(p, r) and

Tableu[s] := optimum{(Tablea[p] + Tableb[r]), T ableu[s]}

where optimum is replaced by maximum for a maxM [L]-problem and by minimum
for a minM [L]-problem.

Theorem 6.1 The procedure given for the Join Operation at a node u
with children a, b updates Tableu correctly based on correct Tablea, T ableb.

Proof. Let u have sources Bu = {w1, ..., wk+1}, with notation as before. Consider
any s = s1, ..., sk+1 such that there exists a selected subset of vertices S ⊆ V (Gu)
respecting Gu and s, e.g., for wi ∈ Bu, AstateS(wi) = si, 1 ≤ i ≤ k + 1, with
value = |{v ∈ V (Gu) \ Bu : AstateS(v) ∈ M}|. We will show that after executing
the Join Table procedure at node u we have Tableu[s] ≥ value for a maximization
problem, or Tableu[s] ≤ value for a minimization problem. Let S ∩ V (Ga) = SA and
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S∩V (Gb) = SB. Let p = p1, ..., pk+1 and r = r1, ..., rk be defined by pi = AstateSA
(wi)

in Ga and ri = AstateSB
(wi) in Gb, respectively. By the assumption that Tablea and

Tableb are correct we must have Tablea[p] + Tableb[r] = value. This since any vertex
in V (Ga) \ Bu has the exact same state in Ga under SA as it has in Gu under S, by
the fact that there are no adjacencies between a vertex in V (Ga) \ Bu and a vertex
in V (Gb) \ Bu. Similarly for Gb. We can check that from the definitions we have
compatible(p, r) = 1 and combine(p, r) = s, so indeed Tableu[s] is updated correctly
when the pair p, r is considered by the Join procedure.

Now consider an s such that there does not exist any S ⊆ V (Gu) respecting Gu

and s. We will show, by contradiction, that in this case Tableu[s] is set to ⊥ initially
and then never altered. If Tableu[s] 6= ⊥ there must be a compatible pair p, r such
that combine(p, r) = s and Tablea[p] 6= ⊥ and Tableb[r] 6= ⊥. Let SA and SB

be partitions of V (Ga) and V (Gb), respectively, that give these table entries non-⊥
values. But then S = SA ∪ SB would be a subset of V (Gu) respecting Gu such that
the resulting state for the separator is s, a contradiction. Again, the reason is that
Bu = {w1, ..., wk+1} separates Gu into Ga \ Bu and Gb \ Bu. The above arguments
apply to any pair p, r considered in the Join operation, and since each such pair
updates at most one entry of Tableu, we conclude that the Join-Tables operation is
correct. 2

For each Join node of T the complexity of Join-Tables is O(|A|2k+1) since any
pair of entries from tables of children is considered at most once. The procedure
for the Join Operation presented in [65] was slightly more complicated in order to
avoid consideration of non-compatible pairs. This results in a somewhat better time
complexity, but of course, still exponential in k.

Optimize Root Table. Let r be the root of T with Br = {w1, ..., wk}. We compute
optM [L](G) based on correct Tabler as follows

optM [L](G) := optimum{Tabler[s] + |{wi ∈ Br : si ∈ M}|}

where the optimum (min or max) is taken over s ∈ Ik such that si ∈ L, 1 ≤ i ≤ k.
Correctness of this optimization follows from the definition of table entries and the
fact that Gr is the graph G with sources Br. The complexity of Table-Optimization
at the root of T is O(|A|k+1).

6.1.4 Complexity

Correctness of an algorithm based on the given template follows from a simple in-
duction on the parse tree T . As noted in Chapter 5.2, T has n − k Primitive nodes,
n− k Reduce nodes and n− k − 1 Join nodes. Given a tree-decomposition, the algo-
rithm finds the binary parse tree T , executes a single operation at each of its nodes,
and performs Table Optimization at the root. The total time complexity becomes
T (n, k, A) = O(n|A|2k+1), with Join Tables being the most expensive operation.
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Theorem 6.2 Algorithm-optM[L], with A the set of augmented states
with respect to L, computes optM [L](G) and has time complexity T (n, k, A) =
O(n|A|2k+1).

Corollary 6.1 For any problem opt[L] derived from Table 2.2 (p ≤ 2)
Algorithm-opt[L] has time complexity T (n, k) = O(n24k).

The corollary follows since any max[L] or min[L] problem over vertex subset
properties [L] defined in Table 2.2, with p ≤ 2, has |A| ≤ 4. Using the refined
procedure for Join-Tables [65] we can get improvements on the overall complexity,
the problem Maximum Independent Set achieving complexity O(n2k+2 log k).

6.1.5 Extensions

Our technique applies to a number of more general problems, as follows.

Search Problems. To construct an [L]-set of G optimizing the problem parameter
we add pointers from each table entry to the table entries of children achieving the
optimal value.

Weighted Problems. For weighted versions of the above problems, table entries
reflect optimization over the sums of weights of vertices and we need only modify
the operations Table Reduce and Table Optimization. The Reduce operation adds
the weight of the reduced vertex, when its state is in M , rather than incrementing
the optimum sum by one. The Root operation, with the domain of optimization
unchanged, becomes

optM [L](G) = optimum{Tabler[s] + Σweight(wi) : wi ∈ Br ∧ si ∈ M}

Digraph Problems. For the directed graph versions of these problems we define
ING(v) = {u : 〈u, v〉 ∈Arcs(G)} and use ING(v), as opposed to NG(v), in the defi-
nition of AstateS(v), the state of vertex v with respect to a selected set S ⊆ V (G).
The only change in the algorithm is for the definition of combine in Join-Tables that
should use Arcs(G) instead of E(G).

Maximal and Minimal Sets. S is a maximal (minimal) [L]-set if no vertex can be
added to (removed from) S such that the resulting set is still an [L]-set. Based on a
hand-derived algorithm optimizing over all vertex subsets satisfying some property,
Bern et al [14] give an automatic procedure constructing an algorithm optimizing
over maximal (or minimal) vertex subsets satisfying the same property. This includes
an application of Myhill-Nerode finite state automata minimization techniques to
minimize the resulting number of separator states. For more on the connection with
finite state automata, see also [2]. Unfortunately, when the original algorithm contains
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|A|k separator states, their automatic technique involves simplification of a table with
|A|k2|A|k separator states, and quickly becomes infeasible for increasing values of k.

In Chapter 2.3 we give a refined characterization of maximal and minimal vertex
subset properties, together with a simple procedure to derive a set of legal vertex
states Lmin and Lmax to identify minimal and maximal [L]-sets. As an example, S
is a minimal dominating set if it is a [ρ≥1, σ0, σ≥1·ρ1] -set. This extension can be used
to design algorithms on partial k-trees for problems which optimize over maximal (or
minimal) [L]-sets.

We focus on algorithms for minimal vertex subsets, (maximal algorithms defined
in an analogous way) and first recall some definitions from Chapter 2.3. With L =
Lρ ∪ Lσ, let state sets Amin, Bmin and Lmin be defined:

Amin = {σi : σi ∈ L ∧ ρi 6∈ L} and
Bmin = {ρi : ρi ∈ L ∧ ρi−1 6∈ L} ∪ {σi : σi ∈ L ∧ σi−1 6∈ L}.
Lmin = Amin ∪ Lρ ∪ {a ·b : a ∈ Lσ \ Amin ∧ b ∈ Bmin}
Theorem 2.1 shows that a vertex subset S is a minimal [L]-set in a graph G if and

only if it is an [Lmin]-set in G (see chapter 2.3 for definitions). In other words, S is
a minimal [L]-set if and only if S is an [L]-set and ∀v ∈ S either stateS(v) ∈ Amin
or ∃u ∈ NG(v) : stateS(u) ∈ Bmin. To account for the latter possibility, we refine
the state of vertex v to carry this information about the state of its neighbors. In
particular, a vertex with state in Bmin is eligible to become a mate of neighboring
vertices in S. To design an algorithm solving a problem optimizing over minimal
[L]-sets we use Lmin as a starting point, find a corresponding set of augmented
vertex states and fill in details of Table Initialization, Reduce Table, Join Tables and
Root Optimization. For minimal dominating sets, we have Lmin = {ρ≥1, σ0, σ≥1 ·ρ1}
and the augmented states A = {ρ0, ρ1, ρ≥2, σ0, σ≥1, σ≥0 · ρ1}. We call states using
the concatenation operator · a state with a has-label, since a vertex with this state is
forced to have a neighbor of a certain state. A table index containing some state with
the has-label is initialized to ⊥. The Table Reduce operation for an index containing
states with the has-label, is taken as the optimum over table entries of the child
whose indices exactly share the has-labels, with the added possibility of the reduced
vertex having state in the above-defined set Bmin and any neighbor of the reduced
vertex having state without the has-label. In this latter case, the reduced vertex then
becomes the mate of these neighbors. Moreover, the reduced vertex is not allowed to
have a σ-state in L \ Amin without the has-label, as this is not a legal state. The
Join Tables operation has the compatibility function altered so that a resulting vertex
state with a has-label requires the presence of a has-label on the corresponding vertex
of at least one of the children. The Root Optimization operation considers indices
having σ-states in L \ Amin without has-labels if and only if these are accompanied
by a root neighbor with vertex state in Bmin.

Irredundant sets. The extensions to our notation outlined above can also be used
to design algorithms for many parameters related to irredundant sets, see Chapter 2.3.
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In this notation, an irredundant set is a [ρ≥0, σ0, σ≥1·ρ1]-set, and the close connection
with minimal dominating sets is obvious.

The Irredundance of a graph is the minimum size of a maximal [ρ≥0, σ0, σ≥1 ·ρ1]-
set. Note that a second level of refinement of our characterization is needed to define
a set of “doubly” refined vertex states Imax such that the [Imax]-sets are exactly
the maximal [ρ≥0, σ0, σ≥1 · ρ1]-sets. Consequently, the state of a vertex will depend
on states of non-neighboring vertices. This has the effect of greatly complicating the
design of an algorithm to compute the irredundance number of a partial k-tree, and
we do not know any algorithm derived “by hand” for this problem (Bern et al [14]
solve the problem for trees.)

6.2 Vertex Partitioning Algorithms

In this section we describe algorithms to solve ∃Dq-problems, for any degree constraint
matrix Dq, see Chapter 2.1. Given an upper bound f for partial k-trees on the
parameter in question, a minDq or maxDq problem is solved by at most f calls to
the ∃Dq algorithm, for different values of q. We call a maxDq parameter (respectively,
a minDq parameter) monotone if existence of a Dq-partition implies the existence of
a Dq−1-partition (respectively, a Dq+1-partition.) For monotone properties we can
apply binary search so that log f calls to the ∃Dq algorithm will suffice.

Algorithm-∃Dq

Input: G, k,tree-decomposition of G of width k

Output: YES if there exists a Dq-partition of V (G), NO o.w.

(1) Find a binary parse tree T of G with Primitive, Reduce and Join nodes.

(2) Initialize Primitive Tables at leaves of T .

(3) Traverse T in the bottom-up manner using Join-Tables and Reduce-Table.

(4) Table-Optimization at root of T gives YES if G has a Dq-partition, NO o.w.

We first discuss the pertinent vertex and separator states and give a description
of the tables involved in the algorithm. We then fill in details of table operations,
prove their correctness and give their time complexities. Finally, we prove a bound
on the Grundy Number of a partial k-tree and adjust the general algorithm template
to give us a polynomial-time algorithm for computing that parameter.

6.2.1 Table Description

Our algorithms will follow a binary parse tree of the input graph G. With each node u
of T we associate a data structure table that stores optimal solutions restricted to Gu,
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the subgraph of G represented by the subtree of T rooted at u. Each table index at
node u represents an equivalence class of solutions to subproblems on Gu, equivalent
in terms of being able to form parts of solutions on larger subgraphs. Interaction
with larger subgraphs is only through Bu, the sources at u. Each Bu ⊆ V (Gu) is a
separator of the given graph G and |Bu| ∈ {k, k + 1}. For an ∃Dq problem, a solution
on Gu is a q-partition of V (Gu). The equivalence relation on solutions is defined as
follows:

Definition 6.8 Two partitions P1 and P2 of V (Gu) are equivalent if aug-
menting Gu to G, with the new vertices classified as belonging to some
of the partition classes has the effect that either both or none of the thus
augmented P ′

1 and P ′
2 are Dq-partitions of the new graph.

Based on the above definition, we can define equivalence classes of solutions by
identifying a separator state with each equivalence class. States for a separator Bu are
in turn defined as |Bu|-vectors of vertex states. The state of vertex v under partition
V1, ..., Vq encodes the effect the partition has on v. To capture the equivalence relation
in Definition 6.8, our algorithms will need an augmented degree matrix Aq, from which
we derive the augmented vertex states A. Comparing with vertex subset problems,
the degree constraint matrix Dq replaces Dρ, Dσ from Definition 6.1 and Aq replaces
α(Mρ, Dρ), α(Mσ, Dσ) from Definition 6.3. We first define a function β : 2N → R
(recall Definition 6.2) such that Aq[i, j] = β(Dq[i, j]).

Definition 6.9 Aq[i, j] = β(Dq[i, j]) where

β(Dq[i, j]) =











Yt if ∃t ∈ Dq[i, j] s.t. t = max{Dq[i, j]}
Wt if ∃t ∈ Dq[i, j] with t minimum s.t. {t, t + 1, ...} ⊆ Dq[i, j]
N otherwise

The augmented vertex states A are defined by focusing on rows of Aq. An aug-
mented vertex state will consist of a pair (i)(M) where 1 ≤ i ≤ q indexes a row of Aq

and M is an element of the Cartesian product Aq[i, 1] × Aq[i, 2] × ... × Aq[i, q]

Definition 6.10 For an ∃Dq problem we define the augmented vertex
state set:

A = {(i)(Mi1Mi2...Miq) : i ∈ {1, ..., q} ∧ ∀j(j ∈ {1, ..., q} ⇒ (Mij ∈
β(Dq[i, j])))}

Note that our algorithmic template will not work if Aq[i, j] = N for any entry of Aq,
as this would imply an infinite vertex state set. We consider an example. Figure 6.1
shows the matrix D3 such that the ∃D3 problem decides whether vertices of a graph
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a b

c
d

V1={a} , V2={b,c}, V3={d}

N  P  P

P  N  P

P  P  N

V1 V2 V3

V1

V2

V3

D3 =

(1)(>0  >1  0) (2)(>1 >0 >1)

(2)(>1 >0 >1) (3)(0 >1 >0)

Aq[i,i]={ >0 }

Aq[i,j]={ 0, >1 }

Figure 6.1: The matrix D3 for deciding whether there exists a partition into 3 domi-
nating sets (N={0, 1, ...} and P={1, 2, ...}). Also, resulting states for a given partition
on a graph. Note that vertices b and c satisfy the constraints given by D3, as can be
seen from comparing their states with row 2 of D3. Vertices a and d need additional
neighbors if this partition is to be augmented to a D3-partition of some supergraph.

can be partitioned into 3 dominating sets. Diagonal entries of D3 are N and off-
diagonal entries are P. Applying Definition 6.9 above we get β(Dq[i, i]) = W0 = {≥ 0}
and β(Dq[i, j]) = W1 = {0,≥ 1} for i 6= j. For this problem we then get the 12 vertex
states:

{(1)(≥0 0 0), (1)(≥0 0 ≥1), (1)(≥0 ≥1 0), (1)(≥0 ≥1 ≥1),
(2)(0 ≥0 0), (2)(0 ≥0 ≥1), (2)(≥1 ≥0 0), (2)(≥1 ≥0 ≥1),
(3)(0 0 ≥0), (3)(0 ≥1 ≥0), (3)(≥1 0 ≥0), (3)(≥1 ≥1 ≥0)}

The three states at the rightmost column above are the legal states, corresponding
to the three rows of the degree constraint matrix D3. For a partition V1, V2, ..., Vq of
V (G) and a vertex v ∈ V (G) we use the natural definition of Aqstate(v) arising from
the augmented degree constraint matrix Aq :

AqstateV1,...,Vq
(v) =































(1)(≥0 0 0) if v ∈ V1 and |NG(v) ∩ V1| ≥ 0∧
∧|NG(v) ∩ V2| = 0 ∧ |NG(v) ∩ V3| = 0

...
(3)(≥1 ≥1 ≥0) if v ∈ V3 and |NG(v) ∩ V1| ≥ 1∧

∧|NG(v) ∩ V2| ≥ 1 ∧ |NG(v) ∩ V3| ≥ 0

This extends to 12k separator states, of a separator of size k, in the partial k-tree
algorithm deciding whether there exists a partition into 3 dominating sets.

We return to discussing the general ∃Dq-algorithm and examine the size of the
augmented vertex state set A and the index set of the table Ik at a node u of the
parse tree with k sources. Assume for simplicity that the matrix Dq has diagonal
entries Lσ ⊆ N and off-diagonal entries Lρ ⊆ N. Let Aσ = Aq[i, i] = β(Dq[i, i]) and
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Aρ = Aq[i, j] = β(Dq[i, j]) for i 6= j. Note that Aqstate(v) = (i)(Mi1Mi2...Miq) with
i ∈ {1, 2, ..., q}, Mii ∈ Aσ and Mij ∈ Aρ for i 6= j. With A the set of augmented
vertex states for the ∃Dq-problem, we thus have |A| = q|Aσ||Aρ|q−1. Consider a
node u of the parse tree. Let Bu = {w1, w2, ..., wk} with Tableu having index set
Ik = {s = s1, ..., sk} for any si ∈ A. Thus the size of the table is |Ik| = |A|k.

We now turn to the values of table entries. Define Ψ with respect to Gu and
s = s1, ..., sk}, si ∈ A, to be the family of partitions V1, V2, ..., Vq of V (Gu), such that
in Gu, for wi ∈ Bu, AqstateV1,V2,...,Vq

(wi) = si and for v ∈ V (Gu) \ Bu if v ∈ Vi then
|NG(v) ∩ Vj| ∈ Dq[i, j], j = 1, ..., q.

Definition 6.11 For problem ∃Dq with augmented vertex states A, graph
Gu with sources Bu = {w1, w2, ..., wk} and k-vector s = s1, ...sk : si ∈ A
we define

Ψ
df
= {V1, ..., Vq a q-partition of V (Gu) : ∀v ∈ V (Gu) \ Bu ∀wi ∈ Bu

AqstateV1 ,...,Vq
(v) ∈ Dq[i, j] and AqstateV1 ,...,Vq

(wi) = si}

Ψ forms an equivalence class of solutions to the subproblem on Gu, and its elements
are called Ψ-partitions respecting Gu and s. Note that states of sources are allowed
to be any augmented vertex state, whereas an “eliminated” vertex must have state
as constrained by Dq. The binary contents of Tableu[s] records whether any solution
respecting Gu and s exists:

Definition 6.12

Tableu[s] =

{

1 if Ψ 6= ∅
0 if Ψ = ∅

6.2.2 Table Operations

We now elaborate on the operations of Table-Initialization, Table-Reduce, Join-Tables
and Table-Root-Optimization. Each of the following subsections defines the appro-
priate procedure, gives the proof of its correctness and analyzes its complexity.

Table-Initialization
A leaf u of T is a Primitive node and Gu is the graph G[Bu], where Bu =

{w1, ..., wk+1}. Let Partition(Bu) be all partitions of Bu into distinguished parti-
tion classes V1, ..., Vq. Following the given definition of tables we initialize Tableu in
two steps

(1) ∀s ∈ Ik+1 : Tableu[s] := 0
(2) ∀V1, V2, ..., Vq ∈ Partition(Bu): if V1, ..., Vq is a Dq-partition of G[Bu] with

AqstateV1,...,Vq
(wi) = si, i = 1, ..., k+1, then for s = s1, ..., sk+1 Tableu[s] := 1

The complexity of this initialization for each leaf of T is O(|Ik+1| + kqk+1).
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Reduce Table
A Reduce node u of T has a single child a such that Bu = {w1, ..., wk} and

Ba = {w1, ..., wk+1}. We compute Tableu based on correct Tablea as follows

∀s ∈ Ik : Tableu[s] := OR {Tablea[p]}

where the OR is over all p ∈ Ik+1 with ∀l : 1 ≤ l ≤ k, pl = sl and pk+1 =
(i)(Mi1, ..., Miq) such that for j = 1, ..., q we have Mij ∈ Dq[i, j] or Mij = Dq[i, j].
Correctness of the operation follows by noting that Ga and Gu designate the same
subgraph of G, and differ only by wk+1 not being a source in Gu. By definition,
Tableu[s] should store a 1 iff there is some Ψ-set respecting Ga and s where the state
of non-sources, e.g. wk+1, is constrained by Dq. The complexity of this operation for
each Reduce node of T is O(|Ik+1|).

Join Tables
A Join node u of T has children a and b such that Bu = Ba = {w1, ..., wk+1}

and Bb = {w1, ..., wk} is a k-subset of Ba. Moreover, Ga and Gb share exactly the
subgraph induced by Bb, G[Bb]. We compute Tableu by considering all pairs of table
entries of the form Tablea[p], T ableb[r]. Recall that the separator state p consists of
k + 1 vertex states p1, p2, ..., pk+1 where the state pi is associated with vertex wi. A
vertex state consists of the partition class index class(pi) of wi, i.e. wi ∈ Vclass(pi), and
a q-vector denoting the cardinality, expressed as an element of the Cartesian product
Aq[i, 1]×Aq[i, 2]× ...×Aq[i, q], of wi’s neighborhood in each partition class V1, ..., Vq.
We use the notation size(pi, j) to denote the jth component of this q-vector, i.e. the
size of wi’s neighborhood in Vj, as specified by pi. In the procedure for the Join
operation, we first check that p, r is a compatible separator state pair, meaning the
partition class assigned to vertex wi, i ∈ {1, ..., k} is identical in both p and r.

compatible(p, r) :=

{

1 if class(pi) = class(ri) ∀i ∈ {1, ..., k}
0 otherwise

We then combine, for each wi, i ∈ {1, ..., k + 1} the contributions from p and r to
give the resulting separator state combine(p, r) = s, and update Tableu[s] based on
Tablea[p] and Tableb[r]. The resulting q-vector of neighborhood sizes for a vertex wi

under s is computed by (componentwise) addition of its q-vectors under p and r. This
addition at the jth component is performed using ⊕ from Definition 6.5. Moreover,
since the neighbors wi has in Bb = {w1, ..., wk} are the same in both Ga and Gb we
must subtract the shared Vj neighbors wi has in Bb under p and r. We thus use

combine(p, r) := s where ∀i ∈ {1, ..., k} ∀j ∈ {1, ..., q}

class(si) = class(ri) = class(pi) and

size(si, j) = size(pi, j)⊕size(ri, j)	|{wl ∈ Bb : wiwl ∈ E(G)∧class(pl) = j}|

and sk+1 = pk+1

We can now state the two step procedure for the Join operation:
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(1) ∀s ∈ Ik+1 : Tableu[s] := 0;

(2) ∀(p ∈ Ik+1, r ∈ Ik) : if compatible(p, r) and Tablea[p] = Tableb[r] = 1

then Tableu[combine(p, r)] := 1

Theorem 6.3 The procedure given for the Join Operation at a node u
with children a, b updates Tableu correctly based on correct Tablea, T ableb.

Proof. We argue the correctness of the Join operation at a node u with sources Bu =
{w1, ..., wk+1}, based on correct table entries at its children a and b, with notation
as before. Consider any s = s1, ..., sk+1 such that there exists a partition V1, ..., Vq

of V (Gu) respecting Dq with AqstateV1 ,...,Vq
(wi) = si for i = 1 to k + 1 in the graph

Gu. We will show that then Tableu[s] is correctly set to the value 1. Let A1, ..., Aq

and B1, ..., Bq be the induced partitions on V (Ga) and V (Gb), respectively, i.e., Vi ∩
V (Ga) = Ai and Vi ∩V (Gb) = Bi. Let p = p1, ..., pk+1 and r = r1, ..., rk be defined by
pi = AqstateA1,...,Aq

(wi) in Ga and ri = AqstateB1,...,Bq
(wi) in Gb, respectively. By the

assumption that Tablea and Tableb are correct we must have Tablea[p] = Tableb[r] =
1. This since any vertex in V (Ga)\Bu has the exact same state in Ga under A1, ..., Aq

as it has in Gu under V1, ..., Vq, by the fact that there are no adjacencies between a
vertex in V (Ga)\Bu and a vertex in V (Gb)\Bu. Similarly for Gb. We can check that
from the definitions we have compatible(p, r) = 1 and combine(p, r) = s, so indeed
Tableu[s] is set to 1 when the pair p, r is considered by the algorithm.

Now consider an s such that there does not exist any q-partition of V (Gu) re-
specting Dq such that the resulting state for the separator is s. We will show, by
contradiction, that in this case Tableu[s] is set to 0 initially and then never altered.
If Tableu[s] = 1 there must be a compatible pair p, r such that combine(p, r) = s

and Tablea[p] = Tableb[r] = 1. Let A1, ..., Aq and B1, ..., Bq be partitions of V (Ga)
and V (Gb), respectively, that set these table entries to 1. Then V1, ..., Vq defined by
Vi = Ai ∪Bi is a q-partition of V (Gu) respecting Dq such that the resulting state for
the separator is s, because Bu = {w1, ..., wk+1} separates Gu into Ga \Bu and Gb \Bu.
This contradicts our assumption that such a q-partition does not exist. We conclude
that the Join-Tables operation is correct. 2

For each Join node of T the complexity of Join-Tables is O(|Ik||Ik+1|) since any
pair of entries from tables of children is considered at most once.

Optimize Root Table
Let r be the root of T with Br = {w1, ..., wk}. We decide whether G has a

Dq-partition based on correct Tabler as follows

YES if ∃s = s1, ..., sk ∈ Ik such that Tabler[s] = 1 and for 1 ≤ i ≤ k, 1 ≤ j ≤ q

we have si = (x)(Mx1, ..., Mxq) with Mxj ∈ Dq[x, j]
NO otherwise
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Correctness of this optimization follows from the definition of table entries and the
fact that Gr is the graph G with sources Br. The complexity of Table optimization
at the root of T is O(|Ik+1|).

6.2.3 Overall Correctness and Complexity

Correctness of an algorithm based on this algoritmic template follows by induction
on the binary parse tree T . As noted in Chapter 5.2, T has n − k Primitive nodes,
n − k Reduce nodes and n − k − 1 Join nodes. The algorithm finds the binary parse
tree T , executes a single respective operation at each of its nodes, and performs Table
Optimization at the root.

Theorem 6.4 The time complexity for solving an ∃Dq problem with
augmented vertex state set A, table index set Ik for k sources, on a partial
k-tree with n vertices, given a tree-decomposition of width k is

• T (n, k) = O(n|Ik||Ik+1|)

• T (n, k, q) = O(n|A|2k+1).

• T (n, k, q, Aσ, Aρ) = O(nq2k+1|Aσ|2k+1|Aρ|(2k+1)(q−1))

Proof. The first bound follows since Join Tables is the most expensive operation.
The next two bounds come from |Ik| = |A|k and |A| = q|Aσ||Aρ|q−1. 2

Note that the last bound is stated for problems where Dq has all diagonal entries
equal to Aσ and all off-diagonal entries equal to Aρ. For more general vertex partition-
ing problems, we simply take |Aσ| = maxi{β(Dq[i, i])} and |Aρ| = maxi 6=j{β(Dq[i, j])}
to be the largest augmentations resulting from Dq anywhere on and off the diagonal,
respectively. For maxDq and minDq problems we get algorithms linear in n if the
optimized parameter is bounded from above on partial k-trees by a function of k
only. This is the case for both chromatic number and domatic number which have
the bound k + 1 on partial k-trees. Since these properties are also monotonic, as dis-
cussed earlier, we can do a binary search for the correct value with log k + 1 calls to
an ∃Dq problem. Resulting time bounds for specific problems are shown in Table 6.1,
as discussed also in the following sections.

6.2.4 Grundy Number Algorithm

Computing the Grundy number of an undirected graph is NP -complete even for
bipartite graphs and for chordal graphs [55]. A binomial tree on 2q−1 vertices has
Grundy number q [41] and in general the non-existence of an f(k) upper bound
on the Grundy number of a partial k-tree explains the lack of a description of this
problem in EMSOL [50]. For trees there exists a linear time algorithm [41] but until
now it was an open question whether polynomial time algorithms existed even for 2-
trees [38]. Recall from Chapter 2.1 that the definition of Grundy number as a vertex
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Problem q |Aσ| |Aρ| Time Complexity

CHROMATIC NUMBER 1 ≤ q ≤ k + 1 1 1 O(nk2(k+1))
q-COLORING q 1 1 O(nq2(k+1))
H-COVER q = |V (H)| 1 2 O(n23k|V (H)|)
H-COLOR q = |V (H)| 1 1 O(n|V (H)|2(k+1))

DOMATIC NUMBER 1 ≤ q ≤ k + 1 1 2 O(n23k2

)
DISTANCE ≤ q DOM. q + 1 1 2 O(n23k(q+1))

GRUNDY NUMBER 1 ≤ q ≤ 1 + k log n 1 2 O(n3k2

)

UPPER DOM. REMOVAL 1 ≤ q ≤ 1 + k log n 1 2 O(n3k2

)

Table 6.1: Time complexity for specific problems on partial k-trees of n vertices

a

b

c

d

ef

g

V5 = {a,d}     V4 = {b,c}

V3 = {e}    V2 = {f}    V1 = {g}

Figure 6.2: A 2-tree on 7 vertices with Grundy number 5 and an appropriate partition
V 1, V 2, ..., V 5

partitioning problem required all partition classes to be non-empty. In this section
we first show how the algorithm template of section 6.2.2 can be easily adjusted to
enforce this requirement. We also prove a logarithmic, in |V (G)|, upper bound on
the Grundy Number, GN(G), of a partial k-tree G. These results suffice to show the
polynomial time complexity of computing the Grundy number of any partial k-tree,
for fixed k.

To facilitate the presentation of these results, we reverse the ordering of the parti-
tion classes in the definition of GN from Chapter 2.1; this is expressed by the degree
constraint matrix Dq with diagonal entries {0}, above-diagonal entries P, and below-
diagonal entries N. Thus, for a graph G, GN(G) is the largest value of q such that its
vertices V (G) can be partitioned into non-empty classes V1, V2, ..., Vq with the con-
straint that for i = 1, ..., q, Vi is an independent set and every vertex in Vi has at least
one neighbor in each of the sets Vi+1, Vi+2, ..., Vq (see Figure 6.2.) Note that if we
have at least one vertex v ∈ V1 then this guarantees that every partition class is non-
empty, since Dq requires v to have at least one neighbor in each of V2, V3, ..., Vq. In the
algorithm for deciding whether a partial k-tree has a Dq-partition with non-empty
classes, with Dq as described above, we augment the value of a table entry Tableu[s]
by a single extra bit called nonempty. This bit will record whether there exists any
partition V1, ..., Vq respecting Gu and the separator state s such that V1 6= ∅. In the
following, we use notation as given in section 6.2.2, with the definition of table entries:

83



Tableu[s] =











〈0, 0〉 if Ψ = ∅
〈1, 0〉 if Ψ 6= ∅ but 6 ∃V1, V2, ..., Vq ∈ Ψ with V1 6= ∅
〈1, 1〉 if Ψ 6= ∅ and ∃V1, V2, ..., Vq ∈ Ψ with V1 6= ∅

The two-step Table-Initialization procedure becomes:

(1) ∀s ∈ Ik+1 : Tableu[s] := 〈0, 0〉

(2) ∀V1, V2, ..., Vq ∈ Partition(Bu): if V1, ..., Vq is a Dq-partition of G[Bu] with

s = s1, ..., sk+1 such that AqstateV1 ,...,Vq
(wi) = si, i = 1, ..., k + 1 then

if V1 = ∅ set Tableu[s] := 〈1, 0〉

else if V1 6= ∅ set Tableu[s] := 〈1, 1〉

Note that for a leaf u of the binary parse tree of G, all vertices of Gu are sources
so the separator state s, in step (2) above, contains the information determining if
V1 is empty. The Reduce-Table procedure remains as given in section 6.2.2 except
that the OR is taken over both bits in the values of table entries, i.e., 〈a, b〉 ∨ 〈c, d〉 =
〈a ∨ c〉, 〈b ∨ d〉. For the Join-Table procedure, the concepts of compatibility and
combining of pairs are unchanged, whereas the two-step update procedure becomes:

(1) ∀s ∈ Ik+1 : Tableu[s] := 〈0, 0〉;

(2) ∀(p ∈ Ik+1, r ∈ Ik) : if compatible(p, r) and

Tablea[p] = 〈1, x〉 and Tableb[r] = 〈1, y〉 and Tableu[combine(p, r)] = 〈z, w〉

then Tableu[combine(p, r)] := 〈1, x ∨ y ∨ w〉.

Root optimization becomes:

YES if ∃s = s1, ..., sk ∈ Ik such that Tabler[s] = 〈1, 1〉 and for 1 ≤ i ≤ k, 1 ≤
j ≤ q

we have si = (x)(Mx1, ..., Mxq) with Mxj ∈ Dq[x, j]
NO otherwise

It is easy to see that the time complexity of the resulting algorithm remains as
described by Theorem 6.4.

We now turn to the bound on the Grundy number GN(G) of a partial k-tree
G. Since the Grundy number of a graph may increase by removing edges we cannot
restrict attention to k-trees, but must consider partial k-trees. A tree (i.e. a 1-tree)
with Grundy number q, witnessed by a (Grundy) partition V1, ..., Vq, must have at
least 2q−1 vertices since a vertex v1 ∈ V1 must have a neighbor v2 ∈ V2, both v1, v2

must have (distinct) neighbors v3, v4 ∈ V3, vertices v1, ..., v4 must have neighbors
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v5, ..., v8 ∈ V4, etc. (more precisely, each vertex of the set
⋃

1≤i<j Vi has a unique
neighbor in Vj thus doubling the size of

⋃

1≤i≤j Vi for each consecutive 1 < j ≤ q.)
This argument relies on the fact that 1-trees do not have cycles. For a partial k-
tree G with k ≥ 2 and Grundy number q we cannot guarantee the existence of
a perfect elimination ordering (peo = vn, vn−1, ..., v1) of vertices which respects a
Vq, ..., V1 Grundy partition of V (G), as in the 1-tree example above. See Figure 6.2
for an example of a 2-tree on 7 vertices which does not have a perfect elimination
ordering respecting the partial order given by any Grundy partition V5, V4, ..., V1.
Hence, the general bound given below has a somewhat less trivial proof than the
1-tree case.

Theorem 6.5

For G a partial k-tree on n ≥ k ≥ 1 vertices, we have

GN(G) ≤ 1 + blog(k+1)/k nc

Proof. Let GN(G) = q with V1, V2, ..., Vq an appropriate partition of V (G) as de-
scribed above. For 1 ≤ i ≤ q, define Gi to be the graph G \ (∪Vj, j > i). Thus
Gq = G and in general Gi is the graph induced by vertices V1 ∪ V2... ∪ Vi with Vi a
dominating set of Gi. Let ni = |V (Gi)| and mi = |EGi)|. By induction on i from k
to q we show that in this range

ni ≥ (
k + 1

k
)i−1

For the base case i = k we have (2/1)0 ≤ 1 ≤ n1 and (3/2)1 < 2 ≤ n2 and for k ≥ 3
(1 + 1/k)k−1 ≤ (1 + 1/k)k ≤ e < 3 ≤ nk. Note that the inequality is strict for k ≥ 2.
We continue with the inductive step of the proof, with the inductive assumption that
the inequality holds for j in the range k to i−1 and establish the inequality for j = i.
Note that mi − mi−1 counts the number of edges in Gi with at least one endpoint in
Vi. Since every vertex in V (Gi−1) = V1 ∪ V2 ∪ ... ∪ Vi−1 has at least one Gi-neighbor
in Vi we get a lower bound on mi

mi ≥ mi−1 + ni−1

Gi is a subgraph of a k-tree, and if i ≥ k then it is a partial k-tree on ni ≥ k vertices.
It is well-known that Gi is then a subgraph of a k-tree on ni vertices [6], and from
the iterative construction of k-trees it is easy to show that we have

mi ≤
k(k − 1)

2
+ (ni − k)k

Rearranging terms we get the following bound on ni for k ≤ i ≤ q

ni ≥
mi

k
+

k + 1

2
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Repeatedly substituting the mi bound in the above, we get

ni ≥
mi−1 + ni−1

k
+

k + 1

2
≥ ... ≥

nk + nk+1 + ... + ni−2 + ni−1

k
+

mk

k
+

k + 1

2

In the right-hand side we substitute for all nj the inductive bound nj ≥ (k+1
k

)j−1 to
get

ni ≥
1

k

i−2
∑

j=k−1

(
k + 1

k
)j +

mk

k
+

k + 1

2
= (

k + 1

k
)i−1 − (

k + 1

k
)k−1 +

mk

k
+

k + 1

2

Since Vj is a dominating set in Gj for 1 ≤ j ≤ k we must have mk ≥ (k−1)k/2 which
we substitute in the above to get the desired bound

ni ≥ (
k + 1

k
)i−1 − (

k + 1

k
)k−1 + k ≥ (

k + 1

k
)i−1

Note that the last bound is strict for k ≥ 2(*). For i = q we thus get q ≤ 1 +
log(k+1)/k nq (note that q = GN(G) and nq = n) which is a tight bound for k = 1.
For k ≥ 2, the base is not an integer and, because of the strict inequality (*) we can
apply the floor function to the log. 2

For fixed k we thus have a logarithmic bound on GN for partial k-trees. Since we
want to express time complexity as a function of k, we convert bases of the logarithm
to get GN(G) ≤ 1 + (log2

k+1
k

)−1 log2 n ≤ 1 + k log2 n.

Theorem 6.6 Given a partial k-tree G on n vertices its Grundy number
can be found in O(n3k2

) time.

Proof. First note that a tree-decomposition can be found in time linear in n [17].
Define the Grundy number problem using the degree constraint matrix Dq with diag-
onal entries {0}, above-diagonal entries P, and below-diagonal entries N. We then use
the algorithm from section 6.2.2 augmented with the nonempty information as de-
scribed above. The correctness of each table operation procedure is easily established,
so that by induction over the parse tree we can conclude that the root-optimization
procedure will correctly give the answer YES if and only if the input graph has an
appropriate partition V1, ..., Vq with non-empty classes. An affirmative answer implies
that GN(G) ≥ q. Using the bound GN(G) ≤ 1 + k log2 n we run the ∃Dq algorithm
for descending values of q starting with q = 1 + k log2 n and halting as soon as an
affirmative answer is given. The complexity of this algorithm is then given by appro-
priately applying Theorem 6.4, with |Aσ| = 1 and |Aρ| = 2. 2
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6.2.5 Extensions

Algorithms for search versions, weighted versions and directed graph versions of vertex
partitioning problems are constructed by the same general method as the extensions
given for vertex subset optimization problems in section 6.1.5.

In chapter 2.1 we discussed several problems which could be defined by allow-
ing optimization over the cardinality of certain partition classes. For example, the
DISTANCE ≤ q DOMINATION problem optimizes |V1| over all Dq+1-partitions
V1, V2, ..., Vq+1 for the appropriate degree constraint matrix Dq+1. To compute this
parameter, the values of table entries are defined to be

Tableu[s]
df
=

{

⊥ if Ψ = ∅
optimumV1,...Vq+1∈Ψ{|V1|} otherwise

and the table operations are altered similarly, in the style of table operations for
vertex subset optimization problems. Any vertex partitioning problem optimizing
over the cardinality of a partition class can be solved in a similar manner. The time
complexity of the resulting algorithms for a problem given by the degree constraint
matrix Dq remains as given in Theorem 6.4. For example, the DISTANCE ≤ q
DOMINATION problem is solved on partial k-trees, when given a tree-decomposition,
in time O(n23k(q+1)).

In Chapter 2.4 we discussed several new problems, including the general classes
of [ρ, σ]-PARTITION problems, NON-UNIFORM PARTITION problems and [ρ, σ]-
REMOVAL problems. Any of these problems are encompassed by Theorem 6.4.
Polynomial-time algorithms for maxDq and minDq problems will of course only follow
if an appropriate bound holds on the parameter in question. In particular, note that
the proof of the logarithmic bound on the Grundy Number in Theorem 6.5 does
not utilize the fact that the Vi are independent sets, only the fact that they are
dominating sets in the remaining graph. This means we get a logarithmic bound
also on the UPPER-DOMINATING-REMOVAL parameter on partial k-trees (see
Chapter 2.4 for a definition) and a polynomial time algorithm for computing this
parameter, for fixed k.

87



Chapter 7

Conclusions

Several parts of this thesis are based on previously published work:

• Sections 2.2, 2.3 and 2.5 are based on [63]

• Chapter 3 is based on [64]

• Chapter 4 is based on [48]

• Sections 5.1, 5.2, 5.3 and 6.1 are based on [65]

We discuss some natural continuations of the work presented.
We hope that the vertex partitioning characterization given in chapter 2 will open

several avenues of future work.
As an example we mention the search for general results on tractability/intractability

cutoff points for the various vertex partitioning problems, where for example 2-
coloring is easy while 3-coloring is NP-complete. For many vertex partitioning prob-
lems this question has not yet been explored.

We also plan to investigate the fixed parameter tractability of vertex partitioning
problems, giving membership and hardness results for the W hierarchy [18].

An obvious continuation of the work in Chapter III is to complete the classification
of the complexity of vertex subset problems for general graphs. We have several
conjectures in this direction awaiting further investigation.

In a related effort, Kratochv́ıl et al. [47] employ our characterization of vertex
subset problems from Chapter II to study their complexity on both interval graphs
and chordal graphs.

The current joint work on graph covering problems in Chapter IV has already
proven to be a fertile field. The ultimate goal is to completely classify the computa-
tional complexity of H-covering problems for any graph H, and again we have several
conjectures to work on.

Regarding partial k-tree algorithms, there are several possibilities of generalizing
our results. A possibly easy extension would be to encompass certain vertex subset
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and vertex partitioning problems for which the augmented vertex state set as de-
scribed here is not finite. For instance, the problem Odd Neighborhood Cover, which
has legal states of type ρi for any odd i and σj for any even j. We believe our approach
can be applied to solve this problem on partial k-trees by defining vertex states based
on parity of the number of selected neighbors.

For certain vertex partitioning problems, the algorithms given here may not be the
appropriate view. In particular, the PARTITION INTO PERFECT MATCHINGS
problem is defined in chapter 2.1 as a minDq-problem, but we have no good bound on
this parameter for which Theorem 6.4 would yield an algorithm polynomial in |V (G)|.
Instead, we can derive an algorithm without utilizing the vertex state approach at
all, bounding the number of separator states by |Ik| = 3kB(k), where B(k) is the
kth Bell number. Recall the definition of Partition into Perfect Matchings ([GT16]
in [34]): For a graph G, find the minimum value of p for which there is a partition
V1, V2, ..., Vp of V (G) such that G[Vi], 1 ≤ i ≤ p has vertices of degree one only. We
sketch a linear time algorithm for this problem on graphs of bounded treewidth (both
[17] and [8] show only the existence of polynomial time algorithms). We observe that
equivalent solutions to subproblems must induce identical partitions on the separator.
We classify solutions by whether a given separator vertex has a mate among the other
separator vertices, a mate among the reduced vertices, or no mate yet. Based on this
we define a set of separator states and implementations of Initialize, Reduce, Join
and Root-Optimize operations that give a linear time solution algorithm.

As mentioned in chapter 5.5 we intend to extend the class of vertex state problems
beyond the vertex partitioning problems given here, hopefully resulting in better com-
plexity bounds, or even the first polytime algorithms, for computing those parameters
on partial k-trees.

One approach would enlarge the current definition of vertex partitioning problems
to allow specification of certain restricted subgraphs between partition classes. This
would encompass for, example, Broadcasting problems, using the following definition
of these problems: a graph has broadcast time t or less if its vertices can be partitioned
into classes V0, V1, ..., Vt with the constraint that the original holders of the message to
be broadcast are V0, and that for any i, 1 ≤ i ≤ t a matching covering Vi exists in the
bipartite graph on vertices {v : v ∈ Vj∧j ≤ i} and edges {uv : u ∈ Vi∧v ∈ Vj∧j < i}.

Finally, we would like to extend the partial k-tree algorithm design methodology
given in chapter 5 to the area of parallell partial k-tree algorithms.
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