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Abstract.

In this paper, we consider a large class of vertex partitioning problems and apply to those the theory of algorithm
design for problems restricted to partial k-trees. We carefully describe the details of algorithms and analyze their
complexity in an attempt to make the algorithms feasible as solutions for practical applications.

‘We give a precise characterization of vertex partitioning problems, which include domination, coloring and packing
problems and their variants. Several new graph parameters are introduced as generalizations of classical parameters.
This characterization provides a basis for a taxonomy of a large class of problems, facilitating their common algorithmic
treatment and allowing their uniform complexity classification.

We present a design methodology of practical solution algorithms for generally A/ P-hard problems when restricted
to partial k-trees (graphs with treewidth bounded by k). This “practicality” accounts for dependency on the parameter
k of the computational complexity of the resulting algorithms.

By adapting the algorithm design methodology on partial k-trees to vertex partitioning problems, we obtain the
first algorithms for these problems with reasonable time complexity as a function of treewidth. As an application
of the methodology, we give the first polynomial-time algorithm on partial k-trees for computation of the Grundy
Number.

1. Introduction. Many inherently difficult (NP-hard) optimization problems on graphs be-
come tractable when restricted to trees, or to graphs with some kind of tree-like structure. A large
class of such graphs is the class of partial k-trees (equivalently, graphs with treewidth bounded by
k). Allthough tractability requires fixed k, this class contains all graphs with n vertices when the
parameter k is allowed to vary through positive integers up to n — 1. Many natural classes of graphs
have bounded treewidth [21]. There are many approaches to finding a template for the design of
algorithms on partial k-trees with time complexity polynomial, or even linear, in the number of
vertices [23, 1]. Proponents of these approaches attempt to encompass as wide a class of problems
as possible, often at the expense of simplicity of the resulting algorithms and also at the expense of
increased algorithm time complexity as a function of k. In contrast, results giving explicit practical
algorithms in this setting are usually limited to a few selected problems on either (full) k-trees [9],
partial 1-trees or partial 2-trees [25]. We intend to cover the middle ground between these two
extremes, by investigating the time complexity as a function of both input size and the treewidth k.

We assume that the input graph is given with a width k tree-decomposition, computable in
linear time for fixed k [6]. Our algorithms employ a binary parse tree of the input partial k-tree,
easily derived from a tree-decomposition of the graph. This parse tree is based on very simple
graph operations that mimic the construction process of an embedding k-tree. We propose a design
methodology that for many N'P-hard problems results in algorithms with time complexity linear in
the size of the input graph and only exponential in its treewidth, lowering the exponent of previously
known solutions. We give a careful description of the algorithm design details with the aim of easing
the task of implementation for practical applications. We include a brief report on an ongoing
implementation project.

A large class of inherently difficult discrete optimization problems can be expressed in the vertex
partitioning formalism. This formalism involves neighborhood constraints on vertices in different
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classes (blocks) of a partition and provides a basis for a taxonomy of vertex partitioning problems.
We define this formalism and then use it to provide a uniform algorithmic treatment on partial
k-trees of vertex partitioning problems. As an example of application of our paradigm, we give the
first polynomial-time algorithms on partial k-trees for the Grundy Number. The efficiency of our
algorithm follows from (i) the description of the Grundy Number problem as a vertex partitioning
problem, (ii) a careful investigation of time complexity of vertex partitioning problems on partial
k-trees, and (iii) a new logarithmic bound on the Grundy Number of a partial k-tree.

We present these ideas as follows: in section 3, we describe the binary parse tree of partial k-
trees and the general algorithm design method, in section 4 we define vertex partitioning problems,
in section 5 we apply the partial k-tree algorithm design method to vertex partitioning problems,
and in section 6 we give the efficient solution algorithm for the Grundy Number on partial k-trees.
We conclude the paper with a brief report on experiences with implementations.

2. Definitions. We denote the non-negative integers by N and the positive integers by P. The
graph G = (V(G), E(Q)) has vertex set V(G) and edge set E(G). We consider simple, undirected
graphs, unless otherwise specified. For S C V(G) let G[S] = (S, {(u,v) : u,v € S A (u,v) € E(G)})
denote the subgraph induced in G by S. For S C V(G) let G\ 'S = G[V(G) \ S]. A component in a
graph is a maximal connected subgraph. A separator of a graph G is a subset of vertices S C V(G)
such that G\ S has more components than G. In a complete graph there is an edge for every
two-element subset of vertices.

A graph G is a k-tree if it is a complete graph on k vertices (a k-clique) or if it has a vertex
v € V(G) whose neighbors induce a k-clique of size k such that G \ {v} is again a k-tree. Such
a reduction process of G (or the corresponding construction process) determines its parse tree. A
partial k-tree H is a subgraph of a k-tree and a construction process of this embedding k-tree defines
a parse tree of H. A tree-decomposition of a graph G is a tree T whose nodes are subsets of vertices
of G such that for every edge (u,v) of G, there is a node containing both u and v, and for every
vertex u of G, the set of nodes of T' that contain u induces a (non-empty, connected) subtree of 7.
The nodes of T" are often called bags. The width of a tree-decomposition 7" is defined as one less
than the maximum size of a bag. The treewidth of G is the minimum width of a tree-decomposition
of G. It is fairly easy to see that a parse tree of a partial k-tree G defines (through maximal cliques
of G) a width k tree-decomposition of G. Similarly, based on such a decomposition one can find
a k-tree embedding G. For any partial k-tree G with at least k vertices there is a k-tree H with
the same number of vertices for which G is a subgraph. The fact that we can assume vertex sets
equality follows from the treewidth formulation.

A linear ordering ™ = v, ..., up, of the vertices of a graph is a perfect elimination ordering (peo)
if for each ¢, 1 < ¢ < n, the higher-numbered neighbors of v; induce a clique. A k-tree H has a peo
T = V1, ..., U, such that for each i, 1 < ¢ < n —k, the vertex set B; = {v;} U (Ng(v;) N {Vit1, - Un})
induces a k + 1-clique in H. The set B; \ {v;} is a minimal separator of the graph H. See Figure 1
for an example of a partial 3-tree embedded in a 3-tree. In analogy with the role (k + 1)-cliques of
H play in a width k tree-decomposition of H we call B;,1 <i <mn —k, a (k + 1)-bag in G under 7
and each of its k-vertex subsets is similarly called a k-bag of G under 7. The remaining definitions
in this and the following sections are all for given graphs G, H, a peo m = vy, ..., v, and bags B; as
above. We first define a peo-tree P of G: The peo-tree P of G based on 7 is a rooted tree with
nodes V(P) = {Bu, ..., Bn—t}. The node B,,_; is the root of P; a node B;, 1 <i < n —k, has as its
parent in P the node Bj, i < j < n — k, such that j is the minimum bag index with |B; N B;| = k
(note that this intersection does not contain v;). The peo-tree P is a clique tree of H and also a
width %k tree-decomposition of both G and H (since B; N By is a separator of G). See Figure 1 for
an example of a peo-tree.
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Fi1c. 1. a) A partial 3-tree G, embedded in a 3-tree H, dashed edges in E(H) — E(G). b) Its peo-tree P wrt.
peo=1,2,3,4,5,6,7,8,9,10.

3. Practical Algorithms on Partial k-Trees. Many N P-hard problems on graphs, when
restricted to partial k-trees, for fixed values of k, have solution algorithms that execute in polynomial,
or even linear time as a function of input graph size. In this section, we improve on the practicality of
such algorithms, both in terms of their complexity and their derivation, by accounting for dependency
on the treewidth k. Since each such algorithm is designed for fixed k, we consider a class of algorithms
parameterized by k. We first define a binary parse tree of partial k-trees that is based on very simple
graph operations. Then, we discuss the derivation and complexity analysis of dynamic programming
solution algorithms which follow this parse tree.

3.1. Binary Parse Tree. Based on the peo-tree of a partial k-tree as defined above, we
construct a binary parse tree. We first introduce an algebra of i-sourced graphs. Terms in this
algebra will evaluate to partial k-trees and their expression trees will be the binary parse trees of
the resulting graphs.

Let a graph with ¢ distinguished vertices (also called sources) have type G;. We define the
following graph operations:

e Primitive: — Gpy1. This 0-ary operation introduces the graph G[B], for some (k + 1)-bag
B.

e Reduce: Ggy1 — Gy This unary operation eliminates a source designation of the (k + 1)-st
source vertex, leaving the graph otherwise unchanged.

e Join: Gry1 X G — Gr41. This binary operation takes the union of its two argument graphs
(say, A and B), where the sources of the second graph (a k-bag Sg) are a subset of the sources
of the first graph (a (k + 1)-bag S4); these are the only shared vertices, and adjacencies for
shared vertices are the same in both graphs. In other words, V(4) NV (B) = Sg C S4 and
E(A[SB]) = E(B[SB]), giving the resulting graph Join(A, B) = (V(A)UV(B), E(A)UE(B))
with sources S4.

e Forget: Gry1 — Go. This operation eliminates the source designation of all source vertices.
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The above definitions imply that in a term of the sourced graphs algebra that evaluates to a
graph G, the source sets are (k+ 1)-bags and k-bags in a width k tree-decomposition of G. A binary
parse tree of a graph G is the expression tree of such a term.

We show how to construct a binary parse tree from a peo-tree. Intuitively, each node of the
peo-tree is “stretched” into a leaf-towards-root path of the binary parse tree. Let P be a peo-tree
of a partial k-tree G under a peo w. For a node B; of P, 1 < i < n—k, with ¢ children, define a
path starting in a Primitive node evaluating to G[B;], with ¢ Join nodes as interior vertices (one for
each child of B;), and ending in a Reduce node which drops the source designation of v;. From the
resulting collection of |V (P)| Primitive-Join*-Reduce paths (note the total number of Join nodes
is |[E(P)| = |V(P)| — 1) we construct the binary parse tree by assigning Reduce nodes as children
of the appropriate Join nodes. The only exception is the Reduce node associated with the root of
P, which becomes the child of a new Forget node, the root of the resulting binary parse tree. The
Reduce node associated with a node B; of P with parent parent(B;) becomes the child of a Join
node on the path associated with parent(B;). These assignments are easily done so that each Join
node has a unique Reduce node as a child. Note that we have the freedom of choosing the order
in which the children of a given node in P are Joined. This freedom, and also a possible choice of
m, can be exploited to keep the resulting parse tree shallow, an important attribute in the design of
parallel algorithms for partial k-trees. See Figure 2 for an example of a binary parse tree; note the
|V (P)| paths from leaves to their Reduce ancestors.

THEOREM 3.1. Given a peo-tree P of a partial k-tree G, the graph algebra term that corresponds
to the constructed binary parse tree T evaluates to G.

Proof. The constructed tree T is the expression tree of a well-formed term in the given algebra,
since Primitive nodes are exactly its leaves, and children of other nodes have the right types. Prim-
itive nodes contain all edges of G, as they represent all subgraphs induced by (k + 1)-bags of G. For
each node B; of P, the Reduce operation associated with it merely drops the source designation of
v;. Thus, we need only show that the Join operations act correctly on their argument graphs by
identifying their sources. The Join operations are in a natural one-to-one correspondence with the
edges of the peo-tree P, a tree-decomposition of GG, where identification of vertices is done simply
by taking the union of the two bags at endpoints of the edge. Let a Join operation Join(X,Y)
correspond in this way to the edge between a node B; of P and its parent B;. We have |B;NB;| =k
with B;\ B; = {v;}. By structural induction on T', we assume that subtrees representing X (of type
Gr+1) and Y (of type Gy) have correctly identified vertices of G, so that the sources of X and Y are
Bj and B;\ {v;}, respectively. The operation Join(X,Y") identifies exactly the vertices B; N B;, and
the resulting subtree rooted at this node has sources B;. The Forget node at the root of 7' drops
all source designations, so the graph algebra term that corresponds to the constructed binary parse
tree T evaluates to G. O

We say that T represents G. Since P is a peo-tree with n — k nodes, the binary parse tree T' of
G derived from P has n — k Primitive leaves and n — k Reduce nodes, one for each node of P, it has
n — k — 1 Join nodes, one for each edge of P, and a single Forget node at the root.

3.2. Complexity Analysis Accounting for Treewidth. The following algorithm design
methodology is an adaptation to the binary parse tree of the earlier paradigm of [3]. A dynamic
programming solution algorithm for a problem on a partial k-tree G will follow a bottom-up traversal
of the binary parse tree T'. As usual, with each node u of T' we associate a data structure table. Each
index of these tables represents a different constrained version of the problem. The corresponing
entry of a table associated with a node u of T' characterizes the optimal solutions to the constrained
subproblem restricted to G, the sourced subgraph of G represented by the subtree of T' rooted at
1. The table of a leaf is initialized according to the base case, usually by a brute-force strategy. The
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F1G. 2. The binary parse tree T of the partial 3-tree G based on the peo-tree P (see Figure 1). Nodes u € V(T)
labeled by V(G) with non-sources in parenthesis.



table of an interior node is computed in a bottom-up traversal of T" according to the tables of its
children. The overall solution is obtained from the table at the root of 7'

The paradigm for designing such algorithms is especially attractive for the class of vertex state
problems. For a vertex state problem, we define a set of vertex states, that represent the different
ways that a solution to a subproblem can affect a single source vertex.

We illustrate these concepts by an example. Suppose we want to solve the minimum dominating
set problem on a partial k-tree G: minimize |S| over all S C V(@) such that every vertex not in S has
at least one neighbor in S. Relative to some partial dominating set S C V(G.,), a source vertex v €
V(Gy,) of a node u of the parse tree could be in one of 3 states: [dominator] v € S; [non-dominator,
non-dominated] v € S A |Ng,(v) N S| = 0; [non-dominator, dominated] v ¢ S A |Ng,(v)N S| > 1
(we call S a partial dominating set since at non-root nodes of the parse tree source vertices can be
in the state [non-dominator, non-dominated].) A table entry at node u gives the minimum number
of dominator non-sources in G, necessary to ensure that all non-sources are either dominators or
dominated and that the vertex states for source vertices of G,, correspond to the table index.

Consider the binary parse tree in Figure 2. The table of the lower-left Join node, labelled
9765(1), would have 3* entries, one entry for each assignment of one of the three vertex states to the
four sources. In the subgraph associated with this Join node (see Figure 1), the sources 9,7,6 and 5
form a clique and vertices 5 and 6 share the neighboring non-source vertex 1. We first describe the
vertex state assignments that indicate an illegal configuration. Since we are solving a minimization
problem, the corresponding table entries will have value +o0:

e two sources have the pair of states [dominator] and [non-dominator, non-dominated].

e 7 or 9 have state [non-dominator, dominated] but no source has state [dominator].

e 5 or 6 have state [non-dominator, non-dominated].
The latter case is illegal since then non-source vertex 1 can neither be dominator nor dominated.
For the remaining possibilities we have two cases:

e 5 or 6 have state [dominator].

e 5 and 6 both have state [non-dominator, dominated].
In the first case table entries have value zero, since then no dominator non-sources are needed to
dominate the non-sources and ensure these vertex states for sources. In the latter case table entries
have value one, since non-source vertex 1 will then have to be a dominator itself (1 has neighbors
only 5 and 6 and must be either dominated or dominator.)

As mentioned earlier, the sources of G,, constitute a k or (k+ 1)-bag and form a separator of G,
which renders possible the table update for all the operations, and in particular Join(A, B) based on
the tables of A and B. An algorithm for a given problem must describe the tables involved and also
describe how tables are computed during traversal of the parse tree. A candidate table is verified
by the correctness proof of table update procedures for all operations involved. The introduction
of Reduce and Join greatly simplifies this verification process, since these operations make only
minimal changes to their argument graphs. In general, the algorithm computing a parameter R(G)
for a partial k-tree G given with a tree-decomposition has the following structure:

Algorithm-R, where R is a graph parameter

Input: G, k, width k tree-decomposition of G

Output: R(G)

(1) Based on tree-decomposition find a binary parse tree T of G.
(2) Initialize Primitive Tables at leaves of T'.

(3) Traverse T' bottom-up using Join-Tables and Reduce-Table.
(4) Optimize Root Table at root of T gives R(G).

Note that a tree-decomposition of width k is given as part of the input. For a given graph G on n
6



vertices and any fixed k, Bodlaender [6] gives an O(n) algorithm for deciding whether the treewidth
of G is at most k and in the affirmative case finding a width k tree-decomposition of G. The time
complexity of his algorithm has a coefficient that is exponential in a polynomial in &, a polynomial
which is not given explicitly in his paper. Improving on his algorithm to decrease this polynomial is
an important problem, which we do not address here. A construction of a k-tree embedding, given a
tree-decomposition, is described in [21]. From a k-tree embedding it is straightforward to find a peo
and the corresponding peo-tree and to construct the binary parse tree as described in the previous
subsection. The time for step (1) becomes O(nk?).

For a vertex state problem R with vertex state set A, the most expensive operation in the partial
k-tree algorithm outlined above is the computation of the table associated with the Join operation.
The complexity of this computation at a node of the parse tree is proportional to the number of pairs
of indices, one index from the table of each of its two children. The table index sets associated with
the children of a Join node for the problem R have size |A|* and |A|**1, and there are fewer than n
Join nodes in the parse tree. The overall complexity of the algorithm, given a tree-decomposition, is
dominated by the total of Join-Tables computation and is equal to T'(n, k, A) = O(n|A|?k*1). When
|A| does not depend on n we have a finite-state problem and a linear-time algorithm on partial
k-trees, for fixed k. Note that a vertex state problem can be solved in polynomial time whenever
|A| is polynomial in n.

In section 4, we define a class of vertex partitioning problems, and then in section 5 we give
a procedure to produce a set of vertex states and table update procedures for each such problem
definition.

4. Vertex Partitioning Problems. In this section, we define a class of discrete optimization
problems in which each vertex has a state, an attribute that is verifiable by a local neighborhood
check.

Our motivation for definition of these vertex partitioning problems is twofold. On the one hand,
this formalism provides a general and uniform description of many existing problems in which a
solution consists of a selection of vertex subsets. On the other, being vertex state problems, their
restriction to partial k-trees have efficient solution algorithms that can be designed according to a
general paradigm that follows their vertex partitioning description.

Considering partitions of the vertex set of a given graph is an attempt to unify graph properties
expressible by either vertex subsets such as independent dominating set or by vertex coloring of
graphs. Both these constructs are constrained by the structure of neighborhoods of vertices in
different subsets. We define this formally.

DEFINITION 4.1. A degree constraint matriz Dy is a q¢ by g matriz with entries being subsets
of natural numbers {0,1,...}. A Dgy-partition in a graph G is a partition V1, Va,...,Vy of V(G) such
that for 1 <i,j < q we have Yv € V; : [Ng(v) N'V;| € Dyli, j].

For technical reasons, we will allow a partition V4, ..., V; of V(G) to possibly have some empty
partition classes, i.e., if the degree constraints on a partition class V; are satisfied by V; = ) then we
allow this possibility. Given a degree constraint matrix D, it is natural to ask about the existence
of a Dg-partition in an input graph. We call this the 3D, problem. We might also ask for an
extremal value of the cardinality of a vertex partition class over all D,-partitions. Additionally,
given a sequence of degree constraint matrices, D;, Ds, ..., we might want to find an extremal value
of g for which a D,-partition exists in the input graph. We call these partition minimization and
partition maximization problems.

To illustrate and give weight to this formalism, we express some well known problems ! in the

1[GTx] as a citation refers to the Graph Theory problem number x in Garey and Johnson [12]
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terminology of vertex partitioning and also define new vertex partitioning problems as generalizations
of old problems. In each case, correctness of the vertex partitioning formulation follows immediately
from Definition 4.1.

4.1. Vertex subset problems. Many domination-type problems can be called vertex subset
problems, as they ask for existence or optimization of a vertex subset with certain neighborhood
properties. For example:

INDEPENDENT DOMINATING SET (IDS)

INSTANCE: Graph G.

QUESTION: Does G have an independent dominating set, i.e. is there a subset S C V(G) such that
S is independent (no two vertices in S are neighbors) and dominating (each vertex not in S has a
neighbor in S)?

Equivalently, the IDS problem is defined with ¢ = {0}, p = {1,2,...} and asking: Does G have a

partition? Such a description defines a [p, o]-property. Table 1 shows some classical vertex subset
properties expressed using this notation [14, 8]. The complexity of optimization and existence
problems defined over [p, o]-properties for general graphs was studied in [26]; the existence problem
is N'P-complete whenever both p and o are finite non-empty sets and 0 ¢ p (note the IDS problem
is trivial, every graph has such a set.)

p o Standard terminology
{0,1,...} {0} Independent set
{1,2,...} {0,1,...} Dominating set
{0,1} {0} Strong Stable set or 2-Packing
{1} {0} Perfect Code or Efficient Dominating set
{1,2,...} {0} Independent Dominating set
{1} {0,1,...} Perfect Dominating set
{1,2,...} {1,2,...} Total Dominating set
{1} {1} Total Perfect Dominating set
{0,1} {0,1,...} Nearly Perfect set
{0,1} {0,1} Total Nearly Perfect set
{1} {0,1} Weakly Perfect Dominating set
{0,1,...} {0,1,...,p} | Induced Bounded-Degree subgraph
{p,p+1,...} || {0,1,...} p-Dominating set
{0,1,...} {p} Induced p-Regular subgraph
TABLE 1

Some vertezr subset properties.|i

4.2. Uniform vertex partitioning problems. For a [p, o]-property, we can also define parti-
tion maximization, partition minimization, and g-partition existence problems by taking the degree
constraint matrix D, with diagonal entries ¢ and off-diagonal entries p. We call these problems
[p, o]- Partition problems. For example:

GRAPH K-COLORABILITY[GT4]
INSTANCE: Graph G, positive integer k



QUESTION: Is G k-colorable, i.e. is there a partition of V(@) into k independent sets?

The graph k-colorability problem is defined with ¢ = {0}, p = {0,1,...}, Dy a k by k degree
constraint matrix with diagonal elements ¢ and off-diagonal elements p, and asking: Does G have a
Dj-partition?

Chromatic number is the partition minimization problem over degree constraint matrices
D1, D, ... each one defined as Dy, above. Similarly, Domatic Number [GT3] asks for a partition into
maximum number of dominating sets (o = N, p = {1,2,...}) and Partition into Perfect Matchings
[GT16] asks for a partition into minimum number of induced 1-regular subgraphs (¢ = {1},p=N).

As an example of a generalization consider the degree constraint matrix defining a partition into

two Perfect Dominating Sets
N {1}
Dy =
(V)

and the question: Does a given graph G have a Ds-partition? This problem, which asks for a special
cut of the graph, can also be posed as a vertex labelling question:

PERFECT MATCHING CUT

INSTANCE: Graph G.

QUESTION: Does G have a perfect matching cut, i.e. can the vertices of G be labelled with two
labels such that each vertex has exactly one neighbor labelled differently from itself?

As an example, binomial trees and hypercubes have perfect matching cuts, This follows immediately
from their iterative definition, i.e. the binomial tree By is a single vertex and for ¢ > 0 the binomial
tree B; is constructed by adding a new leaf to every vertex in B;_;. In [15] the complexity of uniform
vertex partitioning problems is studied; Perfect Matching Cut is N"P-complete even when restricted
to 3-regular graphs.

We can also consider vertex partitions into subsets with different properties. In general, take
vertex subset properties [p1,01],[p2,02], ..., [pg, 04|, and construct a degree constraint matrix D,
with column 7 having entry o; in position ¢ and p; elsewhere. The 3D, -problem asks if a graph G
has a partition V1, V3, ...,V of V(G) where V; is a [p;, 0;]-set in G.

4.3. Tterated removal problems. A variation of these problems arises by asking if a graph G
has a partition Vi, Va, ..., V, where V; is a [p, o]-set in G\ (V1 UV, U...UV;_1). To define this we use the
degree constraint matrix D, with diagonal entries o, above-diagonal entries N and below-diagonal
entries p. We call the resulting problems [p, o]-Iterated Removal problems, since V; is a [p, o]-set in
G1 = G, while Vs is a [p,0]-set in G2 = G1 \ V1, and in general V; is a [p, o]-set in G; = Gi—1 \ Vi1
(1 < i < q). Here we may have to add the requirement that all partition classes be non-empty. For
example:

GRAPH GRUNDY NUMBER [GT56, undirected version]

INSTANCE: Graph G, positive integer k.

QUESTION: Is the Grundy number of G at least k, i.e. is there a function f: V(G) — {1,2,....,k'}
for some k' > k such that, for each v, f(v) is the least positive integer not contained in the set
{f(u) :u € Ng(v)}.

Note that if such a function f exists, then the color classes V; = {v : f(v) = i},1 < i < k' form a
partition of V(@) and each V; is an independent dominating set in the graph G\ (Vi UV2U...UV;_1).
We can therefore define the Graph Grundy Number problem as an Iterated Removal partition
maximization problem. Let ¢ = {0}, p = {1,2,...}, and let Dy be a k' by k' degree constraint
matrix with diagonal entries o, above-diagonal entries N and below-diagonal entries p. The Graph
Grundy Number problem is: Does G have a Dy -partition, with non-empty partition classes, for
some k' > k?



4.4. H-Coloring and H-covering problems. For some vertex partitioning problems the
degree constraint matrix is constructed using the adjacency matrix of an arbitrary graph H. For
example:

H-COLORING (GRAPH HOMOMORPHISM)[GT52, fixed H version]

INSTANCE: Graph G.

QUESTION: Is there a homomorphism from G to H, i.e. is there a function f : V(G) — V(H) such
that uwv € E(G) = f(u)f(v) € E(H)?

We frame H-coloring as a vertex partitioning problem using the degree constraint matrix Dy (g,
obtained from the adjacency matrix of H by replacing 1-entries with N and 0-entries with {0}. The
question to be asked is: Does G have a Dy g)-partition? H-coloring is NP-complete if H is not
bipartite and polynomial-time solvable otherwise [16].

H-COVERING

INSTANCE: Graph G.

QUESTION: Does G cover H, i.e. is there a degree-preserving function f : V(G) — V(H) such that
for all v € V(G) we have {f(u) : u € Ng(v)} = Ng(f(v))?

Similarly, the H-cover problem, whose complexity was studied in [19], is formulated as an 3D,
problem using the adjacency matrix of H with singleton entries {1} and {0}.

5. Algorithms for Vertex Partitioning Problems on Partial k-Trees. We give algo-
rithms for solving vertex partitioning problems on partial k-trees. These algorithms take a graph G
and a width k tree-decomposition of G as input. Earlier work by Arnborg et al. [2] establishes the
existence of pseudo-efficient algorithms for most, but not all, of these problems. They are pseudo-
efficient in the sense that their time complexity is polynomial in the size of the input for fixed k&, but
with horrendous multiplicative constants (“towers” of powers of k). In contrast to this behavior, the
algorithms presented here have running times with more reasonable bounds as a function of both
input size and treewidth, e.g., O(n2**) for well-known vertex subset problems. Since these problems
are N'P-hard in general and a tree-decomposition of width n — 1 is easily found for any graph on n
vertices, we should not expect polynomial dependence on k.

We devote most of this section to describe algorithms that solve 3D,-problems, for any degree
constraint matrix D, (as defined in the preceding section). In section 5.4 we describe extensions to
partition minimization and maximization problems, and problems asking for an extremal value of
the cardinality of a vertex partition class.

The algorithms will follow the general outline given in section 3.2, giving an answer YES if
the input graph has a Dg-partition and NO otherwise. We first discuss the pertinent vertex and
separator states and give a description of the tables involved in the algorithm. We then fill in details
of table operations, prove their correctness and give their time complexities.

5.1. Vertex and Separator States. To define the set of vertex states A for an 3D, problem,
we start with the definition of the problem as captured by the degree constraint matrix D,. To
check whether a given partition Vi, ...,V of V(G) is a D,-partition we first assign to each vertex
v € V(G) with v € V; and [N(v) N V| =d;,j =1, ...,q the state (i)(d1,ds,...,dy) and then check if
this state satisfies the constraints imposed by row i of D,. The states allowed by D, are called the
final vertex states. In our partial k-tree algorithms we must consider a refined version of the original
problem. For a given partition on a subgraph, a vertex may start out in a state not allowed by D,
and then acquire neighbors through Join operations so that the augmented partition indeed becomes
a Dg-partition. To define this larger set of vertex states which are either final or can become final
by adding new neighbors we need to define the augmented degree constraint matrix AD,.
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For ¢t € N, we view > t as a single element, and define the sets Y; g {0,1,...,t}, Wo = {> 0},

w, £ YiU{>t}ift > 0andlet R ¥ {Y; : t € NJU{W; : t € NJU{N}. Note that |Y;| = |W;| = t+1.
We now define a function 3 : 2N — R such that AD,[i, j] = B(D,li, 5])-

DEFINITION 5.1. AD,[i, j] = B(Dqli, j]) where

Y: if 3t € Dg[i, 5] such that t = max{D,[i, j]}
B(Dgli,3]) =8 Wi if 3t € Dg[i, j] with t minimum s.t. {t,t+1,...} C D[4, j]
N otherwise

The set of vertex states A for an 3D, problem is defined according to the rows of matrix AD,.
A vertex state consists of a pair (4)(M) where 1 <14 < ¢ indexes a row of AD, and M is an element
of the Cartesian product ADg[i, 1] X ADgy[i, 2] X ... x ADg[i, q]. We assume that AD,[i, j] # N for any
entry of AD,, as otherwise we would have an infinite vertex state set and our algorithmic template
would not work. Equivalently, we assume that every entry of the degree constraint matrix D, is
cofinite.

DEFINITION 5.2. For an 3D, problem, with cofinite entries of Dy, we define the vertex state
set A and o subset, the final vertex state set F' C A:

F= {(’L)(MllM,gqu) €A i€ {1, ,q} /\Vj(] € {1, ,q} =
(M;; € Dg) V (ADg[i,j] = Wy A M, ; => 1))}

Before continuing, let us first consider an example. Figure 3 shows the matrix D3 such that the
3D3 problem decides whether vertices of a graph can be partitioned into 3 independent dominating
sets. Note that the partition given in the example is not a Ds-partition, as can be seen from vertex
a which needs a new neighbor in V3 if this partition is to be augmented to a Ds-partition of some
supergraph. By applying Definition 5.1 we get for i = 1,2,3 AD3[i,i] = 8(Ds[i,i]) = B({0}) = Yo =
{0} and for i # j ADsli, j] = B(Dsli, j]) = B({1,2,...}) = W1 = {0,> 1}. Applying Definition 5.2
we then get the 12 vertex states in the vertex state set A:

(WO 00), WO 0 21), O 210, VO =1 >1),

2)(0 0 0), (2)(0 0 >1), (2)(>1 0 0), (2)(=1 0 >1),
(3)(0 0 0), (3)(0 >1 0), (3)(=1 0 0), (31 >1 0)}

The three states at the rightmost column above (the 4th, 8th and 12th) constitute the final
state set F, corresponding to the three rows of the degree constraint matrix Ds. For any partition
V1,V2, Vs of V(G) and a vertex v € V(G) this algorithm uses the following natural definition of

statev, vy, v, (v):

(1O 0 0) ifveV; and |Ng(v)NVi|=0A
AlNeg(w)NVa|=0A|Ng(v)NVs| =0

statevi v, s (V) =4 (9y(>1 >10) ifv e Vs and |Na(v) N Vi| > 1A
ANg(w) N V2| > 1A |Ng(v)NV3| =0
undefined otherwise

Note that this state function is total (defined everywhere) for the set of partitions that could
possibly be augmented to a Ds-partition by addition of neighbors to the graph, i.e., all vertices of
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Vi={b.e}, V2={a,c}, V3={d}

0 {12.} {12.} @100

D3 = {1,2,..} {0} {1,2,..}
| (12} L2p 0] b: (1)(0 >1 >1) / ¢ (2)(>10>1)

{0} {0.>1} {021} :

0.2 {0213 {0 d: (3)(>1 >1 0) e: (1)(0>1 >1)

F1G. 3. The degree constraint matriz D3 and the augmented degree constraint matriz AD3 for deciding whether
there exists a partition into 3 independent dominating sets. To the right an ezample with the resulting verter states
for a given partition.

the graph are assigned a state if (and only if) V1, V2, Vs are independent sets. For a general 3D,-
problem the state function is total for all partitions Vi, ..., V, that could possibly be augmented to
D -partitions.

We return to the discussion of a general 3D, -algorithm and examine first the size of the vertex
state set A. Assume for simplicity that the matrix D, has all diagonal entries equal and all off-
diagonal entries equal, with A, = AD[i,7] and A, = AD[i, j] for i # j. With A the set of vertex
states for the 3Dg-problem, we thus have |A| = ¢|A,||A4,|7"! vertex states, since vertex states
are of the form (’L)(leM,zqu) with 7 € {1,2,...,q}, M;; € A, and Mz’j € Ap for 4 75 7. We
now examine the index set I of the table at a node u of the parse tree representing a subgraph
with k sources. The table at node u will have |Ij| entries. Let the bag of sources (the separator)
at node u be B, = {wi,ws,...,wr}. Each of the sources can take on a vertex state in |A| and
the table thus has index set I, = {s = s1,...,5¢} where s; € A. Thus the size of the table is
|Ir| = |A|* = ¢*|A,|¥|A,|*9=1). For the earlier example, partition into 3 independent dominating
sets, we get |I| = 12%F = 3k1k2k(G-1),

Next, we discuss the values of table entries. For D,, a subgraph G, with sources B, =
{wy,...,wr} and a k-vector of vertex states s = {s1,...,5c}, Vi s; € A we define a family ¥ of
equivalent partitions Vi, Vs, ...,V of V(G,), such that in G, a source w; has state s; and a non-
source vertex has a final state in F'. Note that for a non-source vertex v € V; we thus have
|Na(v) NV;| € Dgli, jl,j =1, ...,q, as dictated by the degree constraint matrix.

DEFINITION 5.3. For problem 3D, with vertex states A and final states F, a graph G, with
sources B, = {wy,ws,...,wr} and a k-vector s = s1,...5 : Vi s; € A we define
v 4 {1, ...,V, a g-partition of V(G,) :Vw; € B, Yv € V(G,)\ By
(statev,,...v,(w;) = s; and statey,, . v,(v) € F)}
¥ forms an equivalence class of solutions to the subproblem on G,, and its elements are called
U-partitions respecting G, and s. The binary contents of T'able,[s] records whether any solution
respecting G, and s exists:

12



DEFINITION 5.4.

1 ifU#£0

Table,[s] = { 0 ifU={

5.2. Table Operations. We now elaborate on the operations of Initialize-Table, Reduce-Table,
Join-Tables and Optimize-Root-Table in the context of an 3D,-problem with vertex states A and
final states F'. Each of the following subsections defines the appropriate procedure, gives the proof
of its correctness and analyzes its complexity.

Initialize-Tables
A leaf u of T is a Primitive node and G, is the graph G[B,], where B, = {w1,...,wg+1}. Let
Partitions(B,) be the family of all ¢"*1 partitions of B, into partition classes V4, ..., V,. Following
Definition 5.4, we initialize T'able, by a brute-force method in two steps:
(1) Vs € Ip41 : Tabley[s] :=0
(2) VV1, Va, ..., Vg € Partitions(B,): ifin G[B,] fori = 1, ..., k+1 we have statey, ,...,v, (w;) =
s; € A then for s = s1, ..., Sg+1, Table,[s] :==1

We need only consider partitions that assign a state in A to all vertices, since any other partition
is in violation of D, and cannot be augmented to a D,-partition of the input graph. The complexity
of this initialization for each leaf of T is O(|Iy41| + (k + 1)g**+2), since for each partition we must
check the g neighborhood constraints of k£ + 1 vertices.

Reduce Table
A Reduce node u of T has a single child a such that B, = {w1,...,wx} and B, = {w1, ..., wg41}-
We compute T'able, based on Table, as follows

Vs € Iy : Table,[s] :=\/, {Table,[p]}

where the disjunction is over all p = {p1,...,pp+1} € Ipy1 with VI : 1 <1 < k,p; = s and
pr+1 € F. Correctness of the operation follows by noting that G, and G, designate the same
subgraph of G, and differ only by w41 not being a source in G,. By definition, T'able,[s] should
store a 1 if and only if there is some W-set respecting G, and s where the state of non-sources,
and thus also wy.y1, is constrained by D,, and thus assigned a final state. The complexity of this
operation for each Reduce node of T is O(|Ix+1|), assuming that in constant time we can both (i)
decide whether an index of T'able, represents a final state for w41 and (ii) access the corresponding
entry of Table,.

Join Tables
A Join node u of T has children a and b such that B, = B, = {w1,...,wg+1} and By =
{w1,...,w} is a k-subset of B,. Moreover, G, and G share exactly the subgraph induced by By,
G[Byp]. We compute Table,, by considering all pairs of table entries of the form Table,[p], Tablep[r].
Recall that the separator state p consists of k + 1 vertex states pi,po, ..., pr+1 Where the state p;
is associated with vertex w;. For a vertex state p; = (§)(Mj1, ..., Mjq) we call j the partition class
index, class(p;), and the cardinality Mj;, size(p;,1). In the algorithm for the Join operation, we first
check that p,r is a compatible separator state pair, meaning the partition class assigned to vertex
wi, i € {1,...,k}, is identical in both p and r.
, | 1 ifclass(p;) = class(r;) Vi € {1,...,k}
compatible(p,r) ._{ 0 otherwise
We then combine, in a manner described below, for each w;,i € {1,...,k+ 1}, the contributions
from p and r to give the resulting separator state s = combine(p,r), and update Table,[s] based
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on Table,[p] and Tabley[r]. For a vertex w; under s, the resulting g-vector of neighborhood sizes is
computed by (componentwise) addition of its g-vectors under p and r. Moreover, since the neighbors
w; hasin By = {wx, ..., wr } are the same in both G, and G, we must subtract the shared V; neighbors
w; has in By under p and r. This addition at the jth component is performed using the following
definition of a @ b & ¢ which adds two size values a, b and subtracts ¢ € N. The definition of a ®bS ¢
depends on whether a, b are of type Y; or W;, and returns a value of the same type, unless undefined.

DEFINITION 5.5. Fora,b€ Y; andc € N

a+b—c ifa+b—ceY;

a®boc= { 0 otherwise

For a,be Wy and ce N

>t if either a or b is the element >t
) o>t fa+b—ce{t,t+1,..}
e®bOC=9 [l ¢ ifatb—ce{0,1,..t—1}
0 otherwise

We thus use
combine(p,r) := $1, 82, ..., Sp+1 where Vi € {1,....k} Vj € {1,...,q}
class(s;) = class(r;) = class(p;) and sgy1 = pr+1 and
size(ss, j) = size(p;,J) @ size(r;, §)O©
{wi € By : (wi, w1) € E(G) A class(pi) = j}|
We can now state the two step procedure for the Join operation:
(1) Vs € Ixqq : Table,[s] := 0;

(2) V(p € Ixq1,r € It,) : if compatible(p,r) and Table,[p] = Tabley[r] =1
then T'able,[combine(p,r)] :=1

In step (2) we assume that T'able,, is accessed only if combine(p,r) designates a vertex state,
i.e., only if each of its size components is defined.

THEOREM 5.6. The procedure given for the Join Operation at a node uw with children a,b
correctly updates Table, based on Table,,Tabley.

Proof. We argue the correctness of the Join operation at a node uw with sources
B, = {wi,...,wry1}, based on correct table entries at its children a and b, with notation as be-
fore. Consider any s = s1, ..., Sp4+1 such that there exists a partition V1, ..., V, of V(G,) respecting
D, with statey,,... v,(w;) = s; for i =1 to k + 1 in the graph G,. We will show that then T'able,[s]
is correctly set to the value 1. Let Ay, ..., A; and By, ..., By be the induced partitions on V(G,) and
V(Gp), respectively, i.e., V;NV(G,) = A; and V;NV (Gy) = B;. Let p=py1,...,pryr1 and r =71, ...,7g
be defined by p; = statea,,... a,(w;) in G, and r; = statep, .. B,(w;) in Gy, respectively. By the
assumption that Table, and Table, are correct we must have Table,[p] = Tabley[r] = 1. This
follows since any vertex in V(G,) \ By has the exact same state in G, under Ay,..., A, as it has
in G under Vi, ..., Vg, by the fact that there are no adjacencies between a vertex in V(G,) \ By
and a vertex in V(Gp) \ By. Similarly for Gy. We can check that from the definitions we have
compatible(p,r) = 1 and combine(p,r) = s, so indeed Table,[s] is set to 1 when the pair p,r is
considered by the algorithm.
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Now consider an s such that there is no g-partition of V(G,,) respecting D, and resulting in
s as the state for the separator. We will show, by contradiction, that in this case Table,[s] is set
to O initially and then never altered. If Table,[s] = 1 there must be a compatible pair p,r such
that combine(p,r) = s and Tabley[p] = Tablep[r] = 1. Let Ay, ..., A, and By, ..., B, be partitions
of V(G,) and V(Gs), respectively, that cause these table entries to be set to 1. Then Vi,...,V,
defined by V; = A; U B; is a g-partition of V(G,,) respecting D, such that the resulting state for the
separator is s, because B, = {wz, ..., w11} separates G, into G, \ B, and G} \ B,. This contradicts
our assumption that such a g-partition does not exist. We conclude that the Join-Tables operation
is correct. O

For each Join node of T, the complexity of Join-Tables is O(kq|Ix||Ix+1|) since any pair of
entries from tables of children is considered at most once, and for each compatible pair the combine
operation considers kq size pairs.

Optimize Root Table
Let the root of T have child » with B, = {w1, ..., w}. We decide whether G has a Dg-partition
based on Table, as follows
YES if 3s = s1, ..., 8; € I with Table,[s]=1and s; € Ffor1<i<k
NO otherwise
Correctness of this optimization follows from the definition of table entries and final states and
the fact that G, is the graph G with sources B,. The complexity of Optimize-Root-Table at the
root of T is O(|Ix+1]), assuming that in constant time we can decide whether an index of Table,
represents a final state for each vertex in B,.

5.3. Overall Correctness and Complexity. Correctness of an algorithm based on this al-
goritmic template follows by induction on the binary parse tree T'. As noted in Section 3.1, 7" has
n — k Primitive nodes, n — k Reduce nodes and n — kK — 1 Join nodes. The algorithm finds the binary
parse tree T', traverses it bottom-up executing the respective operation at each of its nodes, and
performs Optimize-Root-Table at the root.

THEOREM 5.7. The time complezity for solving an 3D, problem, entries of D, cofinite, with
vertez state set A, on a partial k-tree G with n vertices, given a width k tree-decomposition of G is
O(nkq|A|**+1). If the augmented degree constraint matriz AD, has |A,| = max;{|AD,[i,i]|} and
|A,| = max;2;{|AD,[i, §]|} it can be expressed as O(ng®*+1)|A,[2k+1|A4,|2k+1)(a-1))

Proof. The first bound holds since the most expensive operation is Join Tables which costs
O(kq|Ir||Ix+1]) where |Ix| = |A|*, and there are less than n Join Table nodes in the binary parse
tree. The refined bound holds since |A| = q|A4||4,[?7*. O

Note that the last bound holds in particular when AD, has all diagonal entries equal to A, and
all off-diagonal entries equal to A,.

5.4. Extensions. Here we mention a few natural extensions of the problems described above:
partition maximization and minimization, construction of a D,-partition, complexity of vertex subset
problems, optimization over a partition class cardinality and finally, implications on optimizations
problems without a constant bound.

Recall that given a sequence of degree constraint matrices, D;, Da, ..., partition minimization
or maximization problems involve finding an extremal value of ¢ for which a D,-partition exists in
the input graph. To solve such problems with an upper bound f(n, k) on the parameter in question
for n-vertex partial k-trees, we need at most f(n, k) calls to the 3D, algorithm, for different values
of q. Several parameters are bounded by the treewidth only, e.g. chromatic number and domatic
number are bounded by k + 1 on partial k-trees. We call a partition maximization (respectively,
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Problem q |As| | |A,| | Time Complexity
CHROMATIC NUMBER 1<g<k+1 1 1 O(nk>F+1))
¢-COLORING q 1 1 O(ng?*k+1)
H-COVER q=|V(H)| 1 2 O(n23kVH)Iy
H-COLOR q=|V(H)| 1 1 O(n|V (H)]2(k+1))
DOMATIC NUMBER 1<q<k+1 1 2 O(n23%")
GRUNDY NUMBER 1<qg<1l+klogn |1 2 O(n3¥)
ITERATED DOM. REMOVAL | 1<¢<1+klogn | 1 2 O(n3)

TABLE 2

Time complezity for specific problems on partial k-trees of n verticesi

minimization) parameter monotone if existence of a D,-partition implies the existence of a D,_1-
partition (respectively, a Dg41-partition). For monotone properties we can apply binary search so
that log f(n, k) calls to the 3D, algorithm suffices. Resulting time bounds for specific problems are
shown in Table 2, and discussed also in the following sections.

To construct a Dg-partition, in case of a positive answer for the 3D, problem, we add pointers
from a positive table entry to the table entries of children which updated it positively.

Table 1 in section 4 lists some vertex subset properties, which we called [p, o]-properties, ex-
pressible by a degree constraint matrix Ds. Various NP-hard optimization problems ask for an
extremal value of the cardinality of a vertex subset with some [p, o] property. In an earlier paper
[28], we give algorithms on partial k-trees for solving these problems.

THEOREM 5.8. [28] Given a tree-decomposition of width k of a graph G, any optimization
problem over a [p,o]-property, with both p and o cofinite, can be solved on G in O(n(|B(p)| +
|B(a)|)2F+1) steps.

Problems defined over properties derived from Table 1 have complexity O(n2%*) (for parame-
terized properties we assume p < 2). Those algorithms are very similar to the ones given here, with
values of table entries defined to be:

1 ifv=0

df
Table,[s] = { optimumyy, vyyewi|Val} otherwise

and table operations altered similarly to optimize this value. Any vertex partitioning problem
optimizing over the cardinality of a partition class can be solved in a similar manner. The time
complexity of the resulting algorithm for a problem given by the degree constraint matrix D, remains
as given in Theorem 5.7.

In Section 4 we discussed several new problems, including the general classes of [p, o] uniform
partition problems, [p, o] iterated removal problems, H-coloring and H-covering problems. All these
problems are encompassed by Theorem 5.7. Polynomial-time algorithms for partition maximization
or minimization problems on partial k-trees are constructible in this manner only if an appropriate
bound holds for the parameter in question. In the next section we first show that the Grundy
Number of an n-vertex partial k-tree has an upper bound logarithmic in n and then construct a
polynomial-time solution algorithm.

6. Grundy Number Algorithm. The Grundy Number of a graph, defined in Section 4.3, is
a tight upper bound on the number of colors used by the following 'naive greedy coloring’ algorithm:
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V5={ad} V4={bc}

V3={e} Vv2={f} Vi={g}

Fic. 4. A 2-tree on 7 vertices with Grundy number 5 and an appropriate partition V1,V2, ..., V5

repeatedly select an uncolored vertex and color it with the least available positive integer. The
Grundy number is the highest color thus assigned to any vertex, maximized over all orderings of
vertices, with the vertex partitioning iterated removal definition based on the fact that the set of
vertices with color ¢ form an independent dominating set in the graph induced by vertices with color
1 or higher.

Computing the Grundy number of an undirected graph is NP-complete even for bipartite graphs
and for chordal graphs [22]. A binomial tree on 297! vertices, defined in section 4.2, has Grundy
number ¢ [13]. In general the non-existence of an f(k) upper bound on the Grundy number of
a partial k-tree explains the lack of a description of this problem in EMSOL [20] (note that [2]
mistakenly gives a different impression). For trees there exists a linear time algorithm [13] but until
now it was an open question whether polynomial time algorithms existed even for 2-trees.

The definition of Grundy number as a vertex partitioning problem requires all partition classes
to be non-empty. In this section we first show how the algorithm template of section 5 can be easily
adjusted to enforce this requirement. For a partial k-tree G with n vertices, we prove a logarithmic
in n upper bound on the Grundy number of G. These results suffice to show the polynomial time
complexity of computing the Grundy number of any partial k-tree, for fixed k.

To facilitate the presentation of these results, we reverse the ordering of the partition classes in
the definition of Grundy Number from Section 4; this is expressed by the degree constraint matrix D,
with diagonal entries {0}, above-diagonal entries P, and below-diagonal entries N. Thus, for a graph
G, the Grundy Number GN (G) is the largest value of g such that its vertices V(G) can be partitioned
into non-empty classes Vi, V, ..., V, with the constraint that for 1 =1, ...,¢, V; is an independent set
and every vertex in V; has at least one neighbor in each of the sets Viy1, Vita, ..., V; (see Figure 4).
Note that if we have at least one vertex v € V; then this guarantees that every partition class is non-
empty, since D, requires v to have at least one neighbor in each of V3, V3, ..., V. In the algorithm for
deciding whether a partial k-tree has a Dg-partition with non-empty classes, with D, as described
above, we extend the value of a table entry Table,[s] by a single extra bit called nonempty. This
bit will record whether there exists any partition V1, ...,V respecting G, and the separator state s
such that V; # (. In the following, we use notation as given in section 5, with the definition of table
entries:

0,0y if ¥ =0
Table,s] = ¢ (1,0) if ¥ # (0 but AVy,Va,...,V, € ¥ with V] #0
(1,1) if U # 0 and IV, Va, ..., V, € © with V; # 0

The two-step Initialize-Table procedure becomes:
(1) Vs € I41 : Table,[s] := (0,0)
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(2) VW1, Va, ...,V € Partition(B,): if in G[B,] for i = 1, ..., k+1 we have statey, ,...,v, (w;) =
s; € A then for s = s1, ..., Sg+1

if V1 = 0 set Table,[s] := (1, 0)

else if V1 # 0 set Table,[s] := (1,1)

Note that for a leaf u of the binary parse tree of G, all vertices of G,, are sources so the separator
state s, in step (2) above, contains the information determining if V3 is empty. The Reduce-Table
procedure remains as given in section 5 except that the disjunction is taken pairwise over both bits
in the values of table entries, i.e., {(a,b) V (¢,d) = (a V ¢), (b V d). For the Join-Table procedure, the
concepts of compatibility and combining of pairs are unchanged, and the two-step update procedure
becomes:

(1) Vs € I41 : Tabley[s] := (0,0);

(2) V(p € Ixq1,r € It,) : if compatible(p,r) and
Table,[p] = (1,z) and Tablep[r] = (1,y) and Table,[combine(p,r)] = (z,w)
then T'abley[combine(p,r)] := (1,2 Vy V w).

Optimize-Root-Table becomes:
YES if 3s = s1, ..., sy € Ij, such that Table,[s] = (1,1) and s; € F for 1 <i < k.

NO otherwise

It is easy to see that the time complexity of the resulting algorithm remains as described by
Theorem 5.7.

We now turn to the bound on the Grundy number GN (G) of a partial k-tree G. Since the Grundy
number of a graph may increase when some edges of the graph are removed, we cannot restrict our
attention to k-trees, but must consider partial k-trees. A tree (i.e. a 1-tree) with Grundy number g,
witnessed by a (Grundy) partition Vi, ..., V,, must have at least 29~ vertices since each vertex of the
set U, <i<;j Vi has a unique neighbor in V; thus doubling the size of U, <i<; Vi for each consecutive
1 < j < ¢q. This argument relies on the fact that 1-trees do not have cycles. For a partial k-tree
G with £ > 2 and Grundy number ¢ we cannot guarantee the existence of a perfect elimination
ordering of vertices that respects a Vg, ...,V Grundy partition of V(G), as in the 1-tree example
above. See Figure 4 for an example of a 2-tree on 7 vertices with Grundy number 5 which does
not have a perfect elimination ordering respecting the partial order given by any Grundy partition
Vs, Va, ..., V1. Hence, the upper bound given below has a somewhat less trivial proof than the 1-tree
case.

THEOREM 6.1.

The Grundy number of a partial k-tree G on n vertices, n > k > 1, is at most 1 + klog, n.

Proof. Let the Grundy number of G be GN(G) = ¢ with Vi, V5, ..., V, an appropriate partition
of V(@) as described above. For 1 <4 < g, define G; to be the graph G'\ (UV},j > i). Thus G, =G
and in general G; is the graph induced by vertices V1 U Va... U V; with V; a dominating set of G;.
Let n; = |V(G;)| and m; = |A(G;)|. By induction on i from k to ¢ we show that in this range

k1,
nzZ(T) !

For the base case i = k we have (2/1)° <1 <n; and (3/2)! <2 < ny and for k >3 (1+1/k)k"1 <
(1+1/k)* < e < 3 < ng. Note that the inequality is strict for £ > 2. We continue with the inductive
step of the proof, with the inductive assumption that the inequality holds for j in the range k to
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1 — 1 and establish the inequality for j = 7. Note that m; — m;_; counts the number of edges in G;
with at least one endpoint in V;. Since every vertex in V(G;—1) = V3 U Vo U ...U V;_; has at least
one G;-neighbor in V; we get a lower bound on m;

m; 2> Mi_1 + N1

G; is a subgraph of a k-tree, and if ¢ > k then it is a partial k-tree on n; > k vertices. It is well-known
that G; is then a subgraph of a k-tree on n; vertices, and from the iterative construction of k-trees
it is easy to show that we have

k(k—1)

D) + (n, - k)k

m; <

Rearranging terms we get the following bound on n; for k¥ <i <g¢q

m; k+1
niZ?—FT

Repeatedly substituting the m; bound in the above, we get

mi—1+ni—1+k+1> >nk+nk+1+---+ni—2+ni—1+ﬂ+k+1

. >
= k 2 == k k 2

In the right-hand side we substitute for all n; the inductive bound n; > (21)7=1 to get

kE+1
k

)J'_‘_%_Fﬂ: m

k 2 ( k )T k

k+1 m kE+1
_)k—1+_k+_

.>1 (
=y k 2

Jj=k—-1

Since Vj is a dominating set in G, for 1 < j < k we must have my, > (k — 1)k/2 which we substitute
in the above to get the desired bound
E+1, k+1

> i—1 _ k—1
Note that the last bound is strict for k > 2. For i = g we thus get ¢ <1+ log(11)/, ¢ (note that
g = GN(Q) and n, = n) which is a tight bound for k = 1. For k > 2, the base is not an integer
and, because of the strict inequality mentioned above we can apply the floor function to the log.
Converting bases of the logarithm we get GN(G) < 1+ (log, £t2)~'log, n < 1+ klog, n. O

+k2 (%)"‘1

THEOREM 6.2. Given a partial k-tree G on n wvertices its Grundy number can be found in
On3*") time.

Proof. First note that a tree-decomposition can be found in time linear in n [6]. Define the
Grundy number problem using the degree constraint matrix D, with diagonal entries {0}, above-
diagonal entries P, and below-diagonal entries N. We then use the algorithm from section 6.2.2
extended with the nonempty information as described above. The correctness of each table operation
procedure is easily established, so that by induction over the parse tree we can conclude that the
root-optimization procedure will correctly give the answer YES if and only if the input graph has an
appropriate partition Vi, ..., V; with non-empty classes. An affirmative answer implies that GN (G) >
g. Using the bound GN(G) < 1+ klogyn we run the 3D, algorithm for descending values of g
starting with ¢ = 1 + klog, n and halting as soon as an affirmative answer is given. The complexity
of this algorithm is then given by appropriately applying Theorem 5.7, with |A,| = 1 and |4,| = 2.
d
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Consider any maximum iterated [p, o] removal problem with p = P, asking how many times
we can remove a o-constrained dominating set from a graph (compare with Grundy Number which
removes independent dominating sets). This translates to a partition maximization problem where
the degree constraint matrix has diagonal entries o, above-diagonal entries N and below-diagonal
entries P. Note that the proof of the logarithmic bound on the Grundy Number in Theorem 6.1
does not use the fact that the classes V; of the partition are independent sets, only the fact that they
are dominating sets in the remaining graph. Thus we get a logarithmic upper bound also on these
generalized maximum dominating iterated removal parameters on partial k-trees and a polynomial
time algorithm for computing these parameters, for fixed k.

7. Conclusions. In this paper, we have presented a design methodology for practical solu-
tion algorithms on partial k-trees and a characterization of a class of vertex partitioning problems.
These results were combined by adapting the algorithm design methodology on partial k-trees to
vertex partitioning problems, yielding the first algorithms for these problems with reasonable time
complexity as a function of treewidth.

Implementation of the resulting algorithms is a project at the University of Bergen [17]. The
program for solving the Independent Set problem: maximize |V;| over partitions (V1, V») satisfying

—( {0} N
b=(% ~)
is about 1000 lines of C++ code. Less than 100 of these lines are problem-specific, i.e. to produce a
solution algorithm for any other vertex subset problem requires changing only a handful of functions.

The actual running time behaves as predicted by the bounds given in this paper, e.g. to solve
the independent set problem on an n-node partial k-tree (using a 150 Mhz alpha prosessor-based
Digital computer) takes roughly 107° - n - 2F seconds. For example, on a 3000-node graph with
treewidth 5 we solve the maximum independent set problem in about 1 second.

Various improvements can be made to these algorithms to reduce the average, if not worst-case,
running-time. For example, one can use parse trees with smaller bags in “thin” parts of the graph
or computing table entries can be based only on non-zero table entries in the children.

A recent result [29] shows that control-flow graphs of structured (goto-free) programs have small
treewidth, e.g. treewidth at most 3 for Pascal programs and treewidth at most 6 for C programs.
Moreover, a tree-decomposition of the control-flow graph can be easily computed from the program
structure (in fact from the 3-address code), making our algorithms, which require a k-tree embedding
(tree-decomposition) relatively easily applicable in various compiler optimization settings.
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