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Abstract. A class of graphs is said to be biclique-free if there is an in-
teger ¢ such that no graph in the class contains K ; as a subgraph. Large
families of graph classes, such as any nowhere dense class of graphs or
d-degenerate graphs, are biclique-free. We show that various domina-
tion problems are fixed-parameter tractable on biclique-free classes of
graphs, when parameterizing by both solution size and ¢. In particular,
the problems k-DOMINATING SET, CONNECTED k-DOMINATING SET, IN-
DEPENDENT k-DOMINATING SET and MINIMUM WEIGHT k-DOMINATING
SET are shown to be FPT, when parameterized by ¢t + k, on graphs not
containing K. as a subgraph. With the exception of CONNECTED k-
DoMINATING SET all described algorithms are trivially linear in the size
of the input graph.

1 Introduction

The k-dominating set problem is one of the most well-studied NP-complete prob-
lems in algorithmic graph theory. Given a graph G and an integer k, we ask if
G contains a set S of at most k vertices such that every vertex of G is either in
S or adjacent to a vertex of S. To cope with the intractability of this problem
it has been studied both in terms of approximability [15] (relaxing the optimal-
ity) and fixed-parameter tractability (relaxing the runtime). In this paper we
consider also weighted k-domination and the variants asking for a connected or
independent k-dominating set.

The k-dominating set problem is notorious in the theory of fixed-parameter
tractability (see [10,22,12] for an introduction to parameterized complexity).
It was the first problem to be shown W/[2]-complete [10], and it is hence un-
likely to be FPT, i.e. unlikely to have an algorithm with runtime f(k)n¢ for f
a computable function, ¢ a constant and n the number of vertices of the input
graph. However, by restricting the class of input graphs, say to planar graphs,
we can obtain FPT algorithms [2], even if the problem remains NP-complete
on planar graphs [13]. In the race to find the boundary between FPT and W-
hardness one typically wants the weakest possible restriction when proving FPT
and the strongest possible restriction when proving W-hardness. In this paper,
we push the tractability frontier forward by considering the above variants of
k-dominating set on t-biclique free graphs and showing that they are FPT when
parameterized by k 4+ t. The t-biclique free graphs are those that do not contain



K, as a subgraph, and to the best of our knowledge, they form the largest class
of graphs for which FPT algorithms are known for k-dominating set. Our algo-
rithms are simple and rely on results from extremal graph theory that bound
the number of edges in a t-biclique free graph, see the Bollobds book [4].

The parameterized complexity of the dominating set problem has been heav-
ily studied with the tractability frontier steadily pushed forward by enlarging
the class of graphs under consideration. One such line of improvements for k-
dominating set consists of the series of FPT algorithms starting with planar
graphs by Alber et al. [2], followed by bounded genus graphs by Ellis et al. [11],
H-minor free graphs by Demaine et al. [8], bounded expansion graphs by Nesetril
and Ossona de Mendez [19], and culminating in the FPT algorithm for nowhere
dense classes of graphs by Dawar and Kreutzer [7]. See Figure 1. Alon and Gut-
ner [3] have shown that k-dominating set on d-degenerate graphs parameterized
by k + d is FPT. Nowhere dense classes and d-degenerate graph classes are in-
comparable and Dawar and Kreutzer [7] mention that: ’it would be interesting
to compare nowhere dense classes of graphs to graph classes of bounded degen-
eracy’. In this paper we base such a comparison on the fact that any nowhere
dense class of graphs or d-degenerate class of graphs is a t-biclique-free class of
graphs, for some ¢. See Section 2. Let us remark that also for a nowhere dense
class C of graphs there is a parameter analogous to the d in d-degenerate graphs
and the ¢ in t-biclique-free graphs, with Dawar and Kreutzer [7] mentioning that:
’...the exact parameter dependence of the algorithms depends on the function h,
which is determined by the class of structures C’. A relation between the different
graph class properties can be seen in Figure 1.
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Fig. 1. Inclusion relations between some of the mentioned graph class properties. We
refer to Nesetril and Ossona de Mendez [20] for a more refined view.




Raman and Saurabh [24] have shown that k-dominating set is W[2]-hard
on Ks-free graphs and FPT on graphs not containing K, as a subgraph (i.e.
2-biclique-free graphs). Philip et al. [23] have shown that k-dominating set on
graphs not containing K ; as a subgraph (which they call K; ;-free) has a poly-
nomial kernel, which is stronger than simply saying that it is FPT. However,
their algorithm is parameterized by k only and considers 7 + j to be a constant.
They mention explicitly that: ’Another challenge is to...get a running time of
the form O(n°) for K; j-free graphs where c is independent of ¢ and j.” In this
paper we do not directly meet this challenge but instead do something related.
By showing that k-dominating set on t-biclique free graphs is FPT when param-
eterized by k + t, we generalize all FPT results for k-domination on restricted
graph classes that we have found in the literature. Note that we could not expect
to meet the challenge of a polynomial kernel when parameterizing by k + ¢, as
Dom et al. [9] have shown that the k-Dominating Set problem on d-degenerate
graphs (a subclass of (d + 1)-biclique-free graphs) does not have a kernel of size
polynomial in both d and k unless the polynomial hierarchy collapses to the
third level.

Our result extends to showing that connected k-domination and independent
k-domination on t-biclique-free graphs are both FPT when parameterized by
k+t. Note that Cygan et al. [6] have shown that connected k-domination has no
polynomial kernel on graphs of degeneracy 2 (a subclass of 3-biclique-free graphs)
unless the polynomial hierarchy collapses to the third level. For connected k-
domination we use a subroutine developed by Misra et al. [18] for the Group
Steiner Tree problem. The FPT borderline for connected k-domination and in-
dependent k-domination prior to our work resembled the one for k-domination,
with Dawar and Kreutzer 7] showing that both problems are FPT on nowhere
dense classes of graphs and Golovach and Villanger [14] showing that both prob-
lems are FPT on d-degenerate graphs when parameterized by k + d. Our algo-
rithm generalizes these results.

Our result extends also to weighted k-domination. Alon and Gutner [3] show
that weighted k-domination on d-degenerate graphs parameterized by d + k is
FPT but fixed-parameter tractability was not known for nowhere dense classes
of graphs prior to our result for ¢-biclique free graphs.

A famous open problem in parameterized complexity is the question if there
is an FPT algorithm deciding if a graph G is k-biclique-free and in the Conclusion
section we briefly mention this open problem in light of our algorithms.

2 Graph classes and problems

We use standard graph theory terminology. For a graph G = (V, E) and S C V
we denote by N[S] the vertices that are either in S or adjacent to a vertex of
S, and we denote by G[S] the subgraph of G induced by S. We denote always
|V| =n and |E| = m. The distance between two vertices is the number of edges
in a shortest path linking them. Let us consider some classes of graphs.



Definition 1 (Degenerate classes). A class of graphs C is said to be degen-
erate if there is an integer d such that every induced subgraph of any G € C has
a vertex of degree at most d.

Many interesting families of graphs are degenerate. For example, graphs em-
beddable on some fixed surface, degree-bounded graphs and non-trivial minor-
closed families of graphs. Another broad property of graph classes, recently intro-
duced by Nesetril and Ossona de Mendez [21], is the property of being nowhere
dense. There are several equivalent definitions, we use the following based on the
concept of a shallow minor. The radius of a connected graph G is the minimum
over all vertices v of G of the maximum distance between v and another vertex.
For non-negative integer r a graph H is a shallow minor at depth 7 of a graph
G if there exists a subgraph X of G whose connected components have radius
at most r, such that H is a simple graph obtained from G by contracting each
component of X into a single vertex and then taking a subgraph.

Definition 2 (Nowhere dense classes). A class of graphs C is said to be
nowhere dense if there is a function [ such that for every r > 0 the graph Ky,
s mot a shallow minor at depth r of any G € C.

Many interesting families of graphs are nowhere dense, like graphs of bounded
expansion and graphs locally excluding a minor. We now consider a class of
graphs which was shown by Philip et al. [23] to strictly contain the degenerate
classes of graphs and show that it also contains the nowhere dense classes. We
denote by K. the complete bipartite graph with ¢ vertices on each side of the
bipartition.

Definition 3 (Biclique-free classes). A class of graphs C is said to be t-
biclique-free, for some t > 0, if K.+ is not a subgraph of any G € C, and it is
said to be biclique-free if it is t-biclique-free for some t.

Fact 1 Any degenerate or nowhere dense class of graphs is biclique-free, but not
vice-versa.

Proof. For completeness we give a full proof. We first show that if a class of
graphs C is degenerate then it is biclique-free. Assume that every induced sub-
graph of any G € C has a vertex of degree at most d. Then Kg41 441 cannot be
a subgraph of any G € C since its vertices would induce a subgraph where every
vertex has degree larger than d.

We next show that if a class of graphs C is nowhere dense then it is biclique-
free. Assume a function f such that for every r > 0 the graph Ky is not
a shallow minor at depth r of any G € C. Then Kj1)_1 ¢1)—1 cannot be a
subgraph of any G € C since we in such a subgraph could contract a matching
of f(1) — 2 edges crossing the bipartition and get Ky(;) as a shallow minor at
depth 1.

Finally, we show a biclique-free class of graphs C that is neither degenerate
nor nowhere dense. For any value of k > 2 there exists a k-regular graph of



girth 5, call it Ry, see e.g. [1]. Since K32 is a 4-cycle the class {Ry : k > 2} is
biclique-free but not degenerate. Let Sj; be the graph obtained by subdividing
once each edge of K. Since Sy contains K} as a shallow minor at depth 1 the
class {Si : k > 2} is biclique-free but not nowhere dense. Let the class C contain,
for each value of k > 2, the graph we get by taking one copy of S; and one copy
of Ry and adding a single edge between some vertex of S; and some vertex of
Ry to make it a connected graph. The class C is biclique-free but it is neither
degenerate nor nowhere dense.

A k-dominating set of a graph G = (V, E) is a set S C V with |S| = k and
N[S] = V. We will be considering parameterized versions of several domination-
type problems in biclique-free classes of graphs. In each case we ask for a domi-
nating set of size exactly k& but note that an algorithm for this problem can also
be used to find the smallest k.

k-DOMINATING SET

Input: Integers k, ¢ and a t-biclique-free graph G.
Parameter: k + ¢

Question: Is there a k-dominating set in G7

CONNECTED k-DOMINATING SET

Input: Integers k,t and a t-biclique -free graph G.

Parameter: k + ¢

Question: Is there a k-dominating set S in G with G[S] connected?

INDEPENDENT k-DOMINATING SET

Input: Integers k,t and a t-biclique -free graph G.

Parameter: k + ¢

Question: Is there a k-dominating set S in G with G[S] having no edges?

WEIGHTED k-DOMINATING SET

Input: Integers k, ¢ and a t-biclique -free graph GG with positive vertex weights.
Parameter: k + ¢

Output: A k-dominating set S in G with minimum sum of weights, if it exists.

3 Simple algorithms for domination in biclique-free graph
classes

When studying the boundary between W-hardness and fixed parameter tractabil-
ity one tries to find the strongest restriction such that the problem remains
hard and the weakest restriction such that the problem becomes fixed param-
eter tractable. In most cases the arguments on both sides become more and
more involved as one approaches the boundary. In this section we give fairly
simple algorithms for variants of the k-dominating set problem on the class of
biclique-free graphs.



3.1 Extremal combinatorics and high degree vertices

Before starting to describe the algorithm we need some tools from extremal
combinatorics.

Bollobds in his book “Extremal Graph Theory”[4] discusses the so called
Zarankiewicz Problem of giving an upper bound for the number of edges in
graphs where K ; is forbidden as a subgraph for integers s,t. It is worthwhile
to point out that there is a significant difference between forbidding a K; and a
K1, as a graph without K; may contain £2(n?) edges while a graph without K ;
contains O(n?~1/*) edges. Another difference that we have already mentioned is
that the k-dominating set problem is W[2]-hard on K3 free graphs [24] while
it is fixed parameter tractable on t-biclique-free graphs. The proposition below
turns out to be very useful when studying graphs without K, ; as a subgraph.

Proposition 1 (Bollobds [4] VI.2). For integers s,t let G = (V1,Va, E) be a
bipartite graph not containing K, as a subgraph where |V1| = nq and |Va| = na.
1

Then for 2 < s < ng and 2 < t < ny we have that |E| < (s — 1)%(ngy —t +
1

_1
1)n1 t + (t — 1)’[7,1

A convenient consequence of Proposition 1 is that we can use it to say some-
thing about the number of high degree vertices in graphs that are t-biclique-free.
For ease of notation let f(k,t) = 2k(t + 1 + (4k)?).

Lemma 1. Let k and t be positive integers and let G be a t-biclique-free graph
on n vertices where f(k,t) < n. Then there are less than (4k) vertices of G with
degree at least %

Proof. On the contrary let us assume that there exists a vertex set X C V where
(4k)* = | X| and each vertex v € X has degree at least ”T*k in G. Clearly such a
vertex set also exists if there are more then (4k)? vertices of degree at least "T*k
Let Y = V' \ X and define x = | X| and thus |Y'| = n — z. There are now at least
z(2E — 2) edges in G between vertex sets X and Y.

As G is a t-biclique-free graph we know by Proposition 1 that the number of
edges between X and Y in G is less than (t—1)% (n—z—t+1)x' 7 4(t—1)z which
is trivally at most 2(n — z)z'~% + tz. As # = (4k) we aim for a contradiction
by starting from the observation that,

x("T_k — 1) <2(n—x)z' "t 4tz

(k- ) <2n—z)a T+t

n/k <2t =22t 4 t+ 14w

1 < ﬁ—’ft—(%xl_%)/ntk(t—kl—&-x)/n

1 < 24]3;2” — (2k(4k)* =) /n + k(t + 1+ (4k)") /n
1 <5+ k(t+1+(4k)")/n

z < k(t+1+ (4k)")/n

The assumption was that f(k,t) = 2k(t + 1 + (4k)") < n which means that
k(t+ 1+ (4k)")/n < % and we get the contradiction.



3.2 Enumeration of partial dominating sets

A simple way to decide if a graph has a dominating set of size k is to enumerate
all inclusion minimal dominating sets and check if one of them is of size at most
k. If the goal is an FPT algorithm this approach fails already for planar graphs
as they may contain O(n*) minimal dominating sets of size k + 1.} Our way
around this obstruction is to build the dominating sets in stages by enumerating
only some subsets of each dominating set of size at most k in such a way that all
remaining vertices can be classified into a “small” number of equivalence classes.
This provides a framework where several variants of domination can be discussed
and compared.
Like before let f(k,t) = 2k(t + 1+ (4k)?).

Lemma 2. For positive integers k and t let G be a t-biclique-free graph on n
vertices where f(k,t) < n. Then there exists an algorithm that in time O((n +
m)k - (4k)*) outputs a family of vertex subsets F such that |F| < (4k)** and for
any vertex set S where |S| < k and V = NI[S] there is X € F with X C S such
that X dominates at least n — f(k,t) vertices of G, i.e. |N[X]| > n — f(k,t).

Proof. For a graph G let us say that a family F of vertex subsets satisfies in-
variant D (for Domination) if for every S C V such that |S| < k and N[S] =V
there exists X € F such that X C S. A family F of vertex subsets is defined to
be of branch depth 7 if it holds for every X € F that if [V \ N[X]| > f(k,t) then
| X| > i. For short we will denote a family F of vertex subsets satisfying invariant
D of branch depth 7 as Fp ;. Note that to prove the lemma it suffices to find in
O((n+m)k - (4k)**) time a family Fp . since by the Domination invariant there
is for every S with |S| < k and N[S] =V some X € Fp, with X C S, and since
this is at branch depth k we know that if | X| < k then |[N[X]| > n— f(k,t) and
if | X| > k then necessarily X = S so that |[N[X]| = n.

We will prove the lemma by induction on ¢, where the induction hypothesis is
that a family Fp ; of cardinality at most (4k)* can be computed in O((n+m)i-
(4k)') time. The base case is obtained by simply observing that {()} satisfies
invariant D and is of branch depth 0, i.e. we can take Fp o = {0}.

Now for the induction step. Let us assume that a family Fp ;—; of cardinality
(4k)*0=1) is provided and let us argue how Fp; can be obtained in O((n +
m) - (4k)?) time. Let X be one of the at most (4k)*~1) elements in Fp; 1 of
cardinality ¢ — 1 where |V \ N[X]| > f(k,t). Every dominating set S D X with
|S|] < k has to dominate all vertices of V'\ N[X]. Thus, at least one of the vertices

of '\ X has to dominate at least % of these vertices. Let Z be the set of

vertices in V' \ X that dominates at least % of the vertices in V' \ N[X].

! Consider an independent set of size n that is partitioned into k colours of size n/k.
For each colour add one vertex that is adjacent to all vertices of this colour and add
one additional vertex u adjacent to all n vertices in the independent set. We obtain
(n/k:)’C minimal dominating sets by selecting u and exactly one vertex from each
colour class.



By Lemma 1 |Z| < (4k)" and it is a trivial task to obtain Z in O(n + m) time
provided G and X.

Now update Fp ;—1 by removing X and adding set X U{w} for every w € Z.
As every dominating set S D X with |S| < k contains at least one vertex of Z
the thus updated set Fp ;_; satisfies the invariant D. Repeat this procedure for
every set X € Fp;_1 such that | X| =14¢—1 and |V \ N[X]| > f(k,t). As there
are at most (4k)*(*~1) such sets of size i — 1 and each of these are replaced by at
most (4k)* sets the resulting family of sets is of size at most (4k)" - |Fp ;1| and
is of branching depth 7. This completes the proof.

Each element X € Fp j will now be used to define an equivalence relation on
V\ X based on the possible neighbors among the undominated vertices V\ N[X].

Definition 4. For a graph G = (V, E) and a vertex set X C V let W =V \
N[X]. Let =x be the binary relation on V \ X with u =x v if NN W =
N[v]NW. This is an equivalence relation and we say that v € V' \ X belongs to
the equivalence class € corresponding to N[v] N W.

Definition 5. For a graph G = (V, E) and a vertex set X C V a set A =
{€1,&,...,&} of equivalence classes of =x is called dominating if mapping
each element & € A to an arbitrary vertex v; € &; (it does not matter which
since all vertices in & have the same closed neighborhoods in W) we have V =
N[X]UU_, N[v]. Let Ax,, be defined as the set of all equivalence classes of
cardinality v that are dominating.

Lemma 3. For positive integers k and t let G be a t-biclique-free graph on n
vertices where f(k,t) < n. Let X be an element of the family Fpj and let r <
k—|X|. Then |Ax | <2"/® Y and Ax, can be computed in O((n+m)-2rfk:t)
time.

Proof. Let W = V \ N[X]. Note |W| < f(k,t) and hence there are at most
2/(k:t) subsets of W. For each vertex v € V'\ X compute N[v] N and add v to
its equivalence class. Note there are at most 2/(%*) equivalence classes. For each
of the (2/(®1))" possible subsets A = {&;,&,...,&.} of equivalence classes add
Ato Ax,, if A is dominating. The running time for this is O((n +m) - 27 (*:1)).

3.3 Various domination problems on biclique-free graph classes

This subsection combines the previous combinatorial results into algorithms for
different domination problems.

Theorem 1. Given a t-biclique-free graph G = (V, E) the following problems,
as defined in Section 2, are fixed parameter tractable when parameterizing by
k+t:

2 .
1. k-DOMINATING SET, O((n + m) - 200K (46 time,
2. CONNECTED k-DOMINATING SET,
3. INDEPENDENT k-DOMINATING SET,



4. WEIGHTED k-DOMINATING SET.

Proof. In all cases, if |V| < f(k,t) = 2k(t + 1 + (4k)") we can simply enumerate
all (/59) vertex subsets of size k and test in O((n+m)-k?) time if the specific
properties for the problem is satisfied. Otherwise we first enumerate the family
Fp.j containing at most (4k)** elements in O((n+m)k-(4k)**) time using Lemma
2. For each element X € Fp ; we apply Lemma 3 and compute Ax , which is
of size at most 27 /(%1 in time O((n + m) - 27F 1), The value r < k — | X| for
which this is computed will depend on the problem to be solved in the following
way:

1. By definition, there is a k-DOMINATING SET in G if and only if there is some
X € Fp for which Ax j_ x| # 0. Applying Lemma 3 (4k)** times give a
total running time of O((n + m) - 200+*(4R))),

2. In Misra et al. [18] an FPT algorithm is given for the following Group Steiner
Tree problem:

- Given a graph H, subsets of vertices 11,75, ..., T}, and an integer p, with
parameter [ < p, does there exist a subgraph of H on p vertices that is a
tree T' and includes at least one vertex from each T;,1 < i <7

We claim that our input graph G has a connected k-dominating set if and
only if there exists some X € Fpj and some r € {0,1,...,k — |X|} and
some A € Ay, such that the following Group Steiner Tree problem has a
Yes-answer:

- Let X = {v1,v2,...,v/x|} and A = {&,&,...,&}. Set H = G and set the
vertices of the equivalence class &; to form a subset T;, for each 1 < i < r
and additionally T; = {v;} for r+ 1 < i < r+4|X|. We thus have | = r + | X|
and set p = k.

Let us argue for the claim. For one direction assume that S is a connected
k-dominating set of G. We then know there exists X C S with X € Fp .
Let A = {&1,&s,...,&-} be the equivalence classes of =x containing at least
one vertex of S. Note that 0 < r < k—|X|and A € Ax ,. The Group Steiner
Tree problem we formed from this X and A has a Yes-answer, for example
by taking any subgraph of G[S] inducing a tree. For the other direction, if
the Group Steiner Tree problem formed by some X and A has a Yes-answer
by some tree T then the set of vertices of this tree T will necessarily be a
connected k-dominating set of G.

The total running time will be FPT in k +t as the possible choices of X and
A are a function of k 4 ¢ only and the Group Steiner Tree problem is FPT.

3. For every X € Fp  such that G[X] is an independent set, check by brute
force in O((n 4 m) - 2f(®:1) if there exists an independent dominating set of
size k — | X| in the graph G[V \ N[X]]. The runtime will be linear FPT.

4. For each vertex v € V' let w(v) be the weight of the vertex. The weight w(A)
of aset A={&1,&,...,&} of equivalence classes is defined as >_._; w(v;)
where class &; is mapped to the minimum weight vertex v; € &;. The k-
dominating set of minimum weight is then obtained by minimizing over
all X € Fp such that Ay ,_ x| # 0 the value of minacAy |y, w(A) +
> wex w(v). The runtime will be linear FPT.



4 Conclusion

In this paper we have pushed forward the FPT boundary for the k-dominating
set problem, and some of its variants, to the case of t-biclique-free graphs pa-
rameterized by k 4+ t. This generalizes all FPT algorithms for k-dominating set
on special graph classes we have found in the literature, in particular the algo-
rithms for the uncomparable classes d-degenerate and nowhere dense. By the
result of Dom et al. [9] this problem does not have a polynomial kernel unless
the polynomial hierarchy collapses to the third level.

The basic idea for our algorithm is to branch on vertices of sufficiently high
degree until the remaining vertices can be partitioned into a small number of
equivalence classes. Unsurprisingly, the applied techniques have some similari-
ties with the algorithms for the d-degenerate classes and nowhere dense classes.
Usually the algorithms become more complicated as they apply to more general
classes of graphs. In this paper our generalized algorithm is still fairly simple with
a running time that can trivially be summed up to be O((n + m) - 20K #0)),

The described algorithm resolves the k-dominating set problem on all ¢-
biclique-free graphs. As the algorithm only uses extremal combinatorial proper-
ties of the graph class there is no need to verify that the input graph indeed is
t-biclique-free. Consider the following somewhat strange parameterized problem:

k-DOMINATING SET OR k-BICLIQUE

Input: Graph G and integer k.

Parameter: k

Output: Either ’G is not k-biclique-free’ or ’G has a k-dominating set’ or 'G
does not have a k-dominating set’

By using our algorithm for k-dominating set on an arbitrary graph G, with
k = t, we actually get an FPT algorithm for k-DOMINATING SET OR k-BICLIQUE,
since we either conclude by Lemma 1 that G is not k-biclique-free or we have
few high degree vertices and are able to decide if the graph has a dominating
set of size k. This gives us a somewhat strange result, resembling the situation
for the Ramsey problem asking if a graph has either a clique of size k or an
independent set of size k [17, 16]. The k-dominating set problem is W[2]-hard on
general graphs and Bulatov and Marx [5] gives reason to believe that deciding
if a graph G is k-biclique-free is not FPT on general graphs. Nevertheless, one
of the two problems can always be resolved in FPT time.
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