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Abstract. We study the parameterized complexity of domination prob-
lems on sparse graphs and beyond. The nowhere dense classes of graphs
have been proposed as the main model for sparseness that can be utilized
algorithmically. The class of d-degenerate graphs is not nowhere dense,
yet domination remains fixed-parameter tractable. Both nowhere dense
classes of graphs and d-degenerate graph classes are biclique-free classes,
meaning there is an integer t such that no graph in the class contains Kt,t

as a subgraph. In this paper we show that various domination problems
are fixed-parameter tractable on biclique-free classes of graphs. Our al-
gorithms are simple and rely on results from extremal graph theory that
bound the number of edges in a t-biclique free graph. In particular, the
problems k-Dominating Set, Connected k-Dominating Set, Inde-
pendent k-Dominating Set and Minimum Weight k-Dominating
Set are shown to be FPT, when parameterized by t + k, on graphs not
containing Kt,t as a subgraph. With the exception of Connected k-
Dominating Set all described algorithms are linear in the size of the
input graph.
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1 Introduction

The k-dominating set problem is among the most well-studied NP-complete
problems in algorithmic graph theory. Given a graph G and an integer k, we
ask if G contains a set S of at most k vertices such that every vertex of G is
either in S or adjacent to a vertex of S. To cope with the intractability of this
problem it has been studied both in terms of approximability [13] (relaxing the
optimality) and fixed-parameter tractability (relaxing the runtime). In this paper
we consider also weighted k-domination and the variants asking for a connected
or independent k-dominating set.

The k-dominating set problem is notorious in the theory of fixed-parameter
tractability (see [8, 19, 10] for an introduction to parameterized complexity). It
was the first problem to be shownW [2]-complete [8], and it is hence unlikely to be
FPT, i.e. unlikely to have an algorithm with runtime f(k)nc for f a computable
function, c a constant and n the number of vertices of the input graph. However,



by restricting the class of input graphs, say to planar graphs, we can obtain FPT
algorithms [2], even if the problem remains NP-complete on planar graphs [11]. In
the race to find the boundary between FPT and W -hardness one typically wants
the weakest possible restriction when proving FPT and the strongest possible
restriction when proving W -hardness. In this paper, we push the tractability
frontier forward by considering the above variants of k-dominating set on t-
biclique free graphs and showing that they are FPT when parameterized by k+t.
The t-biclique free graphs are those that do not contain Kt,t as a subgraph, and
to the best of our knowledge, they form the largest class of graphs for which
FPT algorithms are known for k-dominating set. Our algorithms are simple and
rely on results from extremal graph theory that bound the number of edges in
a t-biclique free graph, see the Bollobás book [4].

The parameterized complexity of the dominating set problem has been heav-
ily studied with the tractability frontier steadily pushed forward by enlarging
the class of graphs under consideration. One such line of improvements for
k-dominating set consists of solving the problem on what we may call sparse
graphs. This series of FPT algorithms starts with the planar graphs by Alber
et al. [2], followed by bounded genus graphs by Ellis et al. [9], H-minor free
graphs by Demaine et al. [6], bounded expansion graphs by Nesetril and Ossona
de Mendez [16], and culminating in the FPT algorithm for nowhere dense classes
of graphs by Dawar and Kreutzer [5]. See Figure 1. The nowhere dense classes
of graphs were introduced by Nesetril and Ossona de Mendez [18], and is by
many people considered the best way to model the notion of sparsity in graphs,
at least for algorithmic uses. Beyond this, Alon and Gutner [3] have shown that
k-dominating set on d-degenerated graphs parameterized by k + d is FPT. A
clique with every edge subdivided is 2-degenerated but dense at ’depth one’ (see
definitions in Section 2) and indeed nowhere dense classes and d-degenerated
graph classes are incomparable. Dawar and Kreutzer [5] mention that: ’it would
be interesting to compare nowhere dense classes of graphs to graph classes of
bounded degeneracy’. In this paper we base such a comparison on the fact that
any nowhere dense class of graphs or d-degenerated class of graphs is a t-biclique-
free class of graphs, for some t. Let us remark that also for a nowhere dense class
C of graphs there is a parameter analogous to the d in d-degenerated graphs and
the t in t-biclique-free graphs, see Section 2, with Dawar and Kreutzer [5] men-
tioning that: ’...the exact parameter dependence of the algorithms depends on
the function h, which is determined by the class of structures C’. A relation
between the different graph class properties can be seen in Figure 1.

Let us consider some closely related work. Raman and Saurabh [21] have
shown that k-dominating set is W [2]-hard on K3-free graphs and FPT on graphs
not containing K2,2 as a subgraph (i.e. 2-biclique-free graphs). Philip et al. [20]
have generalized this to the study of k-dominating set on graphs not containing
Ki,j as a subgraph (which they call Ki,j-free) but they parameterize by k only
and consider i + j to be a constant. Under this condition they show not only
that the problem is FPT but also that it has a polynomial kernel. They mention
explicitly that: ’Another challenge is to...get a running time of the form O(nc)
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Fig. 1. Inclusion relations between some of the mentioned graph class properties. We
refer to Nesetril and Ossona de Mendez [17] for a more refined view.

for Ki,j-free graphs where c is independent of i and j.’ In this paper we get
such runtimes, as we consider both k and i, j ≤ t as parameters. However, note
that we could not expect to meet the challenge of a polynomial kernel when
parameterizing by k + t, as Dom et al. [7] have shown that the k-Dominating
Set problem on d-degenerate graphs (a subclass of (d+ 1)-biclique-free graphs)
does not have a kernel of size polynomial in both d and k unless the polynomial
hierarchy collapses to the third level. By showing that k-dominating set on t-
biclique free graphs is FPT when parameterized by k+ t, we generalize all FPT
results for k-domination on restricted graph classes that we have found in the
litterature.

Our result extends to showing that connected k-domination and independent
k-domination on t-biclique-free graphs are both FPT when parameterized by
k+ t. For connected k-domination we use a subroutine developed by Misra et al.
[15] for the Group Steiner Tree problem. The FPT borderline for connected k-
domination and independent k-domination prior to our work resembled the one
for k-domination, with Dawar and Kreutzer [5] showing that both problems are
FPT on nowhere dense classes of graphs and Golovach and Villanger [12] showing
that both problems are FPT on d-degenerated graphs when parameterized by
k + d. Our algorithm generalizes these results.

Our result extends also to weighted k-domination. Alon and Gutner [3] show
that weighted k-domination on d-degenerated graphs parameterized by d+ k is
FPT but fixed-parameter tractability was not known for nowhere dense classes
of graphs prior to our result for t-biclique free graphs.

A long-standing open problem in parameterized complexity was the question
of deciding if a graph G is k-biclique-free is W [1]-hard parameterized by k,
which was finally shown by Lin [14] in 2015. In the Conclusion section we briefly
mention this question in light of our algorithms.
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2 Graph classes and problems

We use standard graph theory terminology. For a graph G = (V,E) and S ⊆ V
we denote by N [S] the vertices that are either in S or adjacent to a vertex of
S, and we denote by G[S] the subgraph of G induced by S. We denote always
|V | = n and |E|=m. The distance between two vertices is the number of edges
in a shortest path linking them. Let us consider some classes of graphs.

Definition 1 (Degenerated classes). A class of graphs C is said to be degen-
erated if there is an integer d such that every induced subgraph of any G ∈ C has
a vertex of degree at most d.

Many interesting families of graphs are degenerated. For example, graphs em-
beddable on some fixed surface, degree-bounded graphs and non-trivial minor-
closed families of graphs. Another broad property of graph classes, recently intro-
duced by Nesetril and Ossona de Mendez [18], is the property of being nowhere
dense. There are several equivalent definitions, we use the following based on the
concept of a shallow minor. The radius of a connected graph G is the minimum
over all vertices v of G of the maximum distance between v and another vertex.
For non-negative integer r a graph H is a shallow minor at depth r of a graph
G if there exists a subgraph X of G whose connected components have radius
at most r, such that H is a simple graph obtained from G by contracting each
component of X into a single vertex and then taking a subgraph.

Definition 2 (Nowhere dense classes). A class of graphs C is said to be
nowhere dense if there is a function h such that for every r ≥ 0 the graph Kh(r)

is not a shallow minor at depth r of any G ∈ C.

Many interesting families of graphs are nowhere dense, like graphs of bounded
expansion and graphs locally excluding a minor. We now consider a class of
graphs which was shown by Philip et al. [20] to strictly contain the degenerated
classes of graphs and we show that it also contains the nowhere dense classes.
We denote by Kt,t the complete bipartite graph with t vertices on each side of
the bipartition.

Definition 3 (Biclique-free classes). A class of graphs C is said to be t-
biclique-free, for some t > 0, if Kt,t is not a subgraph of any G ∈ C, and it is
said to be biclique-free if it is t-biclique-free for some t.

Fact 1 Any degenerated or nowhere dense class of graphs is biclique-free, but
not vice-versa.

Proof. For completeness we give a full proof. We first show that if a class of
graphs C is degenerated then it is biclique-free. Assume that every induced sub-
graph of any G ∈ C has a vertex of degree at most d. Then Kd+1,d+1 cannot be
a subgraph of any G ∈ C since its vertices would induce a subgraph where every
vertex has degree larger than d.
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We next show that if a class of graphs C is nowhere dense then it is biclique-
free. Assume a function h such that for every r ≥ 0 the graph Kh(r) is not
a shallow minor at depth r of any G ∈ C. Then Kh(1)−1,h(1)−1 cannot be a
subgraph of any G ∈ C since we in such a subgraph could contract a matching
of h(1) − 2 edges crossing the bipartition and get Kh(1) as a shallow minor at
depth 1.

Finally, we show a biclique-free class of graphs C that is neither degenerated
nor nowhere dense. For any value of k ≥ 2 there exists a k-regular graph of
girth 5, call it Rk, see e.g. [1]. Since K2,2 is a 4-cycle the class {Rk : k ≥ 2} is
biclique-free but not degenerated. Let Sk be the graph obtained by subdividing
once each edge of Kk. Since Sk contains Kk as a shallow minor at depth 1 the
class {Sk : k ≥ 2} is biclique-free but not nowhere dense. Let the class C contain,
for each value of k ≥ 2, the graph we get by taking one copy of Sk and one copy
of Rk and adding a single edge between some vertex of Sk and some vertex of
Rk to make it a connected graph. The class C is biclique-free but it is neither
degenerated nor nowhere dense.

A k-dominating set of a graph G = (V,E) is a set S ⊆ V with |S| = k and
N [S] = V . We will be considering parameterized versions of several domination-
type problems in biclique-free classes of graphs. In each case we ask for a domi-
nating set of size exactly k but note that an algorithm for this problem can also
be used to find the smallest k.

k-Dominating Set
Input: Integers k, t and a t-biclique-free graph G.
Parameter: k + t
Question: Is there a k-dominating set in G?

Connected k-Dominating Set
Input: Integers k, t and a t-biclique -free graph G.
Parameter: k + t
Question: Is there a k-dominating set S in G with G[S] connected?

Independent k-Dominating Set
Input: Integers k, t and a t-biclique -free graph G.
Parameter: k + t
Question: Is there a k-dominating set S in G with G[S] having no edges?

Weighted k-Dominating Set
Input: Integers k, t and a t-biclique -free graph G with positive vertex weights.
Parameter: k + t
Output: A k-dominating set S in G with minimum sum of weights, if it exists.

3 Simple algorithms for domination in biclique-free graph
classes

When studying the boundary betweenW -hardness and fixed parameter tractabil-
ity one tries to find the strongest restriction such that the problem remains
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hard and the weakest restriction such that the problem becomes fixed param-
eter tractable. In most cases the arguments on both sides become more and
more involved as one approaches the boundary. In this section we give fairly
simple algorithms for variants of the k-dominating set problem on the class of
biclique-free graphs.

3.1 Extremal combinatorics and high degree vertices

Before starting to describe the algorithm we need some tools from extremal
combinatorics. Bollobás book “Extremal Graph Theory”[4] discusses the upper
bound for the number of edges in colored graphs where either Kt or Ks,t is
forbidden as a subgraph for integers s, t. It is worth to point out that there is a
significant difference between forbidding a Kt and a Ks,t, as a graph without Kt

may contain Ω(n2) edges while a graph without Ks,t contains O(n2−1/t) edges.
Another difference that we have already mentioned is that the k-dominating set
problem is W [2]-hard on K3 free graphs [21] while it is fixed parameter tractable
on t-biclique-free graphs. The proposition below turns out to be very useful when
studying graphs without Ks,t as a subgraph.

Proposition 1 (Bollobás [4] VI.2). For integers s, t let G = (V1, V2, E) be a
bipartite graph not containing Ks,t as a subgraph where |V1| = n1 and |V2| = n2.

Then for 2 ≤ s ≤ n2 and 2 ≤ t ≤ n1 we have that |E| < (s − 1)
1
t (n2 − t +

1)n
1− 1

t
1 + (t− 1)n1.

A convenient consequence of Proposition 1 is that we can use it to say some-
thing about the number of high degree vertices in graphs that are t-biclique-free.
For ease of notation let f(k, t) = 2k(t+ 1 + (4k)t).

Lemma 1. Let k and t be positive integers and let G be a t-biclique-free graph
on n vertices where f(k, t) ≤ n. Then there are less than (4k)t vertices of G with
degree at least n−k

k .

Proof. On the contrary let us assume that there exists a vertex set X ⊂ V where
(4k)t = |X| and each vertex v ∈ X has degree at least n−k

k in G. Clearly such a

vertex set also exists if there are more then (4k)t vertices of degree at least n−k
k .

Let Y = V \X and define x = |X| and thus |Y | = n− x. There are now at least
x(n−k

k − x) edges in G between vertex sets X and Y .

As G is a t-biclique-free graph we know by Proposition 1 that the number of
edges between X and Y in G is less than (t−1)

1
t (n−x−t+1)x1−

1
t +(t−1)x which

is trivally at most 2(n − x)x1−
1
t + tx. As x = (4k)t we aim for a contradiction

by starting from the observation that,
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x(n−k
k − x) < 2(n− x)x1−

1
t + tx

(n−k
k − x) < 2(n− x)x−

1
t + t

n/k < 2nx−
1
t − 2x1−

1
t + t+ 1 + x

1 < 2k
x1/t − (2kx1−

1
t )/n+ k(t+ 1 + x)/n

1 < 2k
(4k)t/t

− (2k(4k)t(1−
1
t ))/n+ k(t+ 1 + (4k)t)/n

1 < 1
2 + k(t+ 1 + (4k)t)/n

1
2 < k(t+ 1 + (4k)t)/n

The assumption was that f(k, t) = 2k(t + 1 + (4k)t) ≤ n which means that
k(t+ 1 + (4k)t)/n ≤ 1

2 and we get the contradiction.

3.2 Enumeration of partial dominating sets

A simple way to decide if a graph has a dominating set of size k is to enumerate
all inclusion minimal dominating sets and check if one of them is of size at most
k. If the goal is an FPT algorithm this approach fails already for planar graphs
as they may contain O(nk) minimal dominating sets of size k + 1.1 Our way
around this obstruction is to build the dominating sets in stages by enumerating
only some subsets of each dominating set of size at most k in such a way that all
remaining vertices can be classified into a “small” number of equivalence classes.
This provides a framework where several variants of domination can be discussed
and compared.

Like before let f(k, t) = 2k(t+ 1 + (4k)t).

Lemma 2. For positive integers k and t let G be a t-biclique-free graph on n
vertices where f(k, t) ≤ n. Then there exists an algorithm that in time O((n +
m)k · (4k)tk) outputs a family of vertex subsets F such that |F| ≤ (4k)tk and for
any vertex set S where |S| ≤ k and V = N [S] there is X ∈ F with X ⊆ S such
that X dominates at least n− f(k, t) vertices of G, i.e. |N [X]| ≥ n− f(k, t).

Proof. For a graph G let us say that a family F of vertex subsets satisfies in-
variant D (for Domination) if for every S ⊆ V such that |S| ≤ k and N [S] = V
there exists X ∈ F such that X ⊆ S. If for a family F of vertex subsets every
X ∈ F satisfying |V \N [X]| > f(k, t) also satisfies |X| ≥ i then F is said to be of
branch depth i. For short we will denote a family F of vertex subsets satisfying
invariant D of branch depth i as FD,i. Note that to prove the lemma it suffices to
find in O((n+m)k ·(4k)tk) time a family FD,k since by the Domination invariant
there is for every S with |S| ≤ k and N [S] = V some X ∈ FD,k with X ⊆ S, and
since this is at branch depth k we know that if |X| < k then |N [X]| ≥ n−f(k, t)
and if |X| ≥ k then necessarily X = S so that |N [X]| = n.

1 Consider an independent set of size n that is partitioned into k colours of size n/k.
For each colour add one vertex that is adjacent to all vertices of this colour and add
one additional vertex u adjacent to all n vertices in the independent set. We obtain
(n/k)k minimal dominating sets by selecting u and exactly one vertex from each
colour class.
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We will prove the lemma by induction on i, where the induction hypothesis is
that a family FD,i of cardinality at most (4k)ti can be computed in O((n+m)i ·
(4k)ti) time. The base case is obtained by simply observing that {∅} satisfies
invariant D and is of branch depth 0, i.e. we can take FD,0 = {∅}.

Now for the induction step. Let us assume that a family FD,i−1 of cardinality
(4k)t(i−1) is provided and let us argue how FD,i can be obtained in O((n +
m) · (4k)t) time. Let X be one of the at most (4k)t(i−1) elements in FD,i−1 of
cardinality i− 1 where |V \N [X]| > f(k, t). Every dominating set S ⊃ X with
|S| ≤ k has to dominate all vertices of V \N [X]. Thus, at least one of the vertices

of S \X has to dominate at least |V \N [X]|
|S\X| of these vertices. Let Z be the set of

vertices in V \X that dominates at least |V \N [X]|
|S\X| of the vertices in V \N [X].

By Lemma 1 |Z| ≤ (4k)t and it is a trivial task to obtain Z in O(n + m) time
provided G and X.

Now update FD,i−1 by removing X and adding set X ∪{w} for every w ∈ Z.
As every dominating set S ⊃ X with |S| ≤ k contains at least one vertex of Z
the thus updated set FD,i−1 satisfies the invariant D. Repeat this procedure for
every set X ∈ FD,i−1 such that |X| = i − 1 and |V \N [X]| > f(k, t). As there
are at most (4k)t(i−1) such sets of size i− 1 and each of these are replaced by at
most (4k)t sets the resulting family of sets is of size at most (4k)t · |FD,i−1| and
is of branching depth i. This completes the proof.

Each element X ∈ FD,k will now be used to define an equivalence relation on
V \X based on the possible neighbors among the undominated vertices V \N [X].

Definition 4. For a graph G = (V,E) and a vertex set X ⊂ V let W = V \
N [X]. Let ≡X be the binary relation on V \ X with u ≡X v if N [u] ∩ W =
N [v] ∩W . This is an equivalence relation and we say that v ∈ V \X belongs to
the equivalence class E corresponding to N [v] ∩W .

Definition 5. For a graph G = (V,E) and a vertex set X ⊂ V a set A =
{E1, E2, . . . , Er} of equivalence classes of ≡X is called dominating if mapping
each element Ei ∈ A to an arbitrary vertex vi ∈ Ei (it does not matter which
since all vertices in Ei have the same closed neighborhoods in W ) we have V =
N [X] ∪

⋃r
i=1N [vi]. Let AX,r be defined as the set of all equivalence classes of

cardinality r that are dominating.

Lemma 3. For positive integers k and t let G be a t-biclique-free graph on n
vertices where f(k, t) ≤ n. Let X be an element of the family FD,k and let r ≤
k−|X|. Then |AX,r| ≤ 2r·f(k,t) and AX,r can be computed in O((n+m)·2r·f(k,t))
time.

Proof. Let W = V \ N [X]. Note |W | ≤ f(k, t) and hence there are at most
2f(k,t) subsets of W . For each vertex v ∈ V \X compute N [v]∩W and add v to
its equivalence class. Note there are at most 2f(k,t) equivalence classes. For each
of the (2f(k,t))r possible subsets A = {E1, E2, . . . , Er} of equivalence classes add
A to AX,r if A is dominating. The running time for this is O((n+m) · 2r·f(k,t)).
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3.3 Various domination problems on biclique-free graph classes

This subsection combines the previous combinatorial results into algorithms for
different domination problems.

Theorem 1. Given a t-biclique-free graph G = (V,E) the following problems,
as defined in Section 2, are fixed parameter tractable when parameterizing by
k + t:

1. k-Dominating set, O((n+m) · 2O(tk2(4k)t)) time,
2. Connected k-Dominating set,
3. Independent k-Dominating set,
4. Weighted k-Dominating set.

Proof. In all cases, if |V | < f(k, t) = 2k(t+ 1 + (4k)t) we can simply enumerate

all
(
f(k,t)

k

)
vertex subsets of size k and test in O((n+m) · k2) time if the specific

properties for the problem is satisfied. Otherwise we first enumerate the family
FD,k containing at most (4k)tk elements in O((n+m)k·(4k)tk) time using Lemma
2. For each element X ∈ FD,k we apply Lemma 3 and compute AX,r which is
of size at most 2r·f(k,t) in time O((n+m) · 2r·f(k,t)). The value r ≤ k − |X| for
which this is computed will depend on the problem to be solved in the following
way:

1. By definition, there is a k-Dominating set in G if and only if there is some
X ∈ FD,k for which AX,k−|X| 6= ∅. Applying Lemma 3 (4k)tk times give a

total running time of O((n+m) · 2O(tk2(4k)t)).
2. In Misra et al. [15] an FPT algorithm is given for the following Group Steiner

Tree problem:
- Given a graph H, subsets of vertices T1, T2, ..., Tl, and an integer p, with
parameter l ≤ p, does there exist a subgraph of H on p vertices that is a
tree T and includes at least one vertex from each Ti, 1 ≤ i ≤ l?
We claim that our input graph G has a connected k-dominating set if and
only if there exists some X ∈ FD,k and some r ∈ {0, 1, ..., k − |X|} and
some A ∈ AX,r such that the following Group Steiner Tree problem has a
Yes-answer:
- Let X = {v1, v2, ..., v|X|} and A = {E1, E2, . . . , Er}. Set H = G and set the
vertices of the equivalence class Ei to form a subset Ti, for each 1 ≤ i ≤ r and
additionally Ti = {vi−r} for r+1 ≤ i ≤ r+|X|. We thus have l = r+|X| ≤ k
and set p = k.
Let us argue for the claim. For one direction assume that S is a connected
k-dominating set of G. We then know there exists X ⊆ S with X ∈ FD,k.
Let A = {E1, E2, . . . , Er} be the equivalence classes of ≡X containing at least
one vertex of S. Note that 0 ≤ r ≤ k−|X| and A ∈ AX,r. The Group Steiner
Tree problem we formed from this X and A has a Yes-answer, for example
by taking any subgraph of G[S] inducing a tree. For the other direction, if
the Group Steiner Tree problem formed by some X and A has a Yes-answer
by some tree T then the set of vertices of this tree T will necessarily be a
connected k-dominating set of G.
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The total running time will be FPT in k+ t as the possible choices of X and
A are a function of k + t only and the Group Steiner Tree problem is FPT.

3. For every X ∈ FD,k such that G[X] is an independent set, check by brute
force in O((n+m) · 2f(k,t)) if there exits an independent dominating set of
size k − |X| in the graph G[V \N [X]].

4. For each vertex v ∈ V let w(v) be the weight of the vertex. The weight w(A)
of a set A = {E1, E2, . . . , Er} of equivalence classes is defined as

∑r
i=1 w(vi)

where class Ei is mapped to the minimum weight vertex vi ∈ Ei. The k-
dominating set of minimum weight is then obtained by minimizing over
all X ∈ FD,k such that AX,k−|X| 6= ∅ the value of minA∈AX,k−|X| w(A) +∑

v∈X w(v).

4 Conclusion

In this paper we have pushed forward the FPT boundary for the k-dominating
set problem, and some of its variants, to the case of t-biclique-free graphs pa-
rameterized by k + t. This generalizes all FPT algorithms for k-dominating set
on special graph classes we have found in the litterature, in particular the al-
gorithms for the uncomparable classes d-degenerate and nowhere dense. By the
result of Dom et al. [7] this problem does not have a polynomial kernel unless
the polynomial hierarchy collapses to the third level.

The basic idea for our algorithm is to branch on vertices of sufficiently high
degree until the remaining vertices can be partitioned into a small number of
equivalence classes. Unsurprisingly, the applied techniques have some similari-
ties with the algorithms for the d-degenerate classes and nowhere dense classes.
Usually the algorithms become more complicated as they apply to more general
classes of graphs. In this paper our generalized algorithm is still fairly simple with
a running time that can trivially be summed up to be O((n+m) · 2O(tk2(4k)t)).

The described algorithm resolves the k-dominating set problem on all t-
biclique-free graphs. As the algorithm only uses extremal combinatorial proper-
ties of the graph class there is no need to verify that the input graph indeed is
t-biclique-free. Consider the following somewhat strange parameterized problem:

k-Dominating Set or k-Biclique
Input: Graph G and integer k.
Parameter: k
Output: Either ’G is not k-biclique-free’ or ’G has a k-dominating set’ or ’G
does not have a k-dominating set’

By using our algorithm for k-dominating set on an arbitrary graph G, with
k = t, we actually get an FPT algorithm for k-Dominating Set or k-Biclique,
since we either conclude by Lemma 1 that G is not k-biclique-free or we have
few high degree vertices and are able to decide if the graph has a dominating set
of size k. This gives us a special kind of result. The k-dominating set problem
is W [2]-hard on general graphs and Lin [14] shows that deciding if a graph G is
k-biclique-free is W [1]-hard on general graphs. Nevertheless, on general graphs
one of the two problems can always be resolved in FPT time.
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