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Abstract

Many hard graph problems can be solved efficiently when restricted to
graphs of bounded treewidth, and more generally to graphs of bounded
clique-width. But there is a price to be paid for this generality, exemplified
by the four problems MaxCut, Graph Coloring, Hamiltonian Cycle
and Edge Dominating Set that are all FPT parameterized by treewidth
but none of which can be FPT parameterized by clique-width unless
FPT = W[1], as shown by Fomin et al [7, 8]1. We therefore seek a struc-
tural graph parameter that shares some of the generality of clique-width
without paying this price.

Based on splits, branch decompositions and the work of Vatshelle [18]
on Maximum Matching-width, we consider the graph parameter sm-width
which lies between treewidth and clique-width. Some graph classes of
unbounded treewidth, like distance-hereditary graphs, have bounded sm-
width. We show that MaxCut, Graph Coloring, Hamiltonian Cycle
and Edge Dominating Set are all FPT parameterized by sm-width.

1 Introduction

Many hard problems can be solved efficiently when restricted to graphs of
bounded treewidth or even graphs of bounded clique-width. A celebrated
algorithmic metatheorem of Courcelle [5] states that any problem expressible in
monadic second-order logic (MSO2) is fixed parameter tractable (FPT) when
parameterized by the treewidth of the input graph. This includes many problems
like Dominating Set, Graph Coloring, and Hamiltonian Cycle. Likewise,
Courcelle et al [4] show that the subset of MSO2 problems expressible in MSO1-
logic, which does not allow quantification over edge sets, is FPT parameterized

1In [8] the problems Graph Coloring, Hamiltonian Cycle and Edge Dominating Set
are shown to be FPT only if FPT = W[1], while in [7] the authors focus on showing that neither
of MaxCut, Hamiltonian Cycle and Edge Dominating Set can have a f(k)no(k) algorithm
parameterized by clique-width unless the Exponential Time Hypothethis fails. However, in [7]
they also show that MaxCut is FPT only if FPT = W[1].

1



by clique-width. Originally this required a clique-width expression as part of the
input, but this restriction was removed when Oum and Seymour [15] gave an
algorithm that, in time FPT parameterized by the clique-width k of the input
graph, finds a 2O(k)-approximation of an optimal clique-width expression.

Clique-width is stronger than treewidth, in the sense that bounded treewidth
implies bounded clique-width [3] but not vice-versa, as exemplified by the
cliques. Can we hope to find a graph width parameter lying between treewidth
and clique-width for which all MSO2 problems are FPT? Alas no, under the
minimal requirement that cliques should have bounded width, Courcelle et al [4]
showed that this would imply P=NP for unary languages. There are some basic
problems belonging to MSO2 but not MSO1, like MaxCut, Graph Coloring,
Hamiltonian Cycle and Edge Dominating Set. Fomin et al [7, 8] showed
that none of these four problems can be FPT parameterized by clique-width,
unless FPT = W[1]. Can we find a graph width parameter lying between
treewidth and clique-width for which at least these four problems are FPT? Note
that one can define trivial parameters having these properties (e.g. value equal
to clique-width if this is at most 3, and otherwise equal to treewidth) but can
we find one yielding new FPT algorithms for certain natural graph classes? This
is the question motivating the present paper, and the answer is yes. We give a
parameter which is low when the graph has low treewidth in local parts, and
where each of these parts are connected together in a dense manner.

Before explaining our results, let us mention some related work. A class of
graphs can have bounded treewidth only if it is sparse. Indeed, the introduction
of clique-width was motivated by the desire to extend algorithmic results for
bounded treewidth also to some dense graph classes. Let us say that a parameter
x is weaker than parameter y, and y stronger than x, if for any graph class,
a bound on x implies a bound on y. Alternatively, x and y are of the same
strength, or incomparable. Thus, clique-width is stronger than treewidth. As
we discussed above there are limitations inherent in clique-width and there
have been several suggestions for width parameters weaker than clique-width
but still bounded on some dense graph classes. In particular, let us mention
four parameters: neighborhood diversity introduced by Lampis in 2010 [13],
twin-cover introduced by Ganian in 2011 [10], shrub-depth introduced by Ganian
et al in 2012 [11], and modular-width proposed by Gajarský et al in 2013 [9].
All these parameters are bounded on some dense classes of graphs, all of them
are weaker than clique-width, but none of them are stronger than treewidth.
Modular-width is stronger than both neighborhood diversity and twin-cover,
but incomparable to shrub-depth [9]. Graph Coloring and Hamiltonian
Cycle are W-hard parameterized by shrub-depth but FPT parameterized by
modular-width, as recently shown by Gajarský et al [9] which also leaves as
an open problem the complexity of MaxCut and Edge Dominating Set
parameterized by modular-width.

In our quest for a parameter stronger than treewidth and weaker than
clique-width, for which the four basic problems MaxCut, Graph Coloring,
Hamiltonian Cycle and Edge Dominating Set become FPT, we are faced
with two tasks when given a graph G with parameter-value k: we need an FPT

2



algorithm returning a decomposition of width f(k), and we need a dynamic
programming algorithm solving each of the four basic problems in FPT time
when parameterized by the width of this decomposition. The requirement that
the parameter be stronger than treewidth is a guarantee that it shares this
property with clique-width and will capture large tree-like classes of graphs,
also when some building blocks are dense. Arguably the most natural way
to hierarchically decompose a graph are the so-called branch decompositions,
originating in work of Robertson and Seymour [17] and used in the definition of
both rank-width [15] and boolean-width [1], two parameters of the same strength
as clique-width. Branch decompositions over the vertex set of a graph can be
viewed as a recursive partition of the vertices into two parts, giving a rooted
binary tree where each edge of the tree defines the cut given by the vertices in
the subtree below the edge. Using any symmetric cut function defined on subsets
of vertices we can define a graph width parameter as the minimum, over all
branch decompositions, of the maximum cut-value over all edges of the branch
decomposition tree. Recently, Vatshelle [18] gave a cut-function based on the
size of a maximum matching, whose associated graph width parameter, called
MM-width, has the same strength as treewidth.

In Section 2, based on the work of Vatshelle, we define the parameter
split-matching-width, denoted sm-width, by a cut function based on maximum
matching unless the cut is a split, i.e. a complete bipartite graph plus some
isolated vertices. The sm-width parameter is stronger than treewidth and weaker
than clique-width. It is also stronger than twin-cover but incomparable with
neighborhood diversity, shrub-depth and modular-width. We finish Section 2 by
showing that maximum matching is a submodular cut function. In Section 3 this
is used together with an algorithm for split decompositions by Cunningham [6]
and an algorithm for branch decompositions based on submodular cut functions
by Oum and Seymour [15] to design an algorithm that given a graph G with
sm-width k computes a branch decomposition of sm-width O(k2), in time O∗(8k).
To our knowledge the use of split decompositions to compute a width parameter
is novel.

In Section 4, using a slightly non-standard framework for dynamic program-
ming, we are then able to solve the four basic problems MaxCut, Graph
Coloring, Hamiltonian Cycle and Edge Dominating Set, by runtimes
O∗(8k),O∗(k5k),O∗(224k2), and O∗(35k) respectively, when given a branch de-
composition of sm-width k. In Section 5 we show that some well-known graph
classes of bounded clique-width also have bounded sm-width, e.g. distance-
hereditary graphs have clique-width at most three and sm-width one. We also
show that a graph whose twin-cover value is k will have sm-width at most k,
and discuss classes of graphs where our results imply new FPT algorithms. In
Section 6 we give a short summary of our results and end the paper by some
concluding remarks.
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2 Preliminaries

We deal with finite, simple, undirected graphs G = (V,E) and denote also
the vertex set by V (G) and the edge set by E(G). For the subgraph of G
induced by S ⊆ V (G) we write G[S], and for disjoint sets A,B ⊆ V (G) we
denote the induced bipartite subgraph having vertex set A ∪ B and edge set
{uv : u ∈ A, v ∈ B} as G[A,B]. For a set E′ of edges, we denote its endpoints by
V (E′). For two graphs G1 and G2, we denote by G1 +G2 the graph with vertex
set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G1). If a set of vertices V ′ or a set
of edges E′ is written where a graph is expected (e.g., G1 + E′ or G1 + V ′), we
interpret E′ as the graph (V (E′), E′) and V ′ as the graph (V ′, ∅). For v ∈ V (G)
we write N(v) or NG(v) for the neighbors of v and for S ⊆ V (G) we denote the
neighborhood of S by N(S) =

⋃
a∈S N(a) \S or NG(S); note that N(S)∩S = ∅.

A matching is a set of edges having no endpoints in common.
A split of a connected graph G is a partition of V (G) into two sets V1, V2

such that |V1| ≥ 2, |V2| ≥ 2 and every vertex in V1 with a neighbor in V2 has the
same neighborhood in V2 (this also means every vertex in V2 with a neighbour in
V1 has the same neighbourhood in V1). A graph G with a split (V1, V2) can be
decomposed into a graph G1 and a graph G2 so that G1 and G2 is the induced
subgraph of G on V1 and V2, respectively, except that an extra vertex v, called
a marker, is added, and also some extra edges are added to G1 and G2, so that
NG1(v) = NG(V2) and NG2(v) = NG(V1). If a graph G can be decomposed to
the two graphs G1 and G2, then G1 and G2 compose G. We denote this by
G = G1 ∗G2. A graph that cannot be decomposed (i.e., a graph without a split)
is called a prime. As all graphs of at most three vertices trivially is a prime,
when a prime graph has more than three vertices, it is called a non-trivial prime
graph. A split decomposition of a graph G is a recursive decomposition of G
so that all of the obtained graphs are prime. For a split decomposition of G
into G1, G2, . . . , Gk, a split decomposition tree is a tree T where each vertex
corresponds to a prime graph and we have an edge between two vertices if and
only if the prime graphs they correspond to share a marker. That is, the edge
set of the tree is E(T ) = {vivj : vi, vj ∈ V (T ) and V (Gi) ∩ V (Gj) 6= ∅}. To see
that this is in fact a tree, we notice that T is connected and that we have an
edge for each marker introduced. As there are exactly one less marker than there
are prime graphs, T must be a tree. See Figure 1 for an example.

Given a split decomposition of graph G with prime graphs G1, G2, . . . , Gk,
we define tot(v : Gi) recursively to be {v} if v ∈ V (G), and otherwise to be⋃
u∈V (Gj)\{v} tot(u : Gj) for the graph Gj 6= Gi containing the marker v in the

split decomposition. Another way of saying this latter part by the use of the
split decomposition tree T is: if v is not in V (G), then tot(v : Gi) is defined to
be the vertices of V (G) residing in the prime graphs of the connected component
in T [V (T )−Gi] where v is also located. From this last definition, we observe
that for a prime graph Gi in a split decomposition of G, the function tot on
the vertices of Gi partitions the vertices of V (G). For a set V ′ ⊆ V (Gi), we
define tot(V ′ : Gi) to be the union of tot(v : Gi) for all v ∈ V ′. For a set
S ⊆ V (G), the inverse function tot−1(S : Gi), is defined as the minimal set
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of vertices V ′ ⊆ V (Gi) so that S ⊆ tot(V ′ : Gi). We define the active set of
a vertex v ∈ Gi, denoted act(v : Gi) to be the vertices of tot(v : Gi) that are
contributing to the neighborhood of v in Gi. That is, act(v : Gi) is defined as
N(V (G) \ tot(v : Gi)). See Figure 1 for an example of tot() and act(). Note
that if G has a split decomposition into prime graphs G1, . . . , Gk, then for any
marker v there are exactly two prime graphs Gi and Gj containing v, and we
have tot(v : Gi) ∪ tot(v : Gj) = V (G).

Figure 1: Split decomposition tree of a graph G. The markers of each prime
graph are circled in red. An example of a split decomposition resulting in this
tree is: ((G1 ∗G2) ∗G3) ∗ (G4 ∗G5). Note that tot({v1, v3} : G2) = {d, e, f, g, h},
act(v1 : G4) = {b, d, e} and tot−1(a, f, g : G2) = {v1, v2}.

A branch decomposition (T, δ) of a graph G consists of a subcubic tree T (a
tree of maximum degree 3) and a bijective function δ from the leaves of T to the
vertices of G. For a graph G a cut (A,A) for A ⊆ V (G) is a bipartition of verices
of G. For a cut (A,B) of G, we say the edges in G with one enpoint in A and the
other in B cross the cut (A,B). In a branch decomposition (T = (VT , ET ), δ)
of a graph G, each edge e ∈ ET partitions V (G) into two parts: the vertices
mapped by δ from the leaves of one component of T −e, and the vertices mapped
by δ from the leaves of the other component. Thus each edge of T induces a cut
in G, namely the cut corresponding to that edge’s bipartition of V (G). For a
graph G, a cut function f : 2V (G) → N is a symmetric (f(A) = f(A)) function
on subsets of V (G). For a branch decomposition (T, δ) of G its f -width, for a
cut function f , is the maximum of f(A) over all cuts (A,A) of G induced by the
edges of T . For a graph G, its f -width, for a cut function f , is the minimum
f -width over all branch decompositions of G.

Vatshelle [18] defined the Maximum-Matching-width (MM-width) mmw(G) of
a graph G based on the cut function mm defined for any graph G and A ⊆ V (G)
by letting mm(A) be the cardinality of a maximum matching of the bipartite
graph G[A,A]. In his work, Vatshelle shows that there is a linear dependency
between the treewidth of a graph and the Maximum-Matching-width of the
graph.

Theorem 1 ([18]). Let G be a graph, then 1
3 (tw(G)+1) ≤ mmw(G) ≤ tw(G)+1

In this paper we define the split-matching-width smw(G) of a graph G based
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on the cut function sm defined for any graph G and A ⊆ V (G) by:

sm(A) =

{
1 if

(
A,A

)
is a split of G

mm(A) = max{|M | : M is a matching of G[A,A]} otherwise

A cut function f : 2V (G) → N is said to be submodular if for any A,B ⊆ V (G)
we have f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). The following very general result
of Oum and Seymour is central to the field of branch decompositions.

Theorem 2 ([15]). For symmetric submodular cut-function f and graph G of
optimal f-width k, a branch decomposition of f-width at most 3k + 1 can be
found in O∗(23k+1) time.

There is no abundance of submodular cut functions, but this result will be
useful to us.

Theorem 3. The cut function mm is submodular.

Proof. Let G be a graph and S ⊆ V (G). We will say that a matching M ⊆ E(G)
is a matching of S if each edge of M has exactly one endpoint in S, i.e. M is a
matching of the bipartite graph G[S, S]. To prove that mm is submodular, we
will show that for any A,B ⊆ V (G) and any matching MA∪B of A∪B and MA∩B
of A ∩ B, there must exist two matchings MA of A and MB of B so that the
multiset of edges MA ]MB is equal to the multiset MA∪B ]MA∩B . First notice
that each edge of MA∪B and MA∩B is a matching of either A or B (or both).
As the vertices in a matching have degree one, the multiset MA∪B ]MA∩B
of edges can be regarded as a set of vertex disjoint paths and cycles (note
though, we might have cycles of size two, as the same edge might be in both of
the matchings). We will show that for every such path or cycle P there exist
matchings MP

A for A and MP
B for B so that E(P ) = E(MP

A ) ∪ E(MP
B ). Note

that this suffices to prove the statement, as there will then also exist matchings
MA of A and MB of B so that E(MA) ] E(MB) = E(MA∪B) ] E(MA∩B), by
taking MA and MB as the disjoint union of each of the smaller matchings, for A
and B respectively, that exist for each path or cycle P in MA∪B ]MA∩B . Since
these paths and cycles are vertex-disjoint MA and MB will be matchings.

Thus, let P be a path or a cycle from MA∪B ]MA∩B. If P only contains
vertices of A ∩B and A ∪B, each edge of P is a matching of both A and B, so
we have the matchings by setting MA = P ∩MA∩B and MB = P ∩MA∪B . Since
the edges of E(P ) alternate between MA∪B and MA∩B , and since all edges from
MA∪B has an endpoint in A ∪B and all edges from MA∩B has an endpoint in
A∩B, there can be at most one vertex v in P belonging to (B \A)∪ (A \B) (it
may help to look at Figure 2 where it is clear that no path alternating between
blue and red edges can touch (B \ A) ∪ (A \ B) twice). If there exists such a
vertex v, assume without loss of generality that v ∈ B \ A. As each edge in
MA∩B ∩ P has exactly one endpoint in A ∩B, and P contains vertices only of
A ∩B,B \A and A ∪B, all the edges of MA∩B ∩ P has one endpoint in A and
one endpoint in (B \ A) ∪ A ∪B = A. So, MA∩B ∩ P is a matching of A. For
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MA∪B , by the same arguments, each edge in MA∪B ∩P must have one endpoint
in A ∪B and one endpoint in (B \ A) ∪ (A ∩ B) = B, making MA∪B ∩ P a
matching of B.

A \B

MA∪B

MA∩B

A ∩B

B \A

A ∪B

Figure 2: The edges of MA∩B and MA∪B

3 Computing an approximate sm-width decom-
position

In this section we design an algorithm that given a graph G finds a branch
decomposition of G having sm-width O(smw(G)2), in time FPT parameterized
by smw(G). The algorithm has four main steps:

1. Find a split decomposition of G into prime graphs G1, G2, ..., Gq.

2. For each Gi find a branch decomposition (Ti, δi) of sm-width O(smw(Gi)).

3. For each Gi restructure (Ti, δi) into (T ′i , δ
′
i) having the property that any

cut of Gi, induced by an edge of (T ′i , δ
′
i) and having split-matching value k,

is lifted, by the split decomposition of G, to a cut of G having split-matching
value O(k2).

4. Combine all the decompositions (T ′i , δ
′
i) into a branch decomposition of G

of sm-width O(smw(G)2).

For step 1 there exists a well-known polynomial-time algorithm by Cunning-
ham [6] and even linear-time ones, see e.g. [2] and see also [16] for the use of
split decompositions in general. For step 2 we are dealing with a prime graph
Gi, which by definition has no non-trivial splits and hence sm(Vi) = mm(Vi) for
all Vi ⊆ V (Gi) meaning that mmw(Gi) = smw(Gi). Furthermore, by Theorem 3
the cut function defining mmw is submodular so we can apply the algorithm
of Oum and Seymour from Theorem 2 to accomplish the task of step 2. Step
3 will require more work. Let us first give a sketch of step 4. Suppose for
each prime graph Gi of a split decomposition of G we have calculated a branch
decomposition (T ′i , δ

′
i) for Gi. If for every cut (X,V (Gi) \X) of Gi induced by
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an edge of (T ′i , δ
′
i) we have sm(tot(X : Gi)) ≤ t for some value t, then we can

generate a branch decomposition of G of sm-width at most t by for each pair of
prime graphs Gi, Gj sharing a marker, identifying the two leaves of respectively
(T ′i , δ

′
i) and (T ′j , δ

′
j) mapped to this marker (see figure 3).

Pi Pj

⇓

Figure 3: Combining the decomposition of prime graphs sharing a marker.
The prime graphs in a split decomposition tree to the left and their branch
decomposition trees – before and after combining them – to the right.

What remains is step 3, covered by Theorem 12. We need to relate sm(A)
of a cut (A, V (Gi) \ A) in prime graph Gi, induced by an edge of (T ′i , δ

′
i), to

sm(tot(A : Gi)) of the associated cut
(

tot(A : Gi), tot(A : Gi)
)

in G. This we

do by the series of lemmas from Lemma 4 to Lemma 10. The latter of these
lemmas use the notion of a heavy pair of vertices: In a graph G with smw(G) < k
and split decomposition into prime graphs G1, G2, ..., Gq we say that adjacent
vertices a, b ∈ V (Gi) are heavy if |act(a : Gi)| ≥ 3k and |act(b : Gi)| ≥ 3k. The
edge connecting a heavy pair is called a heavy edge.

Lemma 4. Let G be a graph and P a non-trivial prime graph in a split decom-
position of G. For any split (X,Y ) of G, there exist a vertex v ∈ V (P ) such
that either X ⊆ tot(v : P ) or Y ⊆ tot(v : P ).

Proof. Let XP = tot−1(X : P ) and YP = tot−1(Y : P ). Assume for contra-
diction that both |XP | ≥ 2 and |YP | ≥ 2. Since X ∪ Y = V (G), we have
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XP ∪ YP = V (P ). The fact that XP ∪ YP = V (P ) and |XP | ≥ 2, |YP | ≥ 2,
|V (P )| ≥ 4 implies that V (P ) has a partition into X ′P , Y

′
P with X ′P ⊆ XP and

Y ′P ⊆ YP , and |X ′P | ≥ 2 and |Y ′P | ≥ 2.
As P [X ′P , Y

′
P ] is isomorphic to an induced subgraph of G[X,Y ], and (X,Y )

is a split of G, (X ′P , Y
′
P ) must also be a split in P . However, as both X ′P and

Y ′P have cardinality at least 2, this contradicts the fact that a prime graph does
not have any splits.

Lemma 5. Let G be a graph, P a non-trivial prime graph in a split decomposition
of G and (T, δ) a branch decomposition of sm-width less than k. For a ∈ V (P )
and cut (X,Y ) in (T, δ), if |X ∩ act(a : P )| ≥ k and |Y ∩ act(N(a) : P )| ≥ k,
then (X,Y ) is a split.

Proof. Since X ∩ act(a : P ) and Y ∩ act(N(a) : P ) form a complete bipartite
graph with at least k vertices on each side, the mm-value of the cut (X,Y ) must
be at least k. And since (X,Y ) is a cut in a branch decomposition of sm-width
less than k, we conclude that (X,Y ) must be a split.

Lemma 6. For any two (not necessarily disjoint) vertex subsets A and B of
V (G), and in any branch decomposition (T, δ) of G, there must exist a cut (X,Y )

in (T, δ) so that |X ∩A| ≥
⌊
|A|
3

⌋
and |Y ∩B| ≥

⌊
|B|
3

⌋
.

Proof. For a single S ⊆ V (G) it is well known that since T is a ternary tree
with leaf set V (G) there exists a cut (XS , YS) in (T, δ) associated with an edge

(xS , yS) ∈ E(T ) so that |XS∩S| ≥ b |S|3 c and |YS∩S| ≥ b |S|3 c. Consider the path
in T starting in edge (xA, yA) and ending in edge (xB , yB). The cut associated
with any edge on this path will satisfy the statement in the lemma.

Lemma 7. Let G be a graph, P a non-trivial prime graph in a split decomposition
of G and (T, δ) a branch decomposition of sm-width less than k. If P has vertex
b such that |act(b : P )| ≥ 3k and |act(N(b) : P )| ≥ 9k, then there must exist
vertex a ∈ N(b) such that a and b form a heavy pair.

Proof. Assume for contradiction that this is not the case, and all vertices v ∈ N(b)
have |act(v : P )| < 3k. By Lemma 6 applied to A = act(b : P ) and B =
act(N(b) : P ), there must be a cut (X,Y ) in (T, δ) so that |act(b : P ) ∩X| ≥ k
and |act(N(b) : P ) ∩ Y | ≥ 3k. We first show that act(N(b) : P ) ⊆ Y and thus
|act(N(b) : P ) ∩ Y | ≥ 9k.

By Lemma 5, (X,Y ) is a split. Since no v ∈ N(b) has |act(v : P )| ≥ 3k the
fact that |Y ∩ act(N(b) : P )| ≥ 3k means that

∣∣tot−1(Y : P )
∣∣ ≥ 2. By Lemma 4,

this means X ⊆ tot(b : P ) and thus tot(N(b) : P ) ⊆ V \ X = Y and thus
act(N(b) : P ) ⊆ Y .

Again, by Lemma 6, applied to act(N(b) : P ) = A = B, there must exist a cut
(X ′, Y ′) in (T, δ) so that |X ′ ∩ act(N(b) : P )| ≥ 3k and |Y ′ ∩ act(N(b) : P )| ≥ 3k.
Since we have already shown that act(N(b) : P ) ⊆ Y and both (X,Y ) and
(X ′, Y ′) are cuts in (T, δ), either X ⊆ X ′ or X ⊆ Y ′. Without loss of generality,
let us assume X ⊆ X ′. Since there are at least 3k vertices of act(N(b) : P ) in
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Y ′ and at least k vertices of act(b : P ) in X ⊂ X ′, by Lemma 5 (X ′, Y ′) must
be a split. The assumption that all v ∈ N(b) have |act(v : P )| < 3k means that
tot−1(X ′ : P ) and tot−1(Y ′ : P ) contain at least two vertices from act(N(b) : P ),
which together with the fact that (X ′, Y ′) is a split is a contradiction of Lemma 4.
Therefore, our assumption was wrong, and there must exist vertex a ∈ N(b)
such that |act(a : P )| ≥ 3k.

Lemma 8. Let G be a graph, P a non-trivial prime graph in a split decomposition
of G and (T, δ) a branch decomposition of sm-width less than k. For any
heavy pair a, b in P we have that there must exist a cut (X,Y ) in (T, δ) where
tot−1(X : P ) = {a, b} and |N(X)| < k.

Proof. By the definition of a heavy pair, | act(a : P )| ≥ 3k and | act(b : P )| ≥ 3k.
We know, by Lemma 6 on act(a : P ) and act(b : P ) that there must exist a
cut

(
X1, X1

)
in (T, δ) where |act(b : P ) ∩X1| ≥ k and

∣∣act(a : P ) ∩X1

∣∣ ≥ k.
By Lemma 5, this cut must be a split, and by Lemma 4 either X1 ⊆ tot(b)
or X1 ⊆ tot(a). Without loss of generality, let X1 ⊆ tot(b). This means that
act(a : P ) ⊆ tot(a : P ) ⊆ X1. By Lemma 6 on act(a : P ), we know there is a
cut

(
X2, X2

)
in (T, δ) so that |act(a : P ) ∩X2| ≥ k and

∣∣act(a : P ) ∩X2

∣∣ ≥ k.

Since act(a : P ) ⊆ X1 and both
(
X1, X1

)
and

(
X2, X2

)
are cuts in (T, δ), either

X1 ⊆ X2 or X1 ⊆ X2. Without loss of generality, let X1 ⊆ X2. This means X2

contains vertices of act(a : P ) and of act(b : P ), and thus
∣∣tot−1(X2 : P )

∣∣ ≥ 2.

However,
(
X2, X2

)
is a split and X2 ∩ tot(a : P ) 6= ∅, so by Lemma 4, X2 ⊆

tot(a : P ).
Now, let A and B be the largest sets X2 ⊆ A ⊆ tot(a : P ) and X1 ⊆ B ⊆

tot(b : P ), so that there exist cuts
(
A,A

)
and

(
B,B

)
in (T, δ) (an equivalent way

of saying this is that
(
B,B

)
is the cut associated with the last edge along the path

in T from
(
X1, X1

)
to
(
X2, X2

)
so that B ⊆ tot(b : P ), and

(
A,A

)
is the cut

associated with the last edge from
(
X2, X2

)
to
(
X1, X1

)
where A ⊆ tot(a : P )).

By the above, such sets must exist. Since T is a cubic tree, the edge in E(T )
representing

(
B,B

)
must be adjacent to two other edges that represent two cuts

(R1, B ∪R2) and (R2, B ∪R1) where B = R1 ∪R2, as depicted in Figure 4. As
B ∩ A is empty, and there is a cut

(
A,A

)
, we have either A ⊆ R1 or A ⊆ R2.

Without loss of generality A ⊆ R2. By maximality of B ⊆ tot(b : P ) we have
R1\tot(b : P ) 6= ∅ and thus

∣∣tot−1(B ∪R1 : P )
∣∣ ≥ 2. However, (B∪R1, R2) must

be a split by Lemma 5, since there are at least k vertices of act(a : P ) in A ⊆ R2

and at least k vertices of act(b : P ) in (B ∪ R1). Furthermore, by Lemma 4,
R2 ⊆ tot(a : P ). However, as A ⊆ R2 is the largest set X2 ⊆ A ⊆ tot(a : P ) so
that

(
A,A

)
is in (T, δ), we have A = R2. This means the cut (R1, B ∪R2) is in

fact (R1, B ∪A) and thus tot−1(B ∪A : PG) = {a, b}.
Furthermore, since

∣∣tot−1(B ∪A : P )
∣∣ = 2 and |V (P )| ≥ 4, by Lemma 4

(R1, B ∪A) cannot be a split. The MM-value of a cut is the same as the smallest
vertex cover of the bipartite graph associated with cut. As all minimal vertex
covers of G[R1, A∪B] contain either at least k vertices of act(b : P )∩B, at least
k vertices of act(a : P ) ∩A, or all the neighbors of A and B in R1, we conclude
that N(A ∪B) < k.
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Figure 4: The two cuts incident to
(
B,B

)
in the decomposition.

From Lemma 8 we see that each vertex is incident to at most one heavy edge.
From this we deduce the following Corollary.

Corollary 9. For a non-trivial prime graph, its heavy edges form a matching.

Lemma 10. Let smw(G) < k and let P be a prime graph in a split decomposition
of G and let A ⊆ V (P ) with 2 ≤ |A| ≤ |V (P )| − 2. If no heavy edges cross the
cut (A, V (P ) \ A) in P and sm(A) < t with respect to P , then sm(tot(A : P ))
with respect to G is less than 9tk.

Proof. By König’s theorem the size of a maximum matching and size of a
minimum vertex cover in a bipartite graph is the same. Since P is a prime graph
it has no non-trivial splits and thus for P we have mm(Vi) = sm(Vi) for any
Vi ⊆ V (P ). Thus if mm(A) < t in P , there must exist a vertex cover C ⊆ V (P )
for P [A, V (P ) \ A] of cardinality less than t. Based on the vertices of C we
create a vertex cover C ′ ⊆ V (G) for the subgraph G[tot(A : P ), tot(A : P )] of G
having cardinality less than 9tk, proving that mm(tot(A : P )) < 9tk.

We start with C ′ = ∅ and add for each v ∈ C a set Cv to C ′. For any vertex
v ∈ C not part of any heavy pair in P , it follows from Lemma 7 and Lemma 8
that either |act(v : P )| < 3k or |act(N(v) : P )| < 9k. In both cases, there is a set
Cv ⊆ V (G) of size at most 9k that we add to C ′ so that each edge of G incident

with tot(v : P ) (and in particular those crossing the cut
(

tot(A : P ), tot(A : P )
)

)

has an endpoint in C ′. If on the other hand v is part of a heavy pair uv in
P , we note, by the assumption in the lemma, that u must be on the same
side as v in the cut (A, V (P ) \ A) of P . Again, it follows from Lemma 8 that
|act(N({u, v}) : P )| < k, so there is a set Cv ⊆ V (G) of size at most k that we
add to C ′ so that all edges in the subgraph G[tot(A : P ), tot(A : P )] incident to
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tot(v : P ) are covered by C ′. Doing this for every vertex v ∈ C will lead to a set
C ′ with |C ′| ≤ 9|C|k < 9tk. Furthermore, by the definition of a vertex cover,
and tot(), the set C ′ covers all the edges of E(G[tot(A : P ), tot(A : P )]).

When deleting a vertex any cut that was a split remains a split or results in
a cut with a single vertex on one side, and no new matchings are introduced.

Observation 11. The sm-width of a graph G is at least as big as the sm-width
of any induced subgraph of G.

Theorem 12. Let smw(G) < k and let P be a prime graph in a split decompo-
sition of G We can in O∗(8k)-time construct a branch decomposition (T ′P , δ

′
P )

of P so that for each cut (X,Y ) of P induced by an edge of (T ′P , δ
′
P ), the cut

(tot(X : P ), tot(Y : P )) of G has sm-value less than 54k2.

Proof. If P is a trivial prime graph, i.e. |V (P ) ≤ 3|, every cut (X,Y ) of P is
a split. This implies by the definition of a split decomposition that (tot(X :
P ), tot(Y : P )) in G also is a split of G. Hence, sm(tot(X : P )) of G equals one.

We now consider the case when P is non-trivial. Since P is isomorphic
to an induced subgraph of G (this follows directly from definition of split
decompositions) and smw(G) < k, by Observation 11, the sm-width of P is less
than k. Also, since P by definition has no splits, we have mmw(P ) = smw(P ) < k.
By Theorem 3 and Lemma 2, we can compute a branch decomposition (TP , δP )
of P with MM-width less than 3k in O∗(8k)-time. By a non-leaf edge of TP
we mean an edge with both endpoints an inner node of TP . The cut in P
induced by a non-leaf edge of (TP , δP ) will have at least two vertices on each
side. We call such cuts non-leaf cuts of P induced by (TP , δP ). Note that cuts
having one side containing a singleton X = {v} are easy to deal with, either
the singleton is a vertex of V (G) and then tot(X : P ) = {v}, or v is a marker
and the cut (tot(X : P ), tot(Y : P )) of G is a split, and thus in both cases
sm(tot(X : P )) = 1. For the remainder we consider only non-leaf cuts.

Denote by h(A) the number of heavy edges crossing the non-leaf cut (A, V (P )\
A). If none of the non-leaf cuts of P induced by (TP , δP ) have heavy edges
crossing them, i.e. h(A) = 0 for all non-leaf cuts, we apply Lemma 10 with
t = 3k and are done, getting for any cut (X,Y ) of P induced by an edge of
(TP , δP ) a bound of sm(tot(X : P )) ≤ 3k9k = 27k2. On the other hand, if some
non-leaf cuts of P induced by (TP , δP ) do have heavy edges crossing them, we
restructure the decomposition (TP , δP ) to a decomposition (T ′P , δ

′
P ) as follows:

for each heavy pair a, b in V (P ) crossing such a non-leaf cut we remove the leaf
in TP mapping to b and make a new leaf mapping to b as sibling of the leaf
mapping to a. By Corollary 9 the heavy edges in P form a matching, so this
is easily done for all heavy edges of P crossing non-leaf cuts, without conflicts.
Since all such heavy pairs are now mapped to leaves that are siblings of T ′P none
of the non-leaf cuts of P induced by (T ′P , δ

′
P ) will have a heavy edge crossing

them.
Let us look at how the restructuring altered the sm-value of non-leaf cuts.

Note that for each non-leaf cut (A′, V (P ) \A′) in (T ′P , δ
′
P ) there is an associated
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non-leaf cut (A, V (P ) \A) in (TP , δP ) with h(A) heavy edges crossing this cut,
such that we move between the two cuts by moving h(A) vertices across the
cut. We have mm(A′) ≤ mm(A) + h(A), as the maximum matching of a cut
can increase by at most one for each vertex moved over the cut. Moreover, by
Corollary 9 the heavy edges in P form a matching, which means that h(A) ≤
mm(A), implying mm(A′) ≤ 2 mm(A) ≤ 2 × 3k. We can therefore apply
Lemma 10 with t = 6k and this means we have sm(tot(A : P )) ≤ 6k9k = 54k2.

Theorem 13. Given a graph G with smw(G) < k, we can compute a branch
decomposition (T, δ) of G of sm-width less than 54k2 in O∗(8k)-time.

Proof. For any G′ in a split decomposition of G, be it a prime graph or a
composition of prime graphs, we claim the following: We can create a branch
decomposition (TG′ , δG′) of G′ so that for each cut

(
A,A

)
in (TG′ , δG′), the

sm-value of the cut (tot(A : G′), tot(A : G′)) in G is less than 54k2. We call this
latter cut the cut induced in G. We will give a proof of this by induction on the
number of splits in G′:

In the case that G′ does not have a split, it must be a prime graph and by
Theorem 12 the hypothesis holds. If on the other hand G′ does have a split, it
must be decomposed by two subgraphs G1 and G2 in the split decomposition
of G sharing a single marker v. By induction, these two graphs have such
branch decompositions (TG1 , δG1) and (TG2 , δG2) inducing cuts in G where the
sm-value is less than 54k2. We will now merge these two decompositions into a
decomposition (TG′ , δG′) for G′. What we do is to identify the vertex v in TG1

and v in TG2
(V (TG′) = V (TG1

)∪ V (TG2
) and E(TG′) = E(TG1

)∪E(TG2
)). By

also joining the mapping functions δG1
and δG2

in the natural way, we get a
branch decomposition (TG′ , δG′) of G′ where each cut induced in G is already
a cut induced in G by either (TG1 , δG1) or (TG2 , δG2). By induction (TG1 , δG1)
and (TG2 , δG2) only have cuts where the sm-value of all induced cuts is less than
54k2, so the same holds for (TG′ , δG′).

The recursive algorithm resulting from the above induction has a runtime of
O∗(8k) on each prime graph and no more than linear time of work (finding the
marker) in all other partially decomposed graphs in the decomposition, totalling
to a runtime of O∗(8k) since the number of prime graphs in a split decomposition
is polynomial in n.

4 Dynamic programming parameterized by sm-
width

In this section we solve MaxCut, Graph Coloring, Hamiltonian Cycle
and Edge Dominating Set on a graph G by a bottom-up traversal of a rooted
branch decomposition (T, δ) of G, in time FPT parameterized by the sm-width
of (T, δ). Previously, we did not define the tree T to be rooted, but this will
help guide the algorithm by introducing parent-child relationships. To root T ,

13



we first pick any edge of T and subdivide it. We then root the tree in the newly
introduced vertex, resulting in a rooted binary tree consisting of the exact same
cuts as the original decomposition.

In the bottom-up traversal of the rooted tree we encounter two disjoint
subsets of vertices A,B ⊆ V (G), as leaves of two already processed subtrees,
and need to process the subtree on leaves A ∪ B. There are three cuts of G
involved:

(
A,A

)
,
(
B,B

)
,
(
A ∪B,A ∪B

)
, and each of them can be of type split,

or of type non-split (also called type mm for maximum-matching). This gives six
cases that need to be considered, at least if we use the standard framework of
table-based dynamic programming. We instead use an algorithmic framework for
decision problems where we join sets of certificates while ensuring that the result
preserves witnesses for a ’yes’ instance. Under this framework, the algorithm for
MaxCut becomes particularly simple, and only two cases need to be handled
in the join, depending on whether the ’parent cut’

(
A ∪B,A ∪B

)
is a split or

not. For the other three problems we must distinguish between the two types of
’children cuts’ in order to achieve FPT runtime, and the algorithms are more
complicated.

Let us describe the algorithmic framework. As usual, e.g. for problems in
NP, a verifier is an algorithm that given a problem instance G and a certificate
c, will verify if the instance is a ’yes’-instance, and if so we call c a witness. For
our algorithms we will use a commutative and associative function ⊕(x, y), that
takes two certificates x, y and creates a set of certificates. This is extended to
sets of certificates XA, XB by ⊕(XA, XB) which creates the set of certificates⋃
xA∈XA,xB∈XB

⊕(xA, xB). For a graph decision problem, an input graph G, and
any X ⊆ V (G) we define cert(X) to be a set of certificates on only a restricted
part of G, which must be subject to the following constraints:

• If G is a ’yes’-instance, then cert(V (G)) contains a witness.

• For disjoint X,Y ⊆ V (G) we have ⊕(cert(X), cert(Y )) = cert(X ∪ Y ).

For FPT runtime we need to restrict the size of a set of certificates, and the
following will be useful. For X ⊆ V (G) and certificates x, y ∈ cert(X), we say
that x preserves y if for all z ∈ cert(X) so that ⊕(y, z) contains a witness, the
set ⊕(x, z) also contains a witness. We denote this as x �X y. A set S preserves
S′ ⊆ cert(X), denoted S �X S′, if for every x′ ∈ S′ there exists a x ∈ S so that
x �X x′. A certificate x ∈ cert(X) so that there exists a y ∈ cert(X) where
⊕(x, y) contains a witness, is called an important certificate.

For a rooted branch decomposition (T, δ) of a graph G and vertex v ∈ V (T ),
we denote by Vv the set of vertices of V (G) mapped by δ from the leaves of the
subtree in T rooted at v. With these definitions we give a generic recursive (or
bottom-up) algorithm called Recursive that takes (T, δ) and a vertex w of T
as input and returns a set S �Vw

cert(Vw), as follows:

• at a leaf w of T initialize and return the set cert({δ(w)})

• at an inner node w first call Recursive on each of the children nodes a
and b and then run procedure Join on the returned input sets S1, S2 of
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certificates, with S1 �VA
cert(Va) and S2 �Vb

cert(Vb), and return a set
S �Va∪Vb

⊕(S1, S2)

• at the root we will have a set of certificates S �V (G) cert(V (G))

Calling Recursive on the root r of T and running a verifier on the output
solves any graph decision problem in NP. Correctness of this procedure follows
from the definitions. The extra time spent by the verifier is going to be O∗(|S|),
and for an FPT algorithm we will require that all |S| be O∗(f(k)), i.e. FPT in
the sm-width k of (T, δ).

In the following subsections we show how to solve each of the respective four
problems in FPT time. A rough sketch of the idea of how this can be achieved
for each of the problems is shown below. A formal definition of each of the
problems is given in each of their respective subsections.

Maximum Cut. MaxCut is the one out of the four problems which has the
most simple algorithm. To compute a maximum cut, we will give an algorithm
to solve t-MaxCut, which instead of maximizing a cut asks for a cut of size at
least t. Running t-MaxCut for increasing values of t, will determine the size of
a maximum cut. The certificates for this problem is subsets of vertices and a
witness is a subset S so that the number of edges with one endpoint in S and one
in V (G) \ S is at least t (i.e., witnesses are cuts of size at least t). We show that
for a cut (A,A) and subsets S1 and S2 in cert(A), if the neighbourhood of S1

and S2 in A are the same, then one of the sets preserves the other in A. As this
number is bounded by 2 and 2mm(A), for split and non-split cuts, respectively,
we will be able to give an FPT algorithm for solving MaxCut.

Hamiltonian Cycle. For Hamiltonian Cycle, certificates are disjoint paths
or cycles, and a witness is a Hamiltonian cycle. The important information
is what neighbourhood the endpoints of each path has over the cut. For each
certificate we keep track of the number of path classes, which are sets of paths
with the same neighborhood over the cut, and the size of each such path class.
The total number of path classes over all certificates is also important. For a
split cut, the size of a class might be anything from 1 to n, but there will be
only one class in total. For a non-split cut of sm-value k, the total number of
path classes is bounded by 22k and since each path is vertex disjoint the number
of paths in any important certificate is bounded by k. Based on this the Join
operation will be able to find a FPT-sized set of certificates preserving a full set.

Chromatic Number. For Chromatic Number, we will actually solve t-
Coloring, which asks whether the input graph can be colored by at most t
colors, and from this conclude that Chromatic Number can be solved in the
same time when excluding polynomial factors. We note that a graph of sm-width
k, unlike graphs of treewidth k, may need more than k + 1 colors. We let all
partitions into t parts where the parts induce independent sets be our certificates.
What matters for a certificate is what kind of certificates it can be combined with
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to yield a new certificate, i.e. inducing an independent set also across the cut.
For non-split cuts, this means the number of important certificates is bounded
by the number of ways to t-partition the vertices in the k-vertex cover of the
cut, which is a function of k. For a split cut, what is important is the number of
parts of a partition/certificate that have neighbors across the cut. The certificate
minimizing this number will preserve all other certificates. Based on this the
Join operation will be able to find a preserving set of certificates of FPT-size.

Edge Dominating Set. For Edge Dominating Set (or t-Edge Dominat-
ing Set which is what we actually solve) the certificates are subgraphs of G
and a witness is a graph G′ = (V ′, E′) so that each vertex in V ′ is incident with
an edge in E′, and E′ is an edge dominating set of G of size at most t. The idea
of how to make an FPT Join-procedure is that for a vertex cover C of a cut,
the number of ways a certificate can project to C is limited by a function of the
size of C. Based on this we find a preserving set of FPT cardinality when |C| is
at most k. When |C| is not bounded by k, we have a split. For splits we limit
the max number of certificates needed for a preserving set by a polynomial of
n. This is because almost all edges on one side of the cut affect the rest of the
edges uniformly, and the other way around.

4.1 Maximum Cut

4.1.1 The Problem.

The problem t-MaxCut asks, for a graphG, whether there exists a setW ⊆ V (G)
so that the number of edges in G[W,W ] is at least t. For a set X, we denote by
δG(X) the number of edges in G[V (G) ∩X,V (G) \X] (note that X does not
need to be a subset of V (G)).

4.1.2 The certificates and ⊕.

For t-MaxCut, we define cert(X) for X ⊆ V (G) to be all the subsets of X,
and we define ⊕(x, y) to be the union function; ⊕(x, y) = {x ∪ y}. We solve
t-MaxCut by use of Recursive and the below procedure Joinmaxcut with
input specification as described above.

4.1.3 The Joinmaxcut function.

Procedure Joinmaxcut
Input: S1 �Va

cert(Va) and S2 �Vb
cert(Vb) with A = Va ∪ Vb

Output: S �A ⊕(cert(Va), cert(Vb)) = cert(A)

S′ ← {s1 ∪ s2 : s1 ∈ S1, s2 ∈ S2} /* note S′ = ⊕(S1, S2) */
S ← ∅
C ← a minimum vertex cover of G[A,A]
if
(
A,A

)
is a split then for z = 0, . . . , n do

c′← argmaxc∈S′{δG[A](c) :
∣∣N(A) ∩ c

∣∣ = z}
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S← S ∪ {c′}
else for all subsets SC ⊆ C do

c′← argmaxc∈S′

{
δG[A](c) : SC ∩A = c ∩A

}
S← S ∪ {c′}

return S

Lemma 14. Procedure Joinmaxcut is correct and runs in time O∗((|S1| |S2|)2k),
producing a set S of cardinality O(n+ 2k).

Proof. We see that S′ �A cert(A), since S′ = ⊕(S1, S2) �A cert(A), and S′ can
be calculated in time O∗(|S1| |S2|). Finding a vertex cover of a G[A,A] can be
done in polynomial time, since G[A,A] is a bipartite graph. Also, when

(
A,A

)
is not a split, then mm(A) ≤ k and |C| ≤ k. Combined with a polynomial
amount of work for each iteration of the for loops, and loops iterating at most
max{n, 2k} times (making the size of S also bounded by n + 2k), the total
runtime is O∗(|S| 2k).

To show that S �A S′ (and thus also S �A cert(A)) we have to make sure
that if there exists a witness x of t-MaxCut so that for xA ∈ S′ and xA ∈ cert(A)
we have {x} ⊆ ⊕(xA, xA), then there must exist a certificate x′ ∈ S so that
x′ �A xA. We assume there exists such a witness x with xA and xA defined as
above. We have two cases to consider; when (A,A) is a split, and when it is not.

We first consider the case when
(
A,A

)
is a split. Since x is a witness, δG(x) ≥

t. Let z =
∣∣N(A) ∩ x

∣∣. We have δG(x) = δG[A](xA)+δG[A](xA)+δG[A,A](x), and

δG[A,A](x) =
∣∣N(A) ∩ xA

∣∣ × |N(A) \ xA| = z |N(A) \ xA| . Since S contains

c ∈ S′ maximizing maxc∈S′{δG[A](c) :
∣∣N(A ∩ c)

∣∣ = z}, we have δG(⊕(c, xA)) =
δG(x) + δG[A](c) − δG[A](xA) ≥ δG(x) meaning ⊕(c, xA) is a witness, and so
S �A S′.

Now, consider the case when
(
A,A

)
is not a split (this means mm(A) ≤ k).

Let C be the vertex cover used in the procedure and xC be x ∩ C. As C
disconnects A and A, we have δG(x) = δG[A](xA) + δG[A](xA) + δG[A,A](xC). We

notice that for all c ∈ S′ so that c ∩ C = xA ∩ C, we have δG[A,A](⊕(c, xA)) =

δG[A,A](xC). Therefore, as S contains the certificate c of S′ where c maximizes

maxc∈S′
{
δG[A](c) : xA ∩ C = c ∩A

}
, we must have that δG(⊕(c, xA)) ≥ δG(x).

So ⊕(c, xA) is also a witness, and hence S � S′.

Theorem 15. Given a graph G and branch decomposition (T, δ) of sm-width k,
we can solve MaxCut in time O∗(8k).

Proof. In Lemma 14 we show Joinmaxcut is correct and produce a preserving
set S of size at most O∗(2k) in time O∗(|S1||S2|2k). So, using Recursive with
Joinmaxcut, we know the size of both of the inputs of Joinmaxcut is at most
the size of its output, i.e., |S1|, |S2| ≤ O∗(2k). So, each call to Recursive has
runtime at most O∗(8k). As there are linearly many calls to Recursive and
there is a polynomial time verifier for the certificates Recursive produces, by
the definition of �, the total runtime for solving t-MaxCutis also bounded by
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O∗(8k). To solve MaxCut, we run the t-MaxCut algorithm for all values of
t ≤ n2, and hence have the same runtime when excluding polynomials of n.

4.2 Hamiltonian Cycle

4.2.1 The problem.

For a graph G, a subgraph G′ of G where G′ is a cycle, we say that G′ is a
hamiltonian cycle of G if V (G′) = V (G). The decision problem Hamiltonian
Cycle asks, for an input graph G, whether there exists a hamiltonian cycle of
G.

4.2.2 The certificates and ⊕.

We notice for a set A ⊆ V (G) and hamiltonian cycle G′ of G that G′[A] is either
the hamiltonian cycle itself (if A = V (G)) or a set of vertex disjoint paths and
isolated vertices. For ease of notation, we will throughout this section regard
isolated vertices as paths (of length zero). That is, a certificate G′[A] is always
either a set of vertex disjoint paths or a cycle. Based on this observation, it
is natural to let cert(X) for X ⊆ V (G) on the problem Hamiltonian Cycle
be all subgraphs G′ of G so that V (G′) = X and G′ consists only of disjoint
paths or of a cycle of length |V (G)|. The witnesses of cert(V (G)) are exactly the
certificates that are hamiltonian cycles of G. Clearly a polynomial time verifier
exists, as we can easily confirm, in polynomial time, that a hamiltonian cycle in
fact is a hamiltonian cycle. Also, as cert(V (G)) contains all hamiltonian cycles
of V (G), it must contain a witness if G is a ’yes’-instance.

For disjoint sets A,B ⊂ V (G), Gx ∈ cert(A), and Gy ∈ cert(B), we define
⊕(Gx, Gy) to be the set of all certificates Gz = (A ∪ B, E(Gx) ∪ E(Gy) ∪ E′)
where E′ is a subset of the edges crossing (A,B). That is, ⊕(Gx, Gy) is the set of
all graphs generated by the disjoint union of Gx and Gy and adding edges from
G with one endpoint in A and one endpoint in B that are also valid certificates.
This is a valid definition for ⊕, as we have cert(A ∪B) = ⊕(cert(A), cert(B)).

4.2.3 The JoinHC function.

In Joinmaxcut(S1, S2) we first calculated S = ⊕(S1, S2), and later reduced
the size of S. However, by our definition of ⊕ for Hamiltonian Cycle,
even for certificate sets S1, S2 of restricted cardinality, the set ⊕(S1, S2) might
be huge. Therefore, in JoinHC we cannot allow to always run ⊕ inside our
algorithm. Instead we will for each pair of certificates in S1 and S2 construct a
set S′ � ⊕(S1, S2) where |S′| is bounded by an FPT function of n and k while
possibly S′ ⊂ ⊕(S1, S2).

Before we present the algorithm, we need to introduce a few key observations
and claims and give some new terminology.

For a certificate G′ ∈ cert(A) for A ⊂ V (G), each path P of G′ can be
categorized by an unordered pair (N1, N2) so that for its two endpoints v1 and v2
(or single endpoint v1 = v2 if P is an isolated vertex) we have N1 = N(v1)\A and
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N2 = N(v2) \A. We say that two paths are from the same class of paths if they
get categorized by the same unordered pair. Two certificates G′, G′′ ∈ cert(A)
are path equivalent if there exists a bijection σ between the paths of G′ and the
paths in G′′ so that for each pair of paths P ∈ G′ and σ(P ) ∈ G′′, the path P is
in the same path class as σ(P ).

Claim 16. For disjoint sets A,B ⊂ V (G) and certificates GA ∈ cert(A), GB ∈
cert(B), where GA consists of zA paths and GB consists of zB paths, we can
compute ⊕(GA, GB) in time O∗(24zAzB ).

Proof. From the definition ⊕(GA, GB) contains all valid certificates G′ where
G′ = GA ∪GB + E′ where E′ consists of edges crossing (A,B). As G′ must be
a valid certificate, each vertex must have degree at most 2, so each vertex of
A ∪B incident with an edge in E′ must have degree at most 1. As GA and GB
consist of only paths, the vertices of degree at most 1 are exactly the vertices
that occur as an endpoint of a path in either GA or GB . Therefore, E′ must be
a subset of the edges going from the at most 2zA endpoints in GA to the at most
2zB endpoints in GB . The number of such subsets is bounded by 2(2zA2zB), and
finding such a set we can do with a runtime of no more than a polynomial factor
larger than the size of this set.

Claim 17. For any subset A ⊂ V (G) and certificates G1, G2 ∈ cert(A), we have
G1 �A G2 if G1 is path equivalent to G2.

Proof. Suppose there is a certificate G3 ∈ cert(A) and witness W ∈ ⊕(G3, G2).
That means that for a set of edges EW ⊆ E(G[A,A]) we have W = G2∪G3+Ew.
From the definition of path classes and path equivalence, there exists a bijection
σ from paths of G2 to paths in G1 so that for each path P in G2 and edges
a1p1, a2, p2 ∈ EW so that p1, p2 are the endpoints of P , there must exist two
edges a1p

′
1, a1p

′
2 ∈ E(G[A,A]) where p′1, p

′
2 are the endpoints of σ(P ) in G1.

Thus, if replacing the edges EW with these edges, and replacing each path P in
G2 with the path σ(P ) of G3, we have an hamiltonian cycle. So, if ⊕(G2, G3)
contains a witness, so must ⊕(G1, G3).

Lemma 18. For A ⊂ V (G), if G′ is an important certificate of cert(A), then
the number of paths in G′ is at most mm(A).

Proof. Since G′ is an important certificate, there must exist a certificate G′′ ∈
cert(A) so that ⊕(G′, G′′) contains a witness. This means the paths of G′ and
G′′ can be joined together by edges E′ from G[A,A] to form a hamiltonian cycle
C. If we direct the cycle C, each path of G′ and of G′′ must be incident with
exactly one in-edge and one out-edge. By looking at the edges in E′ going from
A to A, we see that these edges make a matching of G[A,A], concluding that the
number of paths in G′ is at most the size of a maximum matching, i.e., mm(A).

For a certificate G′ ∈ cert(A) and path P of G′, we say that P is an isolated
path if one of its endpoints is not incident with an edge in E(G[A,A]). That is,
P is an isolated path if it is categorized by a pair containing an empty set.
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As each vertex of an hamiltonian cycle has degree exactly two, and for
two certificates G1 ∈ cert(A), G2 ∈ cert(A), each of the edges in certificate
G′ ∈ ⊕(G1, G2) is either in E(G1), E(G2), or E(G[A,A]), we get the following
observation.

Observation 19. If G′ is an important certificate, G′ can not contain any
isolated paths.

When computing ⊕(p, q) for certificates p and q of A1 and A2 that are both
splits, we know that the number of classes of paths in p and q is constant, since
all paths are categorized by the same pair. This enables us to bound the number
of ways needed to combine p and q in order to represent ⊕(p, q), since we know
a lot of them will be redundant. When, on the other hand, one of the two sets,
for instance A1, has mm(A1) ≤ k, then all paths going from A1 to A1 must go
through a separator of size ≤ k. Together with Observation 19 this implies that
each important certificate in cert(A1) can contain at most k paths. Using this
we will again be able to reduce the number of possible combinations of p and q
necessary to compute in order to get a set S �A ⊕(p, q).

Procedure JoinHC(on node w with children a, b and A1 = Va, A2 = Vb
and A = A1 ∪A2 and given S1 �A1

cert(A1) and
S2 �A2

cert(A2))

// Generating S �A cert(A)
S ← ∅
for each pair (G1, G2) in S1 × S2 do

add G1 ∪G2 to S
P1, P2 ← the sets of paths in G1 and G2, respectively
V1, V2 ← the sets of endpoints of P1 and P2, respectively
if |P1| > mm(A1) or |P2| > mm(A2) then continue

if neither (A1, A1) nor (A2, A2) is a split then
add to S the set {G1 ∪G2 + E′ : E′ ⊆ E(G[V1, V2])}

else if both of (A1, A1) and (A2, A2) are splits then
for integers 1 ≤ z ≤ z′ ≤ min {|P1| , |P2|} do

P ′ ← result of connecting z′ paths in P1 and z′ paths in P2

together by edges crossing (A1, A2) to form z new paths
add to S the subgraph P1 ∪ P2 ∪ P ′

else //exactly one of (A1, A1) and (A2, A2) is a split
s← either 1 or 2, so that (As, As) is a split
r ← 3− s // the index opposite of s
remove all but 2 |Pr| of Gs’s paths from Ps
V ′s ← the set of endpoints of the now smaller set P1 of paths
add to S all of {(G1 ∪G2) + E′ : E′ ⊆ E(G[Vs, Vr])}

// Reducing the size of S
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remove from S all certificates that are invalid, contain isolated paths, or
contain more than mm(A) paths

for G1, G2 ∈ S do
remove G2 from S if G1 and G2 are path equivalent

return S

Lemma 20. Procedure JoinHC is correct and runs in time O∗(|S1|2 |S2|2 216k
2

),

producing a set S of cardinality O(n+ 4k
2

).

Proof. We will first give a proof of the correctness of the algorithm, and then
give an analysis of the runtime. To prove the correctness, we must show that for
every important certificate Gx ∈ ⊕(S1, S2), there exists a certificate G′x ∈ S so
that G′x �A Gx, and give a bound on the size of S.

As the algorithm iterates through all pairs Ga, Gb ∈ S1 × S2, we know that
for some Ga, Gb, we have Gx ∈ ⊕(Ga, Gb). Now, let us look at the iteration of
the algorithm where G1 = Ga and G2 = Gb. That is, Gx ∈ ⊕(G1, G2). The cuts(
A1, A1

)
and

(
A2, A2

)
can either both be splits, be one split and one non-split,

or both be non-splits.
The algorithm will set V1 and V2 to be the set of vertices in G1 and G2,

respectively, of degree at most one. As each vertex in a (hamiltonian) cycle has
degree exactly two, no vertex can have degree three or more in an important
certificate. This means that for the case when neither (A1, A1) nor (A2, A2) is a
split, when the algorithm adds {G1 +G2 + E′ : E′ ⊆ E(G[V1, V2])}, it is clear
that this set preserves ⊕(G1, G2).

Now suppose exactly one of (A1, A1) and (A2, A2) is a split. Without loss of
generality, let (A2, A2) be the split. That is, in the algorithm we have A1 = As
and A2 = Ar in the algorithm. Notice that as each path has two endpoints,
for Gx to be a valid and important certificate, the total number of paths in G1

where at least one of its endpoints is incident with an edge in E(G[V1, V2]) in
Gx is at most 2|P2|. Furthermore, as each path of G1 is in the same path class,
since (A1, A1) is a split, it does not matter exactly which particular ≤ 2|P2|
paths of G1 gets incident with an edge of E(G[V1, V2]). So, when the algorithm
removes paths from P1, since at least 2|P2| of them remain (or all of them, if
|P1| ≤ 2|P2|), the set {G1 +G2 +E′ : E′ ⊆ E(G[V ′1 , V2])} where V ′2 is the set of
endpoints of the shrinked set of paths P1, preserves ⊕(G1, G2).

For the final case, when both (A1, A1) and (A2, A2) are splits, we see that each
path of Gx can be one of at most three types of paths: (1) (N(A1)\A,N(A1)\A),
(2) (N(A2) \ A,N(A2) \ A), or (3) (N(A1) \ A,N(A2) \ A). From this we can
conclude that a valid certificate G′x of cert(A) preserves Gx if G′x contains
exactly the same number of paths as Gx from each of the three path types
mentioned. Let π1, π2 and π3 be the number of paths in Gx of type (1),(2),
and (3), respectively. The algorithm iterates through all integer values of z and
z′ ≥ z between 1 and min{|P1|, |P2|}. In particular, at one iteration, z = π3 and
z′ = |P1| − π1 = |P2| − π2. Therefore, connecting z′ of the paths in |P1| and |P2|
together to form z = π3 new paths of type (3), we have in effect generated a
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certificate preserving Gx. For the case when π = 0, the algorithm will not iterate
through z = 0. However, in this case Gx = G1 ∪ G2 which we have already
added to S in the very start of the main loop for G1 and G2.

From this, we can conclude that the set S generated before the last part
of the algorithm, where we reduce its size, preserves ⊕(S1, S2). As we have
already shown that path equivalent certificates preserve each other, the last step
of reducing the size of S is going to maintain the fact that S �A ⊕(S1, S2).

At the end of the algorithm, there are no invalid certificates in S, or certificates
containing isolated paths. Also, no two certificates in S are path equivalent, so
we have the following regarding the size of S: When (A,A) is a split, there are at
most n path classes, so the size of S is bounded by n. When (A,A) is not a split,
we know each certificate contains at most mm(A) paths. Furthermore, as the
minimum vertex cover of a bipartite graph is of the same size as the maximum
matching of the same graph, there is a vertex cover C of G[A,A] of size at most
mm(A). This means that each neighbourhood over A (N(S) \ A for some set
S ⊆ A) is one of at most 2mm(A) possibilities. This means that each path can
be represented by one of at most (2mm(A))2 pairs of neighbourhoods. As each
certificate contain at most mm(A) paths, we can conclude that the cardinality

of S is no more than ((2mm(A))2)mm(A) ≤ 4k
2

.
For the runtime of the algorithm, we notice that the first main loop runs at

most |S1|×|S2| times. For each iteration we do at most O(28k
2

) operations (worst
case is when exactly one of (A1, A1) and (A2, A2) is a split – then |V ′s | ≤ 4k and

|Vr| ≤ 2k). So, we do at most O∗((|S1| · |S2|)28k2) operations on the first part.
For the latter part, the size of S is bounded by the runtime of creating it, i.e.,
S is bounded by O∗((|S1| · |S2|)28k2). So, as the algorithm in the end iterates

through all pairs of elements in S, the final runtime is O∗((|S1|2 |S2|2)216k2).

Theorem 21. Given a graph G and branch decomposition (T, δ) of sm-width k,

we can solve Hamiltonian Cycle in time O∗(224k2).

Proof. In Lemma 20 we show the procedure JoinHC is correct and runs in time
O∗(|S1|2 |S2|2 216k2), producing a set S of cardinality O(n + 4k

2

). So, using
Recursive with JoinHC , we know the size of both of the inputs of JoinHC is at
most the size of its output, i.e., |S1|, |S2| ≤ O∗(4k

2

). So, each call to Recursive

has runtime at most O∗(224k2). As there are linearly many calls to Recursive
and there is a polynomial time verifier for the certificates Recursive produces,
by the definition of �, the total runtime is also bounded by O∗(224k2).

4.3 t-Coloring

4.3.1 The problem.

The decision problem t-Coloring asks for an input graph G, whether there
exists a labelling function c of the vertices of V (G) using only t colors in such a
way that no edge has its endpoints labelled with the same color. Equivalently, it
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asks whether there exists a t-partitioning of the vertices so that each part induces
an independent set. For simplicity, we will allow empty parts in a partition (e.g.,
{{x1, x2, x3}, {x4}, ∅, ∅, ∅} is a 5-partition of {x1, x2, x3, x4}).

For a set A and partition p = {p1, p2, . . . , pj}, we denote by A∩p the partition
{p1 ∩A, p2 ∩A, . . . , pj ∩A}.

4.3.2 The certificates and ⊕.

For t-Coloring, we define cert(X) for X ⊆ V (G) to be all t-partitions of X and
⊕(p, q) for p = p1, . . . , pt and q = q1, . . . , qt to be the following set of partitions⋃

i≤t

{{
pi ∪ qσ(i)

}}
: σ is a permutation of {1, . . . , t}

 .

This satisfies the constraint ⊕(cert(X), cert(Y )) = cert(X ∪ Y ), so it is a valid
definition of ⊕.

We can easily construct a polynomial time algorithm that given a t-partition p
of independent sets (which there must exist at least one of if G is a ’yes’-instance)
is able to confirm that G is a ’yes’-instance. So t-partitions of V (G) forming
independent sets will be our witnesses.

4.3.3 The Joincol function.

The main observation for the design of this procedure is that whenever
(
A,A

)
is

a split, there exists a single element x ∈ cert(A) so that {x} �A cert(A). Also,
when mm(A) < k, there is a separator of A and A that intersect by less than k
parts of any witness. In the procedure Trimcol below we use this to trim the
number of certificates to store at each step of the algorithm; if two certificates
“projected” to the separator of A and A is the same partition, we only store one
of them. This results in less than kk certificates to store.

For two t-partitions P , Q, we say that we merge P and Q when we generate a
new partition R by pairwise combining the parts (by union) of P with the parts
of Q in such a way that R is a t-partition where each part is an independent set.
If P and Q can be merged, we say that P and Q are mergeable.

Lemma 22. Given two t-partitions P and Q, deciding whether P and Q are
mergeable, and merging P and Q if they are, can be done in polynomial time.

Proof. We can check whether P and Q are mergeable by reducing it to deciding
whether a bipartite graph has a perfect matching: We generate a bipartite graph
B = (P,Q) where each vertex/part p ∈ P is adjacent to q ∈ Q if and only if p∪ q
is an independent set. When P and Q partition sets that do not intersect, then
we can merge P and Q by for each edge in the matching, combine the respective
parts the edge is incident with. If there is no perfect matching in B, then that
must mean there is no way of pairwise combining the parts of P with the parts
Q so that all combined parts are independent.
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If P contain parts that share elements with parts of Q, then we know these
parts must be combined in all merged partitions, so we combine all these sets
and then run the above reduction to perfect matching (on the parts that do not
have intersecting elements). If a part intersect with more than one other part,
then P and Q cannot be merged.

Lemma 23. Let A be a subset of V (G), C ⊆ V (G) a separator of A and A,
and PA and PC be t-partitions of A and C, respectively. If PC and PA merge to
a t-partition P ′A, then for any set B ⊆ (C ∪A) and t-partition PB of B, PB is
mergeable with P ′A if and only if PC is mergeable with PB.

Proof. For the forward direction, we notice that for any t-partition P ′ resulting
from merging P ′A with PC , the t-partition P ∗ = P ′ ∩ (C ∪ B) is a result of
merging P ′A ∩ (C ∪ B) = PC with PB ∩ (C ∪ B) = PB, and hence PC and PB
are mergeable.

We will prove the backwards direction by constructing a partition P ′ which is
the result of merging P ′A with PB . As PC partitions exactly the set C, and both
PA merge with PC to a t-partition P ′A and PB merge with PC to a t-partition
P ′B , there is an ordering of the parts of P ′A and P ′B so that the i-th part of P ′A
intersected with C equals the i-th part of P ′B intersected with C. We let P ′ be
the multiset resulting from pairwise combining the i-th part of P ′A with the i-th
part of P ′B . As the only vertices that occur in parts of both P ′A and of P ′B is the
set of vertices C, by combining the parts based on the ordering we described, we
have made sure that each vertex appear in exactly on part of P ′, and hence P ′

is a t-partition.
To show that each part in P ′ is an independent set, we assume by contradiction

that two adjacent vertices x and y are in the same part of P ′. By how we
constructed P ′, no two vertices in different parts in either P ′A or P ′B will be
in the same part in P ′. Therefore, as P ′A partitions A ∪ C into parts that are
independent sets, and P ′B does the same for B ∪ C, if x and y are adjacent and
in the same part, one of them must be in A \C and the other in B \C. However,
C disconnects A and B, and hence no edge exists between vertices in A \ C and
B \ C, contradicting that x and y are adjacent.

Procedure Trimcol (on input S ⊆ cert(A), with A ⊆ V (G))

remove from S the partitions containing parts that are not independent sets
if
(
A,A

)
is a split then

mark one certificate P ′ ∈ S where
the number of non-empty parts in N(A) ∩ P ′ is minimized

else
C ← minimum vertex cover of A
for each t-partition PC of C do

mark one certificate P ′C ∈ S which is mergeable with PC
return the marked certificates of S
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Lemma 24. The procedure Trimcol with input S ⊆ A for A ⊆ V (G) returns a
set S′ �A S of size at most sm(A)sm(A), and has a runtime of O∗(|S| sm(A)sm(A)).

Proof. The runtime is correct as a result of the fact that merging (Lemma 22)
takes polynomial time to execute, and it produces a set S′ ⊆ S of cardinality at
most 1 = sm(A)sm(A) if (A,A) is a split, and cardinality at most mm(A)mm(A) =
sm(A)sm(A) otherwise. We now show that S′ �A S:

For contradiction, let us assume there exists a certificate Pw ∈ cert(A) so that
for a certificate P ∈ S the set ⊕(Pw, P ) contains a witness, while ⊕({Pw} , S′)
does not contain a witness. Let us first assume

(
A,A

)
is a split:

As
(
A,A

)
is a split, each part of P is either adjacent to all of N(A), or not

adjacent to A at all. Let z be the number of parts in P that are adjacent to
all of N(A). This also means z is a lower bound to the number of parts in Pw
that do not have neighbours in A. In Trimcol we mark (and thus output) one
certificate P ′ where at most z parts have neighbours A. Thus for each of the at
most z parts in P ′ that are adjacent to A, there is a part in Pw not adjacent to
any vertex in A. So, we can conclude that P ′ and Pw can be merged together to
form a witness. This contradicts that ⊕({Pw} , S′) does not contain a witness
when

(
A,A

)
is a split.

Now, let us assume
(
A,A

)
is not a split. Let W be a witness in ⊕({Pw} , S).

For the vertex cover C, we have the following smaller t-partitions of W ; PC =
W ∩ C and PW = W ∩ C. By Lemma 23, as C disconnects A from the rest of
the graph, any t-partition of A mergeable with PC is mergeable with PW . The
algorithm assures that for all t-partitions PC of C, whenever a t-partition in S
is mergeable with PC , at least one t-partition mergeable with PC exists in S′.
From this we can conclude that ⊕{Pw} , S′ preserves ⊕({Pw} , S).

Procedure Joincol( on node w with children a, b and A1 = Va, A2 = Vb
and A = A1 ∪A2 and given S1 �A1 cert(A1) and
S2 �A2 cert(A2))

S ← ∅
C1, C2 ← minimum vertex cover of G[A1, A1] and G[A2, A2], respectively

for P1 ∈ S1 and P2 ∈ S2 do
N1 ← parts of P1 not adjacent to N(A1)
N2 ← parts of P2 not adjacent to N(A2)

if both (A1, A1) and (A2, A2) are splits then
for 0 ≤ z ≤ min {|N1| , |N2|} do

add to S a t-partition generated (if possible) by
merging the two partitions P1 and P2 together
in such a way that exactly z of the parts of N1

is merged with parts of N2
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else if neither (A1, A1) nor (A2, A2) is a split then
for each t-partition Pc of C1 ∪ C2 do

if both P1 and P2 are mergeable with Pc then
P c1 ← merge Pc and P1

P ′ ← merge P c1 and P2

add P ′ ∩ (A ∪B) to S

else
assign s, r ∈ {1, 2} so that (As, As) is the split and r 6= s
for each t-partition Pc of Cr mergeable with Pr do

for each subset Q of the non-empty parts of Pc do
Pq ← merge (if possible) Pc with Ps so that Q is exactly the

non-empty parts of Pc that get combined with Ns
P ′ ← the t-partition generated by merging Pq with Ps
add to S the t-partition P ′ ∩ (A ∪B)

return Trimcol(S)

Lemma 25. Procedure Joincol is correct and runs in time O∗(|S1| |S2| k3k),
producing a set S of cardinality O(kk).

Proof. We will go through the three cases in the algorithm (when zero, one or
two out of the two cuts (A1, A1) and (A2, A2) are splits), and show that for each
pair (P1, P2) of certificates in S1 × S2, the output of the algorithm preserves
⊕(P1, P2). As the last line of the algorithm assures that the output preserves S
(by Lemma 24) and the cardinality of the output is of the correct size, we only
need to show that S preserves ⊕(P1, P2) and that the runtime is correct.

Suppose neither of the two cuts are splits. In this case, whenever there
exists a certificate of ⊕(P1, P2) mergeable with a t-partition PC of the separator
C = C1 ∪C2 of A and A, the algorithm assures that there is going to be at least
one t-partition of A in S mergeable with PC . By Lemma 23, this means S is
going to preserve ⊕(P1, P2).

If both of the two cuts are splits, then for each part pi of every t-partition of
A the neighbourhood N(pi) \A, must either be empty, N(A1), N(A2), or N(A).
In this case the algorithm generates, for each possible z so that there exists an
important certificate P ∗ ∈ ⊕(P1, P2) where the number of parts with empty
neighbourhoods is exactly z (and thus, the number of parts with neighbourhood
equal N(A1), N(A2) and N(A), is |N2| − z, |N1| − z, and t − |N1|+ |N2|+ z,
respectively), generates a t-partition of independent sets where there the same
number of parts with each of the particular four neighbourhoods is equal to
the number of parts of each neighbourhood for P ∗. We can observe that when
two t-partitions over the same set both consist of only independent sets, and
there is a correspondence between the parts of both partitions so that the
neighbourhood in A of each pair of corresponding parts is the same, the two
partitions are mergeable to exactly the same t-partitions of A. Therefore, the

26



set of t-partitions the algorithm generates in the case when both cuts are splits,
preserves ⊕(P1, P2).

If exactly one of the cuts are splits, let us assume without loss of generality
that (A1, A1) is the split. As above, each part of P1 is one of two types; adjacent
to N(A1), or not adjacent to N(A1). When C is a vertex cover of G[A2, A2], for
each important certificate P ∗ ∈ ⊕(P1, P2), we have a t-partition PC = P ∗ ∩ C
of C. Of the parts in Pc, some subset Z of the non-empty parts get combined
with the parts of P1 that do not have any neighbours in N(A1) and the rest of
the non-empty parts get combined with the other type of parts in P1. Since
C disconnects A2 from the rest of the graph, there must be a bijection from
each part in P ∗ to parts with the exact same neighbourhood in N(A) for the
t-partition generated by the algorithm in the last if/else case, for Q = Z. This, in
turn, means that the two partitions preserve each other, and so we can conclude
that the set of certificates the algorithm produces preserves ⊕(P1, P2).

The runtime of the algorithm we get as follows: Excluding polynomials of
n, we get the worst case runtime when neither A1 nor A2 are splits. Then S
grows to be as large as k2k (the number of t-partitions of C1 ∪ C2) for each
pair of certificates in S1 × S2. This implies a runtime of O∗(|S1| |S2| k2k) for
the entire part before the execution of Trimcol, which by Lemma 24 takes
O∗(|S1| |S2| k3k)-time given the size of S.

Theorem 26. Given a graph G and branch decomposition (T, δ) of sm-width k,
we can solve Chromatic Number in time O∗(k5k).

Proof. In Lemma 25 we show Joincol is correct and runs in time O∗(|S1| |S2| k3k),
producing a set S of cardinality O(kk). So, using Recursive with Joincol, we
know the size of both of the inputs of Joincol is at most the size of its output, i.e.,
|S1|, |S2| ≤ O∗(kk). So, each call to Recursive has runtime at most O∗(k5k).
As there are linearly many calls to Recursive and there is a polynomial time
verifier for the certificates Recursive produces, by the definition of �, the total
runtime is also bounded by O∗(k5k). To solve Chromatic Number when we
have an algorithm for t-Coloring, we simply run the t-Coloring algorithm
for each value of t ≤ n, giving the same runtime for Chromatic Number when
excluding polynomial factors of n.

4.4 Edge Dominating Set

4.4.1 The problem.

The decision problem t-Edge Dominating Set asks for an input graph G,
whether there exists a set E′ ⊆ E(G) of cardinality at most t, so that for each
edge e ∈ E(G) either e ∈ E′ or e shares an endpoint with an edge e′ ∈ E′. We
say that an edge e′ ∈ E′ dominates e ∈ E(G) if e and e′ share an endpoint.

4.4.2 The certificates and ⊕.

For t-Edge Dominating Set, we define cert(X) for X ⊆ V (G) to be all
subgraphs of G[X]. This might seem odd, as we are looking for a set of edges.
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However, for a certificate G′ ∈ cert(X), the set V (G′) is going to make the
algorithm simpler. A witness will be a subgraph Gw such that E(Gw) is an edge
dominating set of size at most t and each vertex of V (Gw) is incident with an
edge of E(Gw). Checking the latter can obviously be done in polynomial time
and checking that E(Gw) is an edge dominating set of size at most t can also be
done in polynomial time since t-Edge Dominating Set is in NP.

For disjoint sets A,B ⊆ V (G) and certificates GA ∈ cert(A) and GB ∈
cert(B), we define ⊕(GA, GB) to be the set

{GA +GB + E′ : E′ ⊆ E(G[V (GA), V (GB)])} .
We can see that this definition satisfies cert(A ∪B) = ⊕(cert(A), cert(B)).

4.4.3 The Joineds function.

Given a graph G′ and vertex v ∈ V (G′), we say that v is an isolated vertex of
G′ if it is not incident with any edge of E(G′). If a vertex is not isolated, it is
non-isolated. We say a set of edges E′ span a set of vertices X if X ⊆ V (E′).
We denote by I(G′) the isolated vertices of G′.

We say that a certificate G′ ∈ cert(A) is locally correct if all edges in G[A]
have an endpoint in V (G′) and all the isolated vertices of V (G′) are in N(A). A
certificate is locally incorrect if it is not locally correct. We see that a certificate
in cert(A) which is locally incorrect cannot also be an important certificate as
there exists an edge in G[A] which is not dominated by edges in E(G′) and
cannot be dominated by edges in G[A,A].

We observe that for two locally correct certificates G1, G2 ∈ cert(A), if
N(A) ∩G1 = N(A) ∩G2 and the isolated vertices of G1 equal those of G2, then
G1 �A G2 if |E(G1)| ≤ |E(G2)|.
Lemma 27. Given a graph G without isolated vertices and a subset A ⊆ V (G),
a minimum cardinality set X ⊆ E(G) of edges spanning the vertices A can be
found in polynomial time.

Proof. Let M be a maximum matching of G[A]. Any set spanning A must be
of size at least |M |+ (|A| − 2|M |) = |A| − |M |, as otherwise there must exist a
matching in G[A] larger than M . Let R be the set of vertices in A not incident
with any edge in M . As no vertex of G is isolated, each vertex in R is incident
with at least one edge in G. Thus, we can easily find a set ER of |R| edges
spanning R. We claim that the set X = M ∪ ER is a minimum cardinality set
of edges spanning A; Clearly X spans A, as each vertex not spanned by M is by
definition spanned by ER. Furthermore, the size of R is exactly |A| − 2|M |, so
the size of X is |M |+ (|A| − 2|M |) = |A| − |M |. Hence, the set X is a minimum
cardinality set spanning A.

As usual, our join-procedure will consist of a part where we join together
pairs of certificates, imitating ⊕, and a part where the size of the output is
reduced using a trim-procedure that ensures the output is preserving. For the
Edge Dominating Set-problem, the trimming part consists of two procedures;
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one for when the cut in question is a split, and one for when it is not a split. We
first present the simplest of the two, namely the one used when the cut is a split
(Trimeds-split).

Procedure Trimeds-split (on S ⊆ cert(A) where (A,A) is a split)

remove from S all locally incorrect certificates
for each 0 ≤ x1, x2 ≤ n do

mark one certificate G′ ∈ S of minimized |E(G′)| where
x1 equals |I(G′)|, and
x2 equals

∣∣V (G′) ∩N(A))
∣∣

return all the marked certificates in S

Lemma 28. The procedure Trimeds-split on S ⊆ cert(A) for A ⊆ V (G) where
(A,A) is a split, returns a set S′ ⊆ S so that S′ �A S and |S′| ∈ O(n2) in
O∗(|S|)-time.

Proof. The algorithm clearly does (n+ 1)2 number of iterations in the for-loop,
and for each of these iterations it iterates through the list S. For each element
in S, it does a polynomial amount of work, so the total runtime is O∗(|S|).
Furthermore, at most one element is marked to be put in the output at each
iteration, so the output of the algorithm is of size O(n2).

For the correctness of the algorithm, notice that for any two locally correct
certificatesG1, G2 ∈ cert(A), if |I(G1)| = |I(G2)| and |V (G1)∩N(A)| = |V (G2)∩
N(A)|, then G1s preserves G2. This is because each vertex in N(A) is adjacent
to exactly the same vertices of A, and so for any set X2 ⊆ N(A), if there is a
set of edges spanning X ⊂ A and X1 ⊆ N(A), there is also a set of edges of the
same cardinality spanning X2 and X as long as |X2| = |X1|.

Now we describe the trim-procedure for when the respective cut is not a
split (Trimeds-non-split). This procedure is more complicated than Trimeds-
split. The core idea of the procedure is that when Ga +Ga + Ew ∈ ⊕(Ga, Ga)
is a witness, then also for any locally correct certificate Gi, the certificate
Gi + Ga + E′w ∈ ⊕(Gi, Ga) is also a witness, as long as V (Gi) ∪ V (Ga) is a
vertex cover of G[A,A], E′w spans I(Gi) and the vertices in V (Ew) ∩ A, and
|E(Gi)|+ |E′w| ≤ |E(Ga)|+ |Ew|.
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Procedure Trimeds-non-split (on S ⊆ cert(A))

remove from S all locally incorrect certificates
C ← minimum vertex cover of G[A,A]
for all Q ⊆ R ⊆ C do
Ra ← R ∩A
Ra ← R ∩A
mark one certificate Gi ∈ S minimizing |Ei|+ |E(Gi)| where:
V (Gi) ∩ C = Ra,
C \ (Ra ∪A) ⊆ N(V (Gi)), and
Ei ← a minimum subset of E(G[V (Gi), Ra]) spanning (I(Gi) ∪Ra) \Q

(if no such Gi exists, then don’t mark any certificate)
return the set of all the marked certificates in S

Figure 5: As described in the proof of Lemma 29. The dotted lines constitute
the set EI .

Lemma 29. Procedure Trimeds-non-split produces a set S′ �A S of size at
most 3mm(A) in time O∗(3mm(A)|S|).

Proof. The size of S′ is apparent from the fact that we iterate through all sets
Q ⊆ R ⊆ C (at most 3mm(A) triples), and mark one certificate in S to later be
put in the output set. When deciding which certificate to mark, we possibly
search through the entire set S, and do a polynomial amount of work on each
certificate in S to check if it is the certificate that should be marked in this
iteration. This gives a total runtime of O∗(3mm(A)|S|).

By the definition of the �A-relation, we have S′ �A S if for every important
certificate Ga ∈ S and Ga ∈ cert(A) so that ⊕(Ga, Ga) contains a witness, the
set ⊕(S′, {Ga}) also contains a witness.

Let Gw = Ga + Ga + Ew be a witness of ⊕(Ga, Ga). We show that the
algorithm will mark a certificate Gi so that the set ⊕(Gi, Ga) also contains a
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witness, thereby establishing the lemma. By our definition of ⊕, the set Ew is a
subset of edges from E(G[V (Ga), V (Ga)]). Let R′ be the vertices of V (Gw) ∩C
and let EI be the edges of Ew where one endpoint is in C ∩ A and the other
endpoint is in A \ C. Note that EI must span the set I(Ga) \R′. We let Qa be
the set of vertices in R′ ∩A that are incident with edges of EI , and let Qa be
the vertices of R′ ∩A not incident with any edge in Ew (see Figure 5).

At the iteration of the algorithm where Q = Qa ∪ Qa and R = R′, the
algorithm marks a certificate Gi to be put into S′. This means for the certificate
Gi there is a set Ei ⊆ E(G[V (Gi), Ra]) spanning I(Gi) \ Qa and Ra \ Qa.
Furthermore, we have |Ei| + |E(Gi)| ≤ |Ew \ EI | + |E(Ga)|, as otherwise the
algorithm would prefer marking Ga over marking Gi.

We will now show that the certificate G′w = Gi +Ga + EI + Ei ∈ ⊕(Gi, Ga)
is a witness. To do this, it will be enough to show the following three things: (1)
V (G′w) is a vertex cover of the original graph G, (2) |E(G′w)| ≤ |E(Gw)|, and
(3) I(G′w) is empty.

The first point, that V (G′w) is a vertex cover, we get from the fact that G′w is
a vertex cover of G[A,A] and that as both Gi and Ga are locally correct V (Gi)
and V (Ga) are vertex covers of G[A] and G[A], respectively. So, G′w is a vertex
cover of G[A] +G[A] +G[A,A] = G.

The second point, |E(G′w)| ≤ |E(Gw)|, holds by the following inequality.

|E(G′w)| = |E(Gi)|+ |Ei|+ |E(Ga)|+ |EI |
≤ |E(Ga)|+ |Ew \ EI |+ |E(Ga)|+ |EI | = |E(Gw)| .

What remains to prove is the third point, that I(G′w) is empty. To do this, we
will show that each vertex in I(Gi) and I(Ga) is spanned by the edges EI + Ei.
We defined the vertices of Qa to not be incident with any edges of Ew, and we
know I(Gw) is empty, so we can conclude that Q ∩ I(Ga) is empty also. This
means that as Ei spans the set R ∩ A \Q, in fact Ei spans all the vertices of
I(Ga) ∩ R. We defined EI to be all the edges of Ew with endpoints in A \ R,
and Ew spans I(Ga), so EI must span I(Ga) \R. From this we conclude that
I(G′w) \ A is empty. Now we must show that also I(G′w) ∩ A is empty. We
know Ei spans all the vertices of I(G′w)∩A \Qa by definition, and the set Qa is
exactly the set of vertices in A that are incident with edges of EI . So, EI ∪ Ei
also spans I(G′w) ∩A, and hence I(G′w) = ∅.

Next, we give the following lemma, which will be used directly in the join
operation of our algorithm solving t-Edge Dominating Set. It will be helpful
in reducing the number of certificates needed to ensure we have a set preserving
⊕(G1, G2) for given certificates G1 and G2. The idea behind this lemma is that
for any witness G1 +G2 +G3 + Ew, we can substitute the set Ew with another
set E′w spanning all the isolated vertices of G1, G2 and G3 to produce a new
witness, as long as |E′w| ≤ |Ew|. This means that a lot of different certificates
G1 +G2 +Et ∈ ⊕(G1, G2) will generate a witness when combined with the same
certificate G3 as long as there is a set E′t so that E′t + Et spans the isolated
vertices of G1, G2 and G3. Having this in mind, we are able to limit the number
of certificates needed to preserve ⊕(G1, G2) greatly.
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Lemma 30. For any disjoint sets A1, A2 ⊆ V (G) and certificates G1 ∈ cert(A1)
and G2 ∈ cert(A2), we can in O∗(2sm(A1) + 2sm(A2))-time compute two set
families F(G1, G2) ⊆ 2V (G1) and F(G2, G1) ⊆ 2V (G2) where the following holds:

1. |F(G1, G2)| ≤ max
{

2sm(A1), n
}

and |F(G2, G1)| ≤ max
{

2sm(A2), n
}

, and

2. there is a set S ⊆ ⊕(G1, G2) preserving ⊕(G1, G2), where for each cer-
tificate G1 + G2 + Es ∈ S the set Es has V (Es) ∩ A1 ∈ F(G1, G2) and
V (Es) ∩A2 ∈ F(G2, G1).

Proof. Let A3 = A1 ∪A2. We will give a construction of the set families
F(G1, G2) and show that for any certificate Gz = G1 +G2 + Ez in ⊕(G1, G2),
there is a certificate G′z = G1 + G2 + E′z in ⊕(G1, G2) so that G′z �A3

Gz
and that V (E′z) ∩ A2 = V (Ez) ∩ A2 and V (E′z) ∩ A1 ∈ F(G1, G2). By similar
construction and argument for F(G2, G2), we can conclude that constraint (2.)
holds for the two constructed set families. That the two set families can be
constructed within the proposed time bound and that the size of the sets are as
stated in constraint (1.) is evident from how we are going to construct them.

Suppose for certificate Gz = G1 + G2 + Ez ∈ ⊕(G1, G2) there is some
certificate G3 ∈ cert(A3) so that we have a witness Gw = G1 +G2 +G3 +Ew in
⊕(G3, Gz). Let C be a vertex cover of G[A1, A1]. We are particularly interested
in the following three parts of Ew incident with A1 (see Figure 6).

• E1: the subset of edges that go from A1 ∩ C to A2,

• E2: the subset of edges between A1 \ C and A2 ∩ C, and

• E3: the edges that go from A1 \ C to A3 ∩ C.

We denote by R1, R2 and R3 the endpoints A1 ∩ V (E1), A2 ∩ V (E2), and
A3 ∩ V (E3), respectively.

As Gw is a witness, the edges in Ew must span all the isolated vertices of
G1, G2, and G3. We notice that the edges E(Gw) \ (E2 ∪ E3) span all the
vertices of V (Gw) except possibly some vertices in I(G1) ∪R2 ∪R3. Therefore,
for any subset E′ ⊆ E(I(G1) \R1, R2 ∪R3) spanning (I(G1) \R1) ∪R2 ∪R3,
it will be the case that E(Gw) + E′ − E2 − E3 spans V (Gw). Furthermore, if
|E′| ≤ |E2 ∪ E3|, then the certificate G′z = Gw −E2 −E3 +E′ will be a witness.
To ensure that constraint (2.) is satisfied, it thus suffice to ensure that the
vertices in A1 adjacent to vertices in A2 in G′z constitute a set in F(G1, G2).
For G′z, these vertices are exactly R1 ∪ (V (E′)∩A1). What we notice is that E′

only depended on G1, R1, R2 and R3. So, if for each choice of R1, R2, and R3,
we compute the E′ as we did above, we will have made a set family satisfying
constraint (2.) and which can be computed within a polynomial factor in n of
its size.

What we may now observe, is that since R1 ⊆ C ∩ A1, R2 ⊆ C ∩ A2 and
R3 ⊆ C ∩A3, the different possibilities for R1, R2 and R3 combined is at most
2|C|. This means the size of the set family is at most 2mm(A1) and the time to
compute it is O∗(2mm(A1)).
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If (A1, A1) is a split, however, it might be the case that sm(A1) < mm(A1).
But when it is a split, as the neighbourhood of each vertex in I(G1) is the same, as
long as there is a set Si ∈ F(G1, G2) of i vertices maximizing max{|Si ∩ I(G1)|}
for each i ∈ {0, . . . , |V (G1)|}, the set family F(G1, G2) satisfies constraint (2.).
The size constraint follows from the fact that we only need at most n sets Si,
and clearly we can compute the set family in the runtime stated, as it only takes
polynomial amount of time to generate Si greedily for each i.

A3

A2A1

C

C
I(G1)  C

A
1

C

A1C

E3

E2

E1

Figure 6: As described in proof of Lemma 30. The vertices in each of the three
rectangles are subsets of the vertex cover C of A1, so these sets can be of at
most 2|C| possibilities.

Procedure Joineds (on node w with children a, b and A1 = Va, A2 = Vb
and A = A1 ∪A2 and given S1 �A1

cert(A1) and
S2 �A2

cert(A2))

S ← ∅
for each G1 ∈ S1, G2 ∈ S2 do
V1 ← F(G1, G2) from Lemma 30
V2 ← F(G2, G1) from Lemma 30
for each X1 ∈ V1, X2 ∈ V2 do
E′ ← minimum sized subset of E(G[X1, X2]) spanning X1 ∪X2

add to S the certificate G1 +G2 + E′

if (A,A) is a split then return Trimeds-split(S ⊆ cert(A))
else return Trimeds-non-split(S ⊆ cert(A))
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Lemma 31. The algorithm Joineds is correct and runs in time O∗(|S1| |S2| 12k),
producing a set S of cardinality O(n2 + 3k) when both sm(A1), sm(A2), and
sm(A1 ∪A2) is at most k.

Proof. For G1 ∈ cert(A1) and G2 ∈ cert(A2), if G∗ = G1 +G2 +E∗ ∈ ⊕(G1, G2)
and G′ = G1 +G2 + E′ where V (E′) = V (E∗), then G′ �A1∪A2

G∗ as long as
|V (E′)| ≤ |V (E∗)|. Therefore, the set of certificates S generated in the first
part of the algorithm must preserve the set “S” from point 2. in the statement
of Lemma 30, which in turn implies that S �A1∪A2

⊕(S1, S2). By Lemma 28
and Lemma 29 this means the output of the algorithm is a set of size at most
n2 + 3sm(A1∪A2) that preserves ⊕(S1, S2).

From Lemma 30, for each pair of certificates, it takes O∗(2k) time to
compute F(G1, G2) and F(G2, G1), and for each pair we generate at most
|F(G1, G2)| |F(G2, G1)| certificates. So, before the call to one of the Trimeds-
procedures, the algorithm uses O∗((22k) |S1| |S2|)-time and S contains at most
(22k) |S1| |S2| certificates. The total runtime, including the call to the re-
spective Trimeds-procedure, must then by Lemma 28 and Lemma 29 be
O∗(3k22k |S1| |S2|).

Theorem 32. Given a graph G and branch decomposition (T, δ) of sm-width k,
we can solve Edge Dominating Set in time O∗(35k).

Proof. In Lemma 31 we showed that the procedure Joineds is correct and runs
in time O∗(|S1| |S2| 12k), producing a set S of cardinality O(n2 + 3k). So, using
Recursive with Joineds, we know the size of both of the inputs of Joineds is at
most the size of its output, i.e., |S1|, |S2| ≤ O∗(35k). So, each call to Recursive
has runtime at most O∗(3k). As there are linearly many calls to Recursive
and there is a polynomial time verifier for the certificates Recursive produces,
by the definition of �, the total runtime is also bounded by O∗(35k). To solve
Edge Dominating Set, we run the t-Edge Dominating Set algorithm for
all values of t ≤ n and hence this is also solvable in O∗(35k) time as we exclude
polynomials of n.

5 Graphs of bounded sm-width

In this section we discuss graph classes of bounded sm-width.

Proposition 33. If treewidth is bounded then sm-width is bounded (smw(G) ≤
tw(G) + 1) which in turn means that clique-width is bounded.

Proposition 34. If twin-cover is bounded then clique-width and sm-width is
bounded (smw(G) ≤ tc(G)).

Proposition 35. Cographs, the graphs of clique-width at most two, have sm-
width one, while distance-hereditary graphs have clique-width at most three and
sm-width one.
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Proof of Proposition 33,34 and 35. Firstly, by the definition of sm-width and
MM-width it is clear that for any graph G we have smw(G) ≤ mmw(G) and it
then follows by Theorem 1 (by Vatshelle [18]) that smw(G) ≤ tw(G) + 1. Let us
argue that if sm-width is bounded on a class of graphs, then so is clique-width.
Rao [16] shows that the clique-width of a graph is at most twice the maximum
clique-width of all prime graphs in a split decomposition of the graph. By
Observation 11 and the fact that every prime graph is an induced subgraph we
know that sm-width of a graph is at least as large as the maximum sm-width
of all prime graphs. Theorem 1 and the fact that sm-width of a prime graph is
equal to the MM-width of the prime graph, tells us that the sm-width of a prime
graph is bounded whenever its treewidth is bounded. Thus, since clique-width is
stronger than treewidth it is also stronger than sm-width.

Secondly, twin-cover tc(G) is a graph parameter introduced by Ganian [10]
as a generalization of vertex cover that is bounded also for some dense classes of
graphs. Gajarský et al [9] in their study of the modular-width parameter mw(G)
showed that mw(G) ≤ 2tc(G) + tc(G) which in turn implies that if twin-cover
is bounded for a class of graphs then also clique-width is bounded. We show
that smw(G) ≤ tc(G). Using the definition of tc(G) from [10] it follows that G
has a set S ⊆ V (G) of at most tc(G) vertices such that every component C of
G \ S induces a clique and every vertex in C has the same neighborhood in S.
Let C1, ..., Cq be the components of G \ S. Take any branch decomposition of G
having for each component Ci a subtree Ti such that the leaves of Ti are mapped
to the vertices of Ci and also having a subtree TS whose leaves are mapped to
S. The cuts of G induced by an edge of this branch decomposition are of three
types depending on where the edge is: if it is inside the tree of S the cut has a
maximum matching of size at most |S| ≤ tc(G); if it is inside a tree Ti the cut is
a split; otherwise the cut has a maximum matching of size at most |S| ≤ tc(G).

Thirdly, any cograph is also a distance-hereditary graph and any distance-
hereditary graph G has clique-width at most three, see e.g. [12]. Also, G has a
branch decomposition of cut-rank one, as shown by Oum [14], which means that
all cuts induced by edges of this branch decomposition are splits and hence any
distance-hereditary graph has sm-width one.

There are several classes of graphs of bounded sm-width where no previous
results implied FPT algorithms for the considered problems. We now show a
class of such graphs, constructed by combining a graph of clique-width at most
3, with a graph of treewidth k and thus clique-width at most 2k/2, as follows.
Let G1 be a distance-hereditary graph and let G2 be a graph of treewidth k. Let
X ⊆ V (G1) with |X| ≤ k + 1 and (X,X) a split of G1, and let Y ⊆ V (G2) be a
bag of a tree decomposition of G2 of treewidth k. Add an arbitrary set of edges
on the vertex set X ∪ Y . The resulting graph will have sm-width at most k + 1,
a result that basically follows by taking branch decompositions of G1 and G2

where X and Y each are mapped as the set of leaves of a subtree, subdividing
each of the two edges above these subtrees and adding an edge on the subdivided
vertices to make a single branch decomposition of the combined graph.

Note that we can also construct new tractable classes of graphs by combining
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several graphs in a tree structure.

6 Conclusions

We have shown that four basic problems, that cannot be FPT parameterized
by clique-width unless FPT = W[1], are FPT when parameterized by the split-
matching-width of the graph, a parameter whose modelling power is weaker
than clique-width but stronger than treewidth. This was accomplished using the
theory of split decompositions and the recently introduced MM-width, combined
with slightly non-standard dynamic programming algorithms on the resulting
decompositions. Graph classes of bounded sm-width will consist of graphs having
low treewidth in local parts, with these parts connected together in a dense
manner. We have not found references to such graph classes in the litterature.
Nevertheless, the appealing algorithmic properties of these graph classes should
merit an interest in their further study.
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