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In formal models of machine learning we have a concept class C' of possible concepts/hypothe-
ses, an unknown target concept ¢* € C' and training data given by correctly labeled random
examples. In formal models of machine teaching a collection T'(c¢*) of labeled examples
is instead carefully chosen by a teacher 7" in a way that the learner can reconstruct the
target concept ¢* from T'(¢*). In recent years, the field of machine teaching has seen various
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Abstract

Imagine a learner L who tries to infer a hidden concept from a collection of observa-
tions. Building on the work [4] of Ferri et al., we assume the learner to be parameterized
by priors P(c) and by c-conditional likelihoods P(z|c) where ¢ ranges over all concepts
in a given class C' and z ranges over all observations in an observation set Z. L is
called a MAP-learner (resp. an MLE-learner) if it thinks of a collection S of obser-
vations as a random sample and returns the concept with the maximum a-posteriori
probability (resp. the concept which maximizes the c-conditional likelihood of S). De-
pending on whether L assumes that S is obtained from ordered or unordered sampling
resp. from sampling with or without replacement, we can distinguish four different sam-
pling modes. Given a target concept ¢* € C, a teacher for a MAP-learner L aims at
finding a smallest collection of observations that causes L to return ¢*. This approach
leads in a natural manner to various notions of a MAP- or MLE-teaching dimension of
a concept class C'. Our main results are as follows. First, we show that this teaching
model has some desirable monotonicity properties. Second we clarify how the four
sampling modes are related to each other. As for the (important!) special case, where
concepts are subsets of a domain and observations are 0,1-labeled examples, we obtain
some additional results. First of all, we characterize the MAP- and MLE-teaching di-
mension associated with an optimally parameterized MAP-learner graph-theoretically.
From this central result, some other ones are easy to derive. It is shown, for instance,
that the MLE-teaching dimension is either equal to the MAP-teaching dimension or
exceeds the latter by 1. It is shown furthermore that these dimensions can be bounded
from above by the so-called antichain number, the VC-dimension and related combi-
natorial parameters. Moreover they can be computed in polynomial time.

Introduction

applications in fields like explainable AI [§], trustworthy Al [I7] and pedagogy [12].



Various models of machine teaching have been proposed, e.g. the classical teaching
model [13] [6], the optimal teacher model [I], recursive teaching [18], preference-based teach-
ing [5], or no-clash teaching [9, [3]. These models differ mainly in the restrictions that they
impose on the learner and the teacher in order to avoid unfair collusion or cheating. The
common goal is to keep the size of the largest teaching set, max.cc |T'(c)|, as small as possible.

There are also other variants using probabilities, from Muggleton [I1] where examples
are sampled based on likelihoods for a target concept, to Shafto et al. [I12] who calls this
pedagogical sampling and leads into Bayesian Teaching [2, [15], to the Bayesian learners of
Zhu [I16] with a proper teacher selecting examples.

In this paper we continue this line of research and consider the probabilistic model that
had been described in the abstract. This model is inspired by and an extension of the
model that was introduced in [4]. As already observed in [4], the condition for collusion-
avoidance from [7] may here be violated, i.e., the learner may first reconstruct a concept
c; from some given observations but, after having received additional observations, switch
to another concept ¢y even if the new observations have given additional support to ¢;. As
the authors of [4], we would like to argue that this should not be considered as collusion or
cheating as long as the parameters assigned to the learner reflect some factual information
about the world.

As already outlined in the abstract, we will distinguish between four distinct sampling
modes: ordered sampling with replacement ((O, R)-mode), unordered sampling with replace-
ment ((O, R)-mode), ordered sampling without replacement ((O, R)-mode) and unordered
sampling without replacement ((O, R)-mode). The smallest number d such that every ¢* € C
can be taught to a given MAP-learner L by a collection of at most d observations is denoted
by MAP-TD%”(C') where (a, 8) € {O, O} {R, R} indicates the underlying sampling mode.
Then MAP-TD*?(C') = min, MAP-TD$”(C) is the corresponding parameter with an opti-
mally parameterized learner L. The analogous notation is used for MLE-learners. Our main
results are as follows:

1. The MAP-teaching model has two desirable and quite intuitive monotonicity proper-
ties. Loosely speaking, adding new observations (making Z larger) leads to smaller
MAP-TD while adding new concepts (making C' larger) leads to larger MAP-TD. See
Section [3.2] for details.

2. The sampling modes (O, R) and (O, R) are equivalent. The sampling modes (O, R),
(O, R) and (O, R) are pairwise incomparable (i.e., which one leads to smaller values
of MAP-TD/(C) depends on the choice of C' and L). Note that incomparability of
the modes (a, 8) and (¢, 5’) does not rule out the possibility that MAP-TD*"(C) <

MAP-TD*"# ( ) for each concept class C. See Section [3.3| for details.

3. As for the (important!) special case, where concepts are subsets of a domain and
observations are 0,1-labeled examples, we obtain some additional results, the first of
which is the central one:

(a) For a (properly defined) bipartite graph G(C)*# associated with C' and (a, 3) #



(O, R), one getd]
MAP-TD*?(C') = SMN(G(C)*P) . (1)
If we replace G(C)*” by a slightly modified graph, we obtain the corresponding

result for MLE-TD at the place of MAP-TDP]| Fig. [1] visualizes this result. See
Sections [l and [5.1] for details.

(b) The MLE-teaching dimension is either equal to the MAP-teaching dimension or
exceeds the latter by 1. See Section [5.2] for details.

(¢) The MAP- and the MLE-teaching dimension can be bounded from above by the
so-called antichain number, the VC-dimension and related combinatorial param-
eters. See Section [£.3] for details.

(d) Moreover the MAP- and the MLE-teaching dimension can be computed in polyno-
mial time from a natural encoding of the underlying concept class. See Section |5.4
for details.

Figure 1: For any binary concept class C C 2% and 0, 1-labeled examples as observations, the
tree visualizes the identities in . Using the same color for the two leftmost leaves in the
MAP-subtree is justified by the equivalence of the modes (O, R) and (O, R). A parameter
represented by a leaf in the MAP-subtree has the same value as the parameter represented
by a leaf of the same color in the SMN-subtree. The parameters represented in the SMN-
subtree are ordered as indicated by the rightmost diagram, with lowest value on top and
highest value at bottom. We will see later that parameters represented in different colors
can generally have different values.

2 Definitions and Notations

We first fix some general notation. Afterwards, in Sections 2.1], 2.2] and 2.3 the MAP- and
MLE-based teaching model is introduced, step-by-step.

LISMN(G) denotes the saturating matching number of a bipartite graph G (formally defined in Section
2Some bounds on MLE-TD numbers in terms of SMN numbers are already found in [4], but no results
that hold with equality (as in ) are proven there.



Mappings. The restriction of a mapping f : A — B to a subset A C A will be denoted
by f 4. Suppose that B is a set that is equipped with a size function which associates a size
|b| with each b € B. Then the order of a mapping f : A — B is defined as the size of the
largest element in the image of f, i.e., the order of f equals max,ca |f(a)].

Graphs and Matchings. For a graph G = (V, E) and a set U C V', we denote by I'(U)
the set of vertices which are adjacent to at least one vertex in U. If G = (Vi, Vs, E) is the
bipartite graph with vertex sets V; and V5, and with edge set £ C V; x V5, then U C V;
implies (of course) that I'(U) C V4. A matching M in a bipartite graph G = (V4, V3, E) can
be viewed as a (partially defined and injective) function M : V; — V5 with the property that
(v, M(v)) € E for each v having an M-partner. If V] is saturated by M, i.e., every vertex in
V1 has an M-partner, then this function is fully defined.

VC-Dimension [14]. Let C be a family of subsets of some ground set X. For ¢ € C' and
x € X, we also write c(z) =1 if x € cand ¢(z) = 0 if x ¢ c. We say that S C X is shattered
by C if, for every b : S — {0, 1}, there is some ¢ € C that coincides with b on S. The
VC-dimension of C' is defined as oo if there exist arbitrarily large shattered sets, and it is
defined as the size of a largest shattered set otherwise.

2.1 Concept Classes

Let C be a finite set of size at least 2, let Z be another non-empty finite set and let |= be
a relation on C' x Z. We refer to C' as a concept class and to Z as a set of observations. If
¢ | z, then we say that the concept ¢ is consistent with the observation z. We say that ¢
is consistent with a set (resp. multiset) A of observations, which is written as ¢ = A, if ¢ is
consistent with every z € A. The notation ¢ = z with z = (21,...,2,) € Z" is understood
analogously. For each ¢ € C, we define

Ze={z€Z:cEz} .

Example 2.1 (Positive Examples as Observations). Let Z = X be a set of examples and
let C be a family of subsets of X. Let the consistency relation be given by

VeeCizeX:cEx&soec.

Note that Z. = c in this setting, i.e., concepts are identified with the sets of observations
they are consistent with.

Example 2.2 (Labeled Examples as Observations). Let Z = X x {0,1} be a set of labeled
examples and let C' be a family of subsets of X. Let the consistency relation be given by

VeeCy(z,b)e Z:cl=(x,b) & (b=1Nxec)V(b=0ANx &) . (2)

Note that Z. = {(z,1) : © € ¢} U{(x,0) : x & ¢} in this setting. It follows that |Z.| = |X|
forall c € C.



We will occasionally identify a set ¢ C X with the corresponding 0, 1-valued function so
that ¢(z) = 1 for x € ¢ and ¢(z) = 0 for z € X \ ¢. The equivalence in can then be
written in the form ¢ = (z,0) < b = c(z).

Example 2.3 (Labeled Examples and Probabilistic Concepts). Let Z = X x {0,1} be
again a set of labeled examples and let C' be a family of functions from X to [0,1]. Let the
consistency relation be given by

VeeCixeX:ckE(x,1)ec(z)>0 and ck=(2,0) & c(z) <1 .

Intuitively we should think of c(x) as the probability that ¢ assigns label 1 to instance x. If
all concepts ¢ € C were 0, 1-valued, we would again be in the setting of Example[2.9

Note that within Examples 2.1 and 2.2 we have that
Ve, € C: c#d = Z.# Zy (3)

so that each concept ¢ € C' is uniquely determined by the full set Z. of observations that
¢ is consistent with. Of course this will not necessarily be the case if the concepts are
probabilistic as in Example 2.3

2.2 Variants of Sampling

As formalized in the definitions below, we distinguish between ordered and unordered sam-
pling and we may have sampling with or without replacement.

Definition 2.4 (Sampling with Replacement). Let Q = (q(2)).ez be a collection of proba-
bility parameters, i.e., ¢(2) > 0 and ), ,q(2) = 1. For n > 0, we define n-fold (ordered
resp. unordered) Q-sampling with replacement as the following random procedure:

1. Choose z1, ..., z, independently at random according to Q.

2. In case of ordered sampling, return the sequence (zi,...,z,) whereas, in case of un-
ordered sampling, return the multiset {z, ... ,zn}ﬁ

Let z = (z1,...,2,) € Z™ be a sequence that contains k distinct elements, say 21, ..., z,

and let n; denote the number of occurrences of 2/ in z. Let A, C Z be the corresponding
multiset. The probability that z (resp. A,) is obtained from n-fold ordered (resp. unordered)
Q-sampling with replacement is henceforth denoted by P9%(z|Q) (resp. by PY%#(A,|Q)).
With these notations, the following holds:

n k - |
PO’R(Z’Q) = HQ(%) = Hq(zé)"" and PO’R(AZ|Q) = h . Hq(zg)m L)

3If n = 0, then the empty sequence resp. the empty multiset is returned,



Definition 2.5 (Sampling without Replacement). Let Q@ = (q(z)).cz be a collection of
probability parameters. Let N*(Q) be the number of z € Z such that q(z) > 0. For 0 <n <
NT(Q), we define n-fold (ordered resp. unordered) Q-sampling without replacement as the
following random procedure:

1. Choose z1 at random according to Q.

2. Foriv=2,...,n do the following:
Choose z; € Z \ {z1,...,zi_1} at random where, for each z € Z \ {z1,...,zi_1}, the

probability for z; = z equals e a(z) = 1)).

q(z1)+...+q(zi—
3. In case of ordered sampling, return the sequence (zi,...,z,) whereas, in case of un-
ordered sampling, return the set {z1,...,z,}.

Let z = (21,...,2,) € Z™ be a repetition-free sequence and let A, C Z be the correspond-
ing set. For a permutation o of 1,...,n, we define z, = (2,1, ..., 20(n)). The probability
that z (resp. A,) is obtained from n-fold ordered (resp. unordered) @Q-sampling without re-
placement is henceforth denoted by P9 (z|Q) (resp. by P9%(A,|Q)). With these notations,
the following holds:

_ - (Zz')
(2]Q) _El ey M PO = ZPORZUIQ (5)

where o ranges over all permutations of 1,...,n.
We introduce the following notation:

o ZOR = 7* denotes the set of sequences over Z (including the empty sequence).
e ZOR denotes the set of multisets over Z (including the empty multiset).
e ZO-R denotes the set of repetition-free sequences over Z (including the empty sequence).

o ZO:R = 27 denotes the powerset of Z.

The pairs (o, 8) € {O,0} x {R, R} are called sampling modes. We use the symbol () not
only to denote the empty set but also to denote the empty multiset or the empty sequence.
If A is a finite set or multiset, then |A| denotes its size where, in case of a multiset, the
multiple occurrences of elements are taken into account. The length of a finite sequence z is
denoted by |z|.

Remark 2.6 (Trivial Identities). Suppose that Q@ = (q(z)).cz is collection of probability
parameters. Then, for each sampling mode (c, B), we have that PP(D|Q) = 1. Moreover,
if all parameters q(z) with z € Z are strictly positive, then POR(Z|Q) = 1.

4Note that the probability parameters for z € Z\{z1, ..., 2;_1} are the same as before up to normalization.



We close this section with a more or less obvious result whose proof will be given for sake of
completeness.

Remark 2.7. Let zy,...,2z, be a sequence with pairwise distinct elements from Z. Let
p1 > po > ...p, be a strictly decreasing sequence of strictly positive parameters such that
Yorypi < 1. For each permutation o of [n], consider the parameter collection QQ, =
(¢0(2))i=1,..n given by q,(2) = Py Then the identity permutation is the unique maxi-

mizer of POR(z1, ..., 2,|Qs).

Proof. According to (), we have

PO7§Z,...,ZI§ QO, = qg(zi)
% ) g 1 —(qs(21) + ...+ ¢o(zi21))
1= (o) + - - -+ Poi-1)) [T (1= o) + - + Do)

The product in the numerator is the same for all permutations . The following assertions
are equivalent:

1. o* is the identity permutation.
2. The sequence py«(1), . . ., Po*(n) is strictly decreasing.

3. For each permutation ¢ # ¢* and each i € [n], we have that
Por(1) + -+ Por(i=1) 2 Po1) + - -+ Po(i-1)
and, for at least one i € [n], this inequality is strict.
4. The permutation o* is the unique maximizer of PO (z, ..., z|Q,).

The remark now is immediate from the equivalence of the first and the fourth statement. [J

2.3 MAP- and MLE-based Teaching

An MLE-learner will always choose a hypothesis from a class C' that maximizes the likelihood
of a given set of observations. MAP-learners are a bit more general because they additionally
bring into play priors (P(c))cec. The notion of likelihood depends on how the observations
are randomly sampled. We proceed with the formal definition of MAP- and MLE-learners
and their teachers:

Definition 2.8 (MAP- and MLE-Learner). A MAP-Learner L for C' is given by (and hence-
forth identified with) parameters P(z|c) > 0 and P(c) > 0 for z € Z and ¢ € C such that

ZP(C):l and ‘V’CEC’:ZP(2|C):1 :

ceC z€Z



The parameters P(c) are referred to as priors. The parameters P(z|c), referred to as c-
conditional likelihoods, must satisfy the following validity condition:

ctEz= P(zlc)=0 . (6)

Set ZH(L) == {2 € Z : P(z|c) > 0} and N*(C, L) = min.ec |Z5(L)|F| L can be in four dif-
ferent sampling modes (depending on the assumed kind of sampling). These modes determine
the form of L’s input and the choice of its output as will be detailed below.

(O, R)-mode: For every n > 0 and every sequence a € Z", we denote by P2 %(alc) the
probability that a is obtained from n-fold ordered P(-|c)-sampling with replacement.
Given a sequence a € Z9%, L returns the concept arglmax . [P(c) - P9%(alc)] if it
exists, and a question mark otherwiseﬁ

(O, R)-mode: For every n > 0 and and every multiset A C Z of size n, we denote by
POR(Alc) the probability that A is obtained from n-fold unordered P(-|c)-sampling
with replacement. Given a multiset A € ZO8 L returns the concept
arglmax, . | P(c) - PaR(A\c)] if it exists, and a question mark otherwise.

(O, R)-mode: For every 0 < n < N¥(C, L), and every repetition-free sequence a € Z",
we denote by PP % (a|c)) the probability that a is obtained from n-fold ordered P(-|c)-
sampling without replacement. Given a repetition-free sequence a € Z9F with |a| <

N*H(C,L), L returns the concept arglmax, [P(c) : PO’E(a|c)] if it exists, and a ques-

tion mark otherwise. If |a| > N*(C, L), then also a question mark is returned.

(O, R)-mode: For every 0 < n < NT(C,L), and every set A C Z of size n, we denote
by POR(Al|c) the probability that A is obtained from n-fold unordered P(-|c)-sampling
without replacement. Given a set A € Z9F with |A| < N*(C,L), L returns the
concept arglmax,.q [P(c) : Paﬁ(/ﬂc)] if it exists, and a question mark otherwise. If

|A| > N*(C, L), then also a question mark is returned.

An MLE-learner is a MAP-learner with uniform priors (so that the factor P(c) in the above
arglmax-expressions can be dropped).

Definition 2.9 (Teac}ier). Suppose that L is a MAP-learner for C' that is in sampling mode
(a, B) € {O,0} x{R, R}. A (successful) teacher for L is a mapping T which assigns to each
concept co € C an input I = T(cy) for L such that L(I) = ¢q. In other words:

1. I € 2% and, if B =R, then |I| < N*(C,L).

2. ¢g = arglmax .. [P(c) - P*P(I|c)].

®Because of the validity condition, Z (L) is a subset of Z. = {2 € Z : c & 2}.
6The operator arglmax, . f(c) returns the unique maximizer ¢* € C of f(c) provided that it exists.




A couple of observations are in place here.

Remark 2.10. Suppose that L is a MAP-learner for C which is in sampling mode (o, B) €
{0,0} x{R, R}. Suppose that T is a teacher for L. Then the following holds for all ¢, € C':

L(T(c)=c, P*’(Blc) =1, P*P(T(c)lc) >0, cl=T(c) and (c#c = T(c)#T()) .

(7)
Moreover, if L is an MLE-learner and T is a teacher for L, then T(c) # 0.

Proof. L(T(c)) = ¢ is an immediate consequence of Definitions and 2.9 It now follows
that, if T'(¢) = T(¢), then ¢ = L(T(c)) = L(T(¢')) = . In other words, ¢ # ¢ implies
that T'(¢) # T(¢"). 0-fold sampling conditioned to ¢ yields () regardless of how c¢ is chosen.
It follows that P*#((]c) = 1. Assume now for contradiction that P*?(T(¢)|c) = 0. But
then ¢ cannot be the unique maximizer of P*#(T(c')|c) in C. This is in contradiction with
L(T(d)) = ¢. Assume for contradiction that T'(¢) contains an observation z € Z such that
c = z. Tt follows that P“#(T(c)|c) = 0, which is in contradiction with P*#(T(c)|c) > 0.
Thus ¢ = T(c). Finally, suppose that the priors are uniform, i.e., P(c) = 1/|C| for every
¢ € C. Assume for contradiction that T'(cq) = @) for some ¢y € C. For every ¢ € C, we have
P(c)- P*#((|c) = P(c) = 1/|C|. Hence ¢y cannot be unique maximizer of P(c) - P“?(D|c) in
C. This is in contradiction with L(7'(cp)) = co. O

Here is the definition of the parameter that is in the focus of our interest:

Definition 2.11 (MAP- and MLE-Teaching Dimension). Suppose that L is a MAP-learner
for C who is in sampling mode (a, ). The MAP-teaching dimension of C' given L and
(a, B), denoted as MAP-TDY?(C), is defined as the smallest number d such that there exists
a teacher of order d for L, respectively as oo if there does not exist a teacher for L. The
MAP-teaching dimension of C' with respect to sampling mode (a, 3) is then given by

MAP-TD*#(C) := min MAP-TD$?(C)

where L ranges over all MAP-learners for C. Similarly, the MLE-teaching dimension of C'
with respect to sampling mode (o, 8) is given by MLE-TD*#(C)) := min, MAP—TD%’B(C)
with L ranging over all MLE-learners for C'.

The parameter MAP-TD*?(C) equals the number of observations needed to teach an
optimally parameterized learner. It represents an information-theoretic barrier that can-
not be brocken regardless of how the learner is parameterized. Of course, this parameter
will generally be smaller than the parameter MAP-TD%’B (C) associated with a “naturally
parameterized” learner. We close this section by mentioning the inequality

MAP-TD*?(C) < MLE-TD*?(C) ,

which (for trivial reasons) holds for each choice of C' and («, ).



3 Basic Results on the M AP-Based Teaching Model

In [4], the authors used a more restrictive condition at the place of the validity condition.
However, as we will see in Section [3.1], in the context of MAP-learners and their teachers,
both conditions lead essentially to the same results. In Section [3.2], we discuss two natural
monotonicity properties and thereafter, in Section , we note the equivalence of (O, R)-
and the (O, R)-mode and prove the pairwise incomparability of the modes (O, R), (O, R)
and (O, R).

3.1 Validity and Strong Validity

We will refer to
cze P(zle)=0

as the strong validity condition for the parameters (P(z|c)).czeccc. This is the condition
that the authors of [4] had imposed on the c-conditional likelihoods associated with a MAP-
learner. We will see that each L satisfying the validity condition has a “close relative” L.
that satisfies the strong validity condition. Here comes the definition of L.:

Definition 3.1 (e-Shift). Let L be given by parameters P(c) and P(z|c) with ¢ € C and
z € Z such that the validity condition is satisfied but the strong validity condition is not. We
say that L. (with 0 < e < 1/2) is the e-shift of L if L. is given by the parameters P(c) and
P.(z|c) where
(1—¢)-P(zle) ifz€ ZF(L)
PE(Z"C) = m ZfZ < ZC \ Zj(L)
0 ifzeZ\ Z

For convenience, we set P.(z|c) = P(z|c) if already L satisfies the strong validity condition.

Note that L. satisfies the strong validity condition because P.(z|c) = 0 iff z ¢ Z. and
Z.={z€ Z:ckE z}. Alearner and its e-shift are related as follows:

Lemma 3.2. Let L be a MAP-learner for C' whose parameters satisfy the validity condition.
Then the following holds for each (o, B) € {O,0} x {R, R} and all sufficiently small € > 0:

each teacher for L in sampling mode («, ) is also a teacher for L. in sampling mode («, B3).

Proof. Suppose that L and L. are both in sampling mode (a, #). Consider a teacher T" for
L. We claim that the following holds:

Veg,ce C: liné P*3(T(co)|c) = P*P(T(co)le) . (8)
e—
This would imply that, for every ¢y € C' and sufficiently small ¢, we have

co = arglmax PO"B(T(CO)|C) = arglmax, . P:’B(T(CONC) ,

10



which, in turn, implies that T is a teacher for L.. We still have to verify . This can be
done by means of a simple continuity argument. Note first that

VeeC,ze Z: lir% P.(z|c) = P(z|c) .
e—

Since P%(T(cy)|e) is a polynomial (and hence a continuous function) in the variables P.(z|c)
with 2z € T'(cp), we may conclude that () is true in case of § = R. Suppose now that (a, 8) =
(O, R) and T'(co) = (21, .-, 2n), which implies that n < N*(C, L) and z1,...,2, € ZI(L).

The function .

CLTSIE, | G s
c P.(z]c) .+ P(zi-1]c))
is a rational function in the Varlables Pe(zi|c) for + = 1,...,n. Hence we can apply the
continuity argument again but, in addition, we must rule out that the denominator, 1 —
(P.(z1]¢)+. ..+ P(zi_1]c)), converges to 0 when € approaches 0. This, however, can be ruled
out as follows:

e Set p: Mozt P2]c) and note that 0 < p < min. 7+ gy Pe(2]c). The
latter mequahty holds because of P.(z|c) = (1 —¢) - P(z|c) and € < 1/2.

e Because of n < N*(C, L), the set {z1, ..., 2,_1} cannot contain all elements of ZI(L).

e Therefore 1 — (P.(z|c)+...+ P.(zi_1]c) > pforalli = 1,...,n and the limit for e — 0
cannot be equal to 0.

We may therefore conclude that . is true in case of (o, 8) = (O, R). The proof in case of
(o, B) = (O, R) is similar. O

Corollary 3.3. With the notation from Definition we have
MAP-TD}?(C) = MAP-TD}*(C)
for all sufficiently small £ > 0.

3.2 Monotonicity Properties

It is clear, intuitively, that adding concepts without adding observations should make the
teaching problem harder. Conversely, adding observations without adding concepts should
make the teaching problem easier. In this section, we formalize these statements and prove
them. All results in this section are formulated in terms of MAP-TD. But the corresponding
results with MLE-TD at the place of MAP-TD hold es well.

We say that (C’, Z', ') is an extension of (C, Z, =) if C C C', Z C Z' and, for all c € C
and z € Z, we have that ¢ |= z if and only if ¢ = 2.

So far, we used a notation (e.g. MAP-TD*?(C) instead of MAP-TD®?(C, Z, =)) which
made a dependence on (C, Z, =) explicit for C' only (because the corresponding Z and the
corresponding relation = were clear from context). In this section, there is some danger of
confusion and, consequently, we use a notation which makes the dependence on the whole
triple (C, Z, =) more explicit.
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Definition 3.4. Let (C', Z', =) be an exstension of (C, Z, =) with Z' = Z. Let L be a MAP-
learner for (C', Z,|=") with parameters P(c') > 0 and P(z|c') for ¢ € C" and z € Z. Set
P(C) = Y .cc P(c). The MAP-learner with parameters P(c)/P(C) and P(z|c) for c € C
and z € Z, denoted by L ¢, is called the restriction of L to subclass C.

The parameters of a MAP-learner L for (C’, Z, ') must satisfy the validity condition.
Clearly the parameters of L satisfy the validity condition too. Moreover, for each ¢ € C,
we have that ZF (L) = Z1(L). These observations can be used for showing the following
result:

Lemma 3.5 (Concept-Class Monotonicity). With the assumptions and notation as in Def-
nition the following holds for each sampling mode («, 3):

MAP-TD}? (C, Z,}=) < MAP-TD*(C', Z, 1) .

Proof. Let T : C" — Z%F be a teacher for L and let T} denote its restriction to subclass C.
Clearly the order of T is upper-bounded by the order of 7. It suffices to show that T}¢ is
a teacher for Ljc. To this end, we have to show the following:

(a) If B = R then, for all ¢ € C, we have that |T|c(c)| < N*(C, L,c).

(b) Forallcy € C, ¢ € C\{cp}, we have that P(c)-P*?(T\c(co)|e) < P(co)-P¥P(Tyc(co)|co)-
Of course, since T' is teacher for L, we know that the following hold:

(a’) If B = R then, for all ¢ € C', we have that |T(¢')] < N*(C', L).

(b)) Forall ¢y € C', ¢ € C'\{c)}, we have that P(c')- P*?(T(c})|c') < P(ch)-P*P(T(c})|ch).
The following calculation verifies (a) under the assumption that 3 = R:

Tic(c)] = [T()] < N™(C', L) = min|Z}(L)|

ceC’

< : + i + _ nt .
min |2 (L) = min|Z"(Lyc)| = N7(C, L)

Suppose that ¢g € C and ¢ € C'\ {¢p}. Then (b) can be verified as follows:
P(c)-P*P(T\0(co)|e) = P(c)-P*(T(co)le) < P(co)-P(T(co)|co) = P(co)- P (Tye(co)lco) -
Here the first and the last equation hold because ¢y € C' and therefore T|c(co) = T(co). O
Corollary 3.6. If (C', Z', =) is an extension of (C,Z, =) with Z = Z', then

MAP-TD*?(C, Z,|=) < MAP-TD**(C", Z, =) .
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Definition 3.7. Let (C',Z',=') be an estension of (C,Z,|=) with C' = C. Let L be a
MAP-learner for (C,Z, =) with parameters P(c) and P(z|c) for ¢ € C and z € Z. The
MAP-learner with parameters Prz(c) = P(c) and

na | PHe) ifdeZz
Pyz(#'|e) = { 0 otherwise

Y

denoted by L1y, is called the extension of L to superset Z'.

The parameters of a MAP-learner L for (C, Z, =) must satisfy the validity condition. It
is easy to check that, therefore, the parameters of Lz satisfy the validity condition too.
Moreover, for each ¢ € C, we have that

{2'€Z :Py(dlc) >0} = {z€Z:P(zc) >0} = ZI(L)}

which implies that N*(C, Lyz) = N*(C,L). These observations can be used for showing
the following result:

Lemma 3.8 (Observation-Set Monotonicity). With the assumptions and the notation as in
Deﬁmtion the following holds for each sampling mode («, 3):

MAP-TD?(C, Z, =) > MAP-TD},(C,Z ) .

Proof. Let T : C — Z*® be a teacher for L. It is sufficient to show that T is also a teacher
for L1z (albeit a teacher for Ly who does not make use of observations in Z’\ Z). To this
end, we have to show the following:

(a) If B = R then, for all ¢ € C, we have that |T(c)| < N*(C, Lyz).
(b) For all ¢y € C, c € C\ {co}, we have that P(c) - PfZ’?(T(coﬂc) < P(co) - PTQZ’?(T<CO)|CO).
Assertion (a), assuming 3 = R, is obtained by
|T(C>| S N+(O, L) == N+(C7 LTZ/) R

where the first inequality holds because T is a teacher for L. Suppose that ¢y € C' and
c € C\{c}. Assertion (b) is obtained by

P(c) - P/ (T(co)le) = P(e) - P**(T(cole) < Plco) - P (T (co)leo) = Pleo) - Py (T(co)leo)

where the first and the last equation holds because T'(cy) € Z so that the likelihoods of
observations in Z’'\ Z do not come into play. The inequality in the middle holds because T
is a teacher for L. O

Corollary 3.9. If (C", Z', =) is an extension of (C,Z, =) with C = C', then

MAP-TD*?(C, Z,[=) > MAP-TD*?(C,Z', ') .
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3.3 A Comparison of the Sampling Modes

We say that the sampling mode («a, ) dominates the sampling mode (o, 3) if, for ev-
ery concept class C' and every MAP-learner L for C, we have that MAP-TDY?(C) <

MAP—TD%W /(C). We say they are equivalent if they mutually dominate each other, i.e.,

if MAP-TD}?(C) = MAP-TD%/’B '(C) holds for every choice of C' and L. We say, they are
incomparable if none of them dominates the other one. We start with an easy observation:

Remark 3.10. The sampling modes (O, R) and (O, R) are equivalent.

Proof. Consider a concept class C' and a MAP-learner L for C'. Let a € Z™ be a sequence of k
distinct elements with multiplicities nq, ..., ng, respectively. Denote by A the corresponding
multiset. An inspection of shows that the following holds for each ¢ € C"

n!

POE(Alc) = . POR(ale) . (9)

ni!. .. ng!

Let &’ be a sequence obtained from a by a permutation of the components. Since a’ also
consists of k distinct elements with multiplicities nq, ..., ng, respectively, equation @ also
holds with a’ at the place of a. It therefore easily follows that a teacher T for L, with L
being in sampling mode (O, R), can be converted into a teacher 7" of the same order for L
with L being in sampling mode (O, R), and vice versa:

e Suppose that T is given. If T'(¢c) = a, then define 7"(c) = A where A is the multiset
induced by a.

e Suppose that 7" is given. If 7"(c) = A then define T'(A) = a where a is an (arbitrarily
chosen) sequence containing the same elements as A with the same multiplicities.

It follows from this discussion that MAP-TDY"%(C) = MAP—TD?’R(C’), which concludes the
proof. ]

Corollary 3.11. MAP-TD?#(C) = MAP-TD?%(C) and MLE-TD?%(C') = MLE-TD?%(C).
We now turn our attention to the incomparability results:
Theorem 3.12. The sampling modes (O, R), (O, R) and (O, R) are pairwise incomparable.

In order to prove the theorem, we will consider triples (C, Z, ) with C' = {¢1, 2, 3},
Z ={z,2,23} and ¢; |= z; forall 1 <4,j < 3. An important role will be played by concepts
of the form ¢* with parameters given by

P(z|c™) =p+ A, P(zn|c*®) =p—A and P(z|c*®)=1-2p . (10)

The following Facts 1-4, which pave the way for the proof of Theorem [3.12] can be proven
by using the derivation rules of analysis. For sake of completeness, these proofs are given in
the appendix.
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Fact 1: Suppose that 0 < |A] < p < 1/2. Let ct? be the concept given by . Then
POE(z1, 20)|ct®) and PPF(z;, z|ct®) are both strictly decreasing when |A| is in-
creased, which implies that A = 0 is the unique maximizer.

Fact 2: Suppose that 0 < |A| < p < 1/2. Let ¢ be the concept given by . Then

- - =0 ifAefo, £}
POT (2, 25|cF2) — POR (2, 2] >0 if0< A < 1’% : (11)
< (0 otherwise

Fact 3: Suppose that 0 < A < p < 1/2. Let ¢*® be the concept given by . Then

=0 if Ae{0,3(vV5-1)p}
PR (21, 21, 20| ™) = POF (21, 21,20/ ¢0) ¢ >0 if0<A<I(VE-1)p . (12)
< 0 otherwise

Fact 4: Suppose that 0 <p < 1/2and 1 <t < %. Let ¢ be the concept given by

D(z) =pt, D(z)=p/t and ¢ (z3) =1—pt —p/t . (13)

Then PO (2, z,|c®) is strictly increasing with ¢.

A couple of more intuitive remarks are in place here. Fact 1 tells us that, in sampling
modes (O, R) and (O, R), a concept explains observations z;, z, the better (in the maximum
likelihood sense), the more evenly it splits the available probability mass 2p among them.
We will refer to an application of Fact 1 as applying the “even-split argument”. In sampling
mode (O, R), however, the even split does not maximize the likelihood of these observations.
The likelihood of 2, zo becomes larger if the probability assigned to z; is slightly larger
than the probability assigned to z;. See . A similar remark applies to the sampling
mode (O, R) and the sequence z1, z1, z5. See ((12). Fact 4 is concerned with sampling mode
(O, R) and a multiplicative decomposition of p? into pt (the probability assigned to z;) and
p/t (the probability assigned to z;) with ¢ > 1. According to Fact 4, the likelihood of
{21, 22} becomes larger when the scaling factor ¢ > 1 is increased. Note that this is not in
contradiction with the even-split argument, because pt + p/t is itself strictly increasing with
t so that the even-split argument does not apply.

We would furthermore like to note that the c-conditional likelihood of a (multi-)set or
sequence of observations becomes larger if one of the relevant c-conditional likelihood pa-
rameters is increased while the others are fixed. We refer to this way of arguing as applying
the “monotonicity argument”.

Theorem [3.12] is a direct consequence of the following three lemmas.
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Lemma 3.13. Consider the triple (C,Z, =) with C' = {c1,¢9,¢3}, Z = {21, 29,23} and
¢ =z for alll <i,j <3. Let L be an MLE-learner for C" with parameters given by

] P(z|c) H 1 \ Co \ 3 ‘
21 p+A | p+ Ay p
22 p—A1|p—2Ay P ’
Z3 1—-2p | 1—-2p|1—2p

where 0 < A < szp < Ay = %(\/5—1)])<p§0.4 Then

MLE-TD?®(C) =3, MLE-TD?®(C) =2 and MLE-TD?R(C) =00 . (14)

Proof. 1t is obvious that, in any mode of sampling, the concept ¢, can be taught by observa-
tion z; and the concept c3 can be taught by observation z;. An inspection of and
reveals that

Pg’R(Zl,ZﬂCl) > PI?’R(Zl, 22|C3) > Pg’R(Zl,ZﬂCQ) ,

PS’R(zl,zl,zﬂcl) > PLO’R(zl,zl,zz|02):PLO’R(zl,zl,zQ|03) .

It follows that ¢; can be taught in (O, R)-mode (resp. in (O, R)-mode) by the sequence 21, 2
(resp. by the sequence zi, 21, 29). We will argue now that there are no shorter sequences
for teaching ¢; and that, in (O, R)-mode, ¢; cannot be taught at all. An application of the
monotonicity argument yields that ¢; cannot be taught by a single observation (regardless
of the sampling mode). The same remark holds for 2 observations except, possibly, for
observations zi, 2. But, by the even-split argument, it is the concept c3 that assigns the
highest probability to the sequence (21, 25) € Z9F resp. to the set {z1, 20} € Z9%. Thus
(O, R) is the only sampling mode in which ¢; can be taught by 2 observations. It follows
that, in (O, R)-mode, ¢; cannot be taught at all. We may conclude from this discussion
that the identities in are valid, O]

Lemma implies that (O, R) does not dominate (O, R) and (O, R) does not dominate
any of the other sampling modes. The next result leads to some more no-domination results:

Lemma 3.14. Consider the triple (C,Z, =) with C = {c1,¢9,c3}, Z = {21, 29,23} and
¢ =z foralll <i,j < 3. Let L be an MLE-learner for C with the parameters P(z|c) given
by

PEI] o | o [ o]
21 p |ptAlp—A
2 p |p=Alp+A|’
23 1—2p11—-2p|1—2p

"The constraint p < 0.4 has the effect that % < %(\/3 - 1.

8Here we make use of the fact that, if Z, = Z for each ¢ € C, then PO-E(Z|¢) = 1 for each ¢ € C. Note
that this rules out the possibility of having teaching sets of size 3 = |Z]|.
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whereO<A<1pTQP<p<1/2. Then

MLE-TD?®(C) = MLE-TD?®(C) =2 and MLE-TD?E(C) = oo . (15)

Proof. Clearly the concept ¢, can be taught by observation z; and the concept ¢z can be
taught by observation z, in any mode of sampling. The concept ¢; cannot be taught by
a single observation. But it can be taught by the sequence (21, 22) in (O, R)-mode and by
the set {21, 2} in (O, R)-mode (application of the even-split argument). We finally discuss
teachability of ¢; in (O, R)-mode. An application of the monotonicity argument yields that
c1 cannot be taught in (O, R)-mode by two observations except, possibly, by the observations
(21, 22) or (22, z1) in Z9F. But an inspection of reveals that it is the concept ¢, (resp. c3)
that assigns the highest probability to (z1,22) (resp. to (29, 21)). It follows that, in (O, R)-
mode, the concept ¢; cannot be taught at all. We may conclude from this discussion that
the identities in are valid. O

Lemma implies that (O, R) does not dominate any of the other sampling modes.
The next result implies (O, R) does not dominate (O, R).

Lemma 3.15. Consider the triple (C,Z, =) with C = {c1,co,c3}, Z = {z1,292,23} and
¢ =z forall1 <1i,5 <3. Let L be an MLE-learner for C with parameters P(z|c) given by

PS5 I N R
21 sp P sp+e

2 p/s p p/s—e |’
23 l—sp—p/s|1—=2p|1—sp—p/s

wher60<p<%and1<s§%. Then

MLE-TD?®(C) = 2 < MLE-TD?%(C) | (16)
provided that € > 0 is sufficiently small.

Proof. Clearly, the concept ¢y can be taught by observation z, and c3 can be taught by
observation z; in any mode of sampling. It is obvious that ¢; cannot be taught by a single
observation (regardless of the sampling mode). In (O, R)-mode, the concept ¢; cannot be
taught by sequences of length 2 because ¢ is for none of them the unique maximizer:

° PS’R(zl,zﬂcl) =p? = PE7R(Z]_,Z2|CQ>.
° PS’R(zl,z3|cl) < PLO’R(Zl,Z3|63) and PS’R(22,23|01) < PLO’R(ZQ,Z3|02)H

However, in (O, R)-mode, the concept c¢; can be taught by the set {z1, 25 }:

9These are two applications of the monotonicity argument. Note that s + % > 2 for all s > 1.
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e Concept ¢, distributes the probability mass sp + p/s (slightly) more evenly on z; and
2z, than the concept cs. By the even-split argument, we obtain POf({z, z}|c;) >

POR({z1, 25} |cs).

e Recall from Fact 4 that ¢, with ¢t > 1, denotes the concept which assigns probability
pt to zp, probability p/t to ze and the remaining probability mass to z3. Note that
c1 = ¥ and ¢ = M. According to Fact 4, the function p5,§<21’ zlc®) is strictly
increasing with t. Hence POR({z, 23} c1) > POR({z1, 2} o).

The identities in (16)) are immediate from this discussion. O]

Putting the above three lemmas together, we obtain Theorem [3.12]

4 MAP-Based Teaching and Saturating Matchings

Suppose that C' is a concept class with observation set Z and consistency relation =. The
bipartite graph G(C) = (C, Z, E) with

E={(c,2) eCxZ:cl==z}

is called the consistency graph (associated with C). Let Z* with (a,f) € {0,0} x
{R, R} be the notation that was introduced in Section . The bipartite graph G(C)*#
(C, 258, E*B) with

E* ={(¢,¢) € C x 2P : c = (}

is called the eztended consistency graph (associated with C'). The graph resulting from
G(C)*? by the removal of the vertex ) from the second vertex class Z%? will be denoted
by G(C’);mﬁ . We denote by SMN(G(C)*#) the smallest possible order of a C-saturating

matching in G(C)*?. Analogously, SMN(G(C’);’g ) denotes the smallest possible order of
a,B

a C-saturating matching in G(C') 4y For ease of later reference, we make the following
observation:

Remark 4.1. Suppose that T : C — Z*P is a mapping which satisfies
Ve, d € C:(cET(e)AN(c#d =T(c) #T()) . (17)

Then T is of order at least SMN(G(C)*#). Moreover, if T satisfies and () is not in the

image of T, then T is of order at least SMN(G(C’);)Z@B).

Proof. 1f T satisfies , then T represents a C-saturating matching in G(C)*?. If addition-
ally 0 is not in the image of T', then T represents a C-saturating matching in G(C’)‘;g O]

Here is the main result of this section:
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Theorem 4.2. For each sampling mode («, 3), we have

MAP-TD*?(C) > SMN(G(C)*?) and MLE-TD*?(C) > SMN(G(C)%y) - (18)

Moreover, for (o, B) = (O, R), this holds with equality.

Proof. Let L be a MAP-learner for C' and let («, 5) denote its sampling mode. Let T be a
teacher for L. Recall from @ that T satisfies . Moreover, if L is an MLE-learner for C,
then T'(c) # () for all ¢ € C'. Now an application of Remark yields .

We move on and prove that MLE-TD2R(C) < SMN(G(C)?@R). Suppose that M is a

C-saturating matching in G(C)Z&)R that is of order SMN(G(C)Z@R). For each ¢ € C and
z € Z, let n(z,¢) denote the number of occurrences of z in the multiset M(c) and let
n(c) = |M(c)|. Consider alearner L with uniform priors (= MLE-learner) and the parameters
P(z|c) = % Note that these parameters satisfy the validity condition. It suffices to show
that M represents a teacher for L, i.e., we have to show that

Ve' € C: c¢* = arglmax, ¢ POE(M(cM)]e) .
To this end, we pick a concept ¢ from C'\ {¢*}, and proceed by case analysis:

Case 1: M(c*) and M (c) contain the same elements of Z (albeit with different multiplici-
ties)[
Denote these elements by z1,...,z,. Let n = n(c*), n; = n(z;,c¢*). Then p; := n;/n
is the relative frequency of z; in M(c*). Let ¢; denote the relative frequency of z; in
M (c), which implies that q # p. It follows that

k k
n! 5 n!
PO,R M) = —— . " and PO’R M(cHe) = —— . ni
(M(e)[e") nil..ong! Epl (M{e)le) ni!. . ong! illql

A straightforward calculation shows that POR(M(c*)|¢*) > POR(M(c*)|c) iff

ipi log (]qi) >0 . (19)

i=1 ’

The left-hand side is the Kullback-Leibler divergence (= KLD) between p and q. Since
the KLD is non-negative and 0 only if q = p, the condition is satisfied.

Case 2: M(c*) contains an element that is not contained in M(c).
Then the c-conditional likelihood of M (c*) equals 0.

Case 3: All elements in M(c*) are contained in M (c), but M(c) contains an element that
is not contained in M (c*).
Then the c-conditional likelihood of M (c*) can be expressed as Pr(E;) - Pr(Ey|E;) for
the following two events:

10The multiplicities cannot be the same because M : C' — ZO.R ig 4 matching.
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Ey: n(c*)-fold e-sampling yields only elements from M (c*).
Ey: n(c*)-fold e-sampling yields M (c*).

Since M (c) contains an element that is not contained in M (c*), we have Pr(E;) < 1.
It follows from the analysis of Case 1 that Pr(Ey|E;) is upper-bounded by the c*-
conditional likelihood of M (c*).

We may conclude from the above discussion that ¢* = arglmax,., POF(M(c*)|c). Thus M

can be seen as a teacher for L. It follows that MLE—TDaR(C) < SMN(G(C)?&)R).

The inequality MAP-TD?#(C) < SMN(G(C)? %) can be obtained in a similar fashion. We
start with a C-saturating matching M in G(C)?® that is of order SMN(G(C)9F). If M
does not assign () to any concept, we can proceed as before. Otherwise, if M(co) = @ for
some ¢y € C', we still use a similar reasoning but with a slight modification of the parameter
collection of the learner L:

e The priors are given by setting P(co) = % and by letting the remaining |C| — 1

concepts evenly share the remaining probability mass (still almost uniform priors).

e The parameters P(z|c) are chosen as before.

We can again view the matching M as a teacher for L. Since P2 (()|c) = 1 for all ¢ € C,
we obtain B
arglmax .. (P(c) : PO’R(Q)\C)> = arglmax, . P(c) = ¢ .

For the remaining concepts, the reasoning is as before provided that ¢ > 0 s sufficiently
small: this is an easy continuity argument which exploits that the priors converge to the

uniform distribution on C' if ¢ approaches 0. 0
Clearly
SMN(G(C)9F) min{SMN(G(C)PF), SMN(G(C)*F)}

<
< max{SMN(G(C)°*"), SMN(G(C)?F)} < SMN(G(C)°F)
and

SMN(G(C)%) < min{SMN(G(C)%"), SMN(G(C) %)}
max{SMN(G(C)%"), SMN(G(C) %)} < SMN(G(C)%) -

Combining this with Theorem and with Corollary [3.11], we immediately obtain the fol-
lowing result:

Corollary 4.3.
1. MAP-TD?E(C') = SMN(G(C)P®) < SMN(G(C)PF) < MAP-TDOE(C).

N

2. MLE-TD?R(C) = SMN(G(C)%") < SMN(G(C)%") < MLE-TD(C).
)

Hence we get MAP-TD?#(C') < MAP-TD?#(C') and MLE-TD?#(C') < MLE-TD?#(C)
despite of the fact that (O, R) does not dominate (O, R).
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5 On Concepts Taught by Labeled Examples

In this section, we will restrict ourselves to triples (C, Z, =) of the form as described in
Example 2.2] i.e., C is a family of subsets of a domain X, Z = X x {0,1} and k= is given
by .

We will see that, for each triple (C, Z, =) of this special form and for each sampling mode
(v, B) except (O, R), we have MAP-TD*#(C) = SMN(G(C)**?). For (o, 8) = (O, R), this is
already known from Theorem [4.2] For the other sampling modes, (O, R) and (O, R), it will
be shown in Section , Since the modes (O, R) and (O, R) are equivalent, we see that, for
triples of the special form, the MAP-teaching dimensions of C' are fully determined by the
saturating matching numbers associated with G(C').

In Section [5.2] we explore how MAP- and MLE-learners are related. For a given collection
of conditional likelihoods, it can make much of a difference whether we commit ourselves
to uniform priors or not. However, in the case of optimally parameterized learners, the
freedom for choosing a non-uniform prior is of minor importance only: it turns out that the
MLE-teaching dimension exceeds the MAP-teaching dimension at most by 1.

In Section , we will see that the MLE-TD®(C) is upper bounded by the so-called
antichain number of ', by the VC-dimension of C' and by the no-clash teaching dimension
of C. These upper bounds are then, all the more, valid for all parameters MAP-TD*?(C)
(no matter how he sampling mode (a, 3)) is chosen).

In Section [5.4] we will show that the saturating matching numbers associated with G(C')
(and hence the MAP-teaching dimensions of C') can be computed in polytime.

5.1 Saturating Matching Number Revisited

We start with the two main results of this section.

Theorem 5.1. Suppose that (C,Z, =) is of the form as described in Ezample 2.9, Then

MAP-TD?®(C) = SMN(G(C)?F) and MLE-TD?%(C) = SMN(G(C)%%).

Proof. The >-direction of the claimed equalities is covered by Theorem .2l We have to show

the <-direction. We may restrict ourselves to proving MLE-TD?®(C) < SMN(G(C)?EDR)

because the proof for MAP-TD?#(C) < SMN(G(C)?%) is quite similar and uses the same
kind of arguments that we had used in the final part of the proof of Theorem

Set m = | X|, dt = SMN(G(C)9F) and let M : C — Z9F\ {()} be a C-saturating matching
in G(C)9" of order d*. For every ¢ € C, we set d(c) = |[M(c)|. Note that 1 < d(c) < d*.
If dt = m, then we are done because MLE-TD?#(C) cannot exceed m. We may assume
therefore that d¥ < m —1. Let 0 < ¢ < % be a small real number (where the meaning of
“small” will become clear from what follows). For each ¢ € C, we set

Uo(c) :=A{(x,b) € Z : c(x) #b} , Ui(c) :={(x,b) € Z :c(x) =bA (z,b) ¢ M(c)} (20)
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and U(c) = Uy(c) U Uy(c). Note that, for each ¢ € C, the set Z partitions into M (c), Up(c)
and U (c). For each ¢ € C and each (x,b) € Z, we set

e if (x,b) € M(c)

d(c)
P((z,b)e) = ¢ w1 (@,0) € Ui(e) . (21)
0 if (z,b) € Up(c)

o

m—d(c)

Let L be the MLE-learner given by . We aim at showing that the matching M : C' —
ZOE\ {(} can be seen as a teacher for L. To this end, it suffices to show that the condition

Ve # ¢y € C : POR(M(co)|co) > POR(M(co)lc) (22)

is satisfied provided that ¢ is sufficiently small. We briefly note that |M(c)| + |Ui(c)] =m >
d*t and e < 1/2, and proceed with two claims which will help us to verify .

Claim 1: Call a subset of Z c-rare if it contains a (low probability) element from U(c)
while missing a (high probability) element from M (c). Suppose that d < d*. Then the
probability that d-fold P(-|c)-sampling without replacement leads to a c-rare sample
is smaller than de divided by ﬁ and, therefore, smaller than 2dd(c)e.

Proof of Claim 1: The total P(:|c) probability mass of U(c) is € whereas any element of
M (c) has a P(-, ¢)-probability of ﬁ. For k =1,....,d, let E}, be the event that, within
trial &k, a point from U(c) is sampled although at least one point from M(c) has not
been sampled before. It suffices to upper-bound the probability of £y V...V E;. The
probability of E} is obviously smaller than € divided by ﬁ and therefore smaller than

dl(—f); < 2d(c)e. An application of the union bound yields an additional factor d.

Claim 2: Suppose that d < d(c¢). Then a sample of size d which contains an element from
Ui(c) is c-rare (because it necessarily must miss an element from M (c)).

Setting ¢ = ¢y and d = d(cy), we infer from the above claims that POF(M (co)|co) > 1 —
2d(cg)%e. Consider now an arbitrary, but fixed, concept ¢; € C'\ {co}. Then M(c;) # M(cp).
We proceed by case analysis:

Case 1: Neither M(cy) C M(ey) nor M(ci) C M(co).
Then M (cy) is a c¢;-rare sample. Hence PO (M (cp)|er) < 2d(co)d(cy)e.

Case 2: M(cy) C M(cq).
We apply a symmetry argument. Every sample containing d(cy) elements of M (c1) has
the same chance for being obtained from d(cg)-fold P(:|c;)-sampling without replace-
ment. Hence

PR < (1)) <

d
where the last two inequalities follow from 1 < d(cg) < d(c1) — 1.
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Case 3: M(c1) C M(cp).
We may assume that M (cy) € M(cq) U Ui(c1) because, otherwise, we obtain directly
POR(M(co)|c1) = 0. We apply again a symmetry argument. Every sample containing
M (cy) and d(co) — d(cy) elements of Uy(c;) has the same chance for being obtained
from d(cy)-fold P(-|c;)-sampling without replacement. Hence

PO < (o (d<)>) '

The latter expression is upper-bounded by 3 because 1 < d(co) — d(c1) < m — d(cy),
d(e1) < d(cp) — 1 < m — 2 and, therefore, m — d(¢y) > 2.

It becomes obvious from this discussion that condition is satisfied provided that ¢ is
sufficiently small. m

Theorem 5.2. Suppose that (C,Z, =) is of the form as described in Ezample . Then

MAP-TDF(C) = SMN(G(C)F) and MLE-TD?F(C) = SMN(G(C)%;").

Proof. The >-direction of the claimed equalities is covered by Theorem 4.2l We have to show
the <-direction. We may restrict ourselves to proving MLE-TD?#(C) < SMN(G(C)ZEDR)

because the proof for MAP-TD?®(C) < SMN(G(C)9F) is quite similar and uses the same
kind of arguments that we had used in the final part of the proof of Theorem 4.2
Set m = |X|, dt = SMN(G(C’)ZEDR) and let M : C — Z9%\ {(} be a C-saturating matching

in G (C)SEE,)R of order d*. If d* = m, then we are done because MLE-TD®(C) cannot exceed
m. We may assume therefore that dt < m — 1. For every ¢ € C, we set d(c) = |M(c)|.
Note that 1 < d(c) < d*. We fix for each concept ¢ € C a sequence 25, ..., 25 consisting
of all elements of Z. subject to the constraint that zf,..., Zie) = M(c), i.e., this sequence
must start with M (c). In the sequel, we will specify the parameter set of an MLE-learner
of C. We do this in two stages. In Stage 1, we make a preliminary definition which already
achieves that each ¢* € C is a (not necessarily unique) maximizer of P#(M (c*|c)). In Stage
2, we make some infinitesimal changes of the parameter set (by bringing a small parameter
e > 0 into play) so that, after these changes have taken place, each ¢* € C' will be a unique
maximizer of P?®(M(c*|c)). This would imply that M can be viewed as a teacher for L,
which would complete the proof. Details follow.

We enter Stage 1 of the parameter construction. Let L be the MLE-learner whose parameters
are given by

27 if 1 <i<d(c)and z = zf

P(z|c) = %d((ci) ifd(c)+1<i<mand z=zf
0 if ze Z\ Z.

In other words, given ¢, L assigns probability mass 27% to the i-the element of the sequence
M (c) and distributes the remaining probability mass, 27%¢), evenly on the elements of Z, \
M (c). Note that the c-conditional likelihood of an element in M (c) is at least 27%¢) while
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the probability of an element in Z. \ M(c) equals %(;(2) < 27U with equality only if

d(c) =m — 1. It is easy to determine the c-conditional likelihood of M/(c):
d(c) 9—i
PO’R(M(C)|C) _ % — 9—de)
i=1
The middle term contains in the numerator the product of the c-conditional likelihoods of
2155 2y respectively. In the denominator, it contains the product of the correspond-
ing normalization factors: if z{,...,2; haven been sampled within the first j trials, then
the remaining probability mass equals 1 — 3>7_ 27 = 277, Let us now fix an arbitrary
target concept ¢* € C' and see how the c¢*-conditional likelihood of M(c*) relates to the c-
conditional likelihood of M (c*) for some other concept ¢ € C'\ {¢*}. We aim at showing that
POR(M(c*)|c) < POR(M(c*)|c*). We may assume that ¢ = M(c*) because, otherwise, we
would obtain P?®(M(c*)) = 0, and we were done. For sake of simplicity, we set d := d(c*)

and z; := 2§ fori=1,...,d.
Let us briefly discuss the case that M(c) and M(c*) are equal as sets. Then there ex-
ists a permutation o such that M(c) = 2z,a),...,%(). Since M is a matching, o can-

not be the identity permutation. It follows that PO#(M(c*)|c*) > POF(M(c*)|c) because
(P(2i|¢*))iz1...a = (27")i=1,a is a strictly decreasing sequence while (P(z;|c))i=1.. 4 (as a
non-identity permutation of (27%);=;,_4) is not.E

From now, we assume that M(c) and M (c*) are different even when viewed as sets. Let j
be the number of z € Z occurring in M(c) and in M (c*). We can make the pessimistic as-
sumption that the sequences M (c) starts with z;, ..., z; because this will lead to the largest
conceivable value of PO®(M (c*)|c) The remaining observations 2;;1, ..., 24 must then

be members of Z.\ M (c). Remember that for each z € Z.\ M (c) we have that P(z|c) = %d((i)

The term POF(M(c*)|¢) can be expressed as a product of two terms. The first one (resp. sec-
ond one) is the contribution of the first j trials (resp. the last d — j trials). Since M (c) starts
with z1,...,2;, the first term is simply T3 := 277. The second term has the following form

()
B (2—J - 2‘?) (2—j _9 2‘:.) (2—1’ —(d—j—1) 2‘f.)
m—j m—j m—j
As usual, the numerator contains the product of the c-conditional (here: uniform) likelihoods

while the denominator contains the product of the corresponding normalization factors. T,
looks terrifying at first glance, but luckily there is a lot of cancellation and 75 can be rewritten

as follows:
i () () ()

(m—j)m—j—1)(m—-j—2)...(m—d+1)

1 Compare with Remark
12This brings the j largest c-conditional likelihoods into play and puts them in the most effective position.

TQI

24



Remember that d = d(c¢*) < m — 1. It follows that m —d + 1 > 2 and therefore
Ty <279 and POR(M(c*|c) =T, Ty <27°

with equality only if either j =d or d =m — 1 and 7 = m — 2. Note that j = d if and only
if the sequence M (c) starts with the sequence M(c*) = z1,. .., zq4.

We enter now Stage 2 of the parameter construction, in which we make some infinitesimal
changes of the parameters that we have used so far. In order to distinguish the new parameter
collection from the old one, the new parameters are denoted by P.(z|c). They are defined as
follows:

27" if1<i<d(c)—1and z=2¢
. ) 27+ ifi=d(c) and z = 2§
e(2]e) = 2;1(—;)(2)5 ifd(c)+1<i<mandz=2zf

0 if z€ Z\ Z,

The main difference to the old parameter collection is the “extra-bonus” ¢ that c assigns
to the last element Zd(e) of the sequence M(c). Now the total probability mass assigned to
2155 2 is by the amount of ¢ greater than before, so that only probability mass 2-4%) —¢
is left for Z. \ M(c). Again, this probability mass is shared evenly among the elements of
Z.\ M(c). Here comes the central observation:

Claim: If € > 0 is sufficiently small, then the following implications are valid:

POR(M(e)[er) > POR(M(e)]e) = POT(M()]e") > POF(M(e)e) |
POR(M(e)]e?) = POR(M(c)]e) = POT(M()]e") > POT(M(e)]e)

Proof of the Claim: The first implication is based on a simple continuity argument. The
second implication can be verified as follows. Remember from the discussion in Stage
1 that POR(M(c*)|c*) = PPE(M(c*)|c) can occur only if either M(c) starts with
M(c¢*) = z1,...,zq0r if d = m — 1 and j = m — 2. In the former case, the effect of
P.(z4]c¢*) = P(za|c*) + € and P.(z4|c) = P(zq4|c) will be that

POR(M(c*)|e") > POR(M(c)|e*) = POR(M(c")|c) = POR(M(c*)|e) ,  (23)

as desired. In the latter case, we have M(c¢*) = z,..., 2,1 and either M(c) =
21y .oy Zmeg OF M(c) = 21,..., Zm—2, zm. In the latter case, we again end up at .
Suppose therefore that M (c*) = z1,..., 2,1 and M(c) = 21,..., Zm_o. Here the situ-
ation is less clear, because the e-bonus will affect not only the ¢*-conditional likelihood
of M(c*) but also the c-conditional likelihood. We therefore compute both quanti-
ties and compare them afterwards. Clearly PO%(M(c*)|c*) = 27V 4 ¢. The term
POR(M(c*)|e) can be expressed as a product of two terms, The first one (resp. sec-
ond one) is the contribution of the first m — 2 trials (resp. the last trial). Since
M(c) = z1,..., %m_2, the first term clearly equals 27(™=2 + ¢, Note that 27(m2) — ¢
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is the probability mass remaining for, and evenly shared by, z,,_1 and z,,. The second
term equals therefore

Pmale) ("2 -¢)j2 1
2-(m=2) — ¢~ 2-m=2 _o T 2
It follows that
= 1
POR(M(e)]e) = 5 - (270" &) =27V 4 =

which is less than PO-R(M (¢*)|¢*) = 27 (™=1 ¢, This completes the proof of the claim.

The above discussions show that we can view M a teacher for the learner L with parameter
collection (P.(z|c))zez.cec. This completes the proof of the theorem. O
Combining Theorems and with what we already know about saturating matching

numbers, we obtain the following result:

Corollary 5.3. Suppose that (C,Z,|=) is of the form as described in Example and
(a, B) # (O, R). Then
MAP-TD*?(C) = SMN(G(C)*”) and MLE-TD*(C) = SMN(G(C)%y) .
Moreover
MAP-TD?#(C) max{MAP-TD??(C), MAP-TD?®(C)} |
MLE-TD?#(C) max{MLE-TD?®(C)), MLE-TD?®(C)} .

The first assertion of the corollary implies the correctness of the results which are visu-
alized in Fig. [Il The following two results provide some supplementary information:

>
>

Theorem 5.4. Let (o, 8) and (o/, 5') be two different sampling modes. There exists a concept
class C' such that SMN(G(C)*"#") # SMN(G(C)*?).

Proof. We present the proof for (o, 8) = (O, R) and (o, 8') = (O, E). Let X ={z1,...,2,},
let Z = X x{0,1}, let C,, be the powerset of X and let |= be given by (2)). Let 2, (resp. Z))
be the set of all A € Zf (resp. A € Z9%) such that |A| < 2. A simple counting argument
shows that | Z}| < |2,|. Consider the bipartite graph G with vertex sets C, and Z5 and with
an edge (c, A) if and only if ¢ = A. Each vertex in Z, has degree at least D := 2™~2 whereas
each vertex in C), has degree d := 1+ 2m + %(m — 1)m. Suppose that m is sufficiently large
such that d < D. Fix an arbitrary subset S of Z5. It follows that

D
T(8) = = || 2 13|

so that G satisfies Hall’s condition. It follows that G admits a Z;-saturating matching, say M.
Let C be the set of concepts in C,,, having an M-partner. By construction: SMN(G(C)9%) =

2. For cardinality reasons, namely |C| = |[M| = |Z,] > | Z}|, we have SMN(G(C)9F) > 2. O

Theorem implies that the parameters with different colors in Fig. (1| can generally
have different values.

13The proof for the other choices of (a, 3) and (a/,8’) is similar.
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5.2 MAP- versus MLE-Learners

Suppose that L is an MLE-learner for C'. Let L’ be a MAP-learner that differs from L only
by having non-uniform priors, i.e., the conditional likelihoods are the same. The follow-
ing example demonstrates that the gap between MAP-TD??(C') and MAP-TD$”(C) can
become arbitrarily largeE

Example 5.5. Let X = {x1,..., 2}, Z =X x{0,1}, C = {{x1},..., {zn}} U{D} and let
= be given by @ Consider the MLE-learner L be given by the parameters

1
P((zi,c(zi)le) = —
for each ¢ € C and i = 1,...,m. We assume for simplicity that the sampling mode («, [3)
of L equals (O, R), but the following reasoning (mutatis mutandis) applies to any other
sampling mode as well. Clearly, for each k € [m], the concept {x} can be taught by the single
observation (xy,1). However () can only be taught by the full set Ag := {(x;,0):i=1,...,m}
of observations that () is consistent with: as long as some (xy,0) is missing in a set A C Ay,
we have that P(A|0) = P(Al{xy}) so that ) is not the unique mazimizer of P(Alc). We
may conclude from this discussion that MAP-TDY?(C) = m. Let L' be a MAP-learner
that differs from L only by having for O a higher prior than for the other concepts in C.
Then the concept {x} can still be taught by the single observation (xx,1). But now also
the concept ) € C can be taught in a trivial fashion by O € 22. We may conclude that
MAP-TD?(C) = 1.

In contrast to Example[5.5] the next result shows that, in case of optimally parameterized
learners, the advantage of MAP-learners over MLE-learners is all but dramatic:

Theorem 5.6. Suppose that (C,Z,|=) is of the form as described in Example and
(o, 8) # (O, R). Then

MAP-TD*?(C) < MLE-TD*?(C) < 1 + MAP-TD*#(C) . (24)
Moreover, there exist concept classes C' and C" such that
MLE-TD*?(C’) = MAP-TD*#(C") and MLE-TD*?(C") = 14+ MAP-TD*?(C") . (25)

Proof. Clearly MAP-TD*?(C)) < MLE-TD*#(C). In order to obtain (24)), it suffices there-
fore to show that MLE-TD*?(C) < 1+MAP-TD*?(C), or equivalently, that SMN(G(C)%y) <
1 4+ SMN(G(C)*#). We present the proof for (o, ) = (O, R). For sake of brevity, set
m = |X|, G = G(C)%F and d := SMN(G). Since SMN(Gg) < m, we may assume that
d <m-—2 Let M :C — 2% be a C-saturating matching of order d in G. If M does

14This example uses a concept class, namely singletons plus empty set, which is often used to demonstrate
that the classical teaching model from [I3] [6] may assign an inappropriately high teaching dimension to a
trivial concept class.

15The proof for the other choices of (a, 3) is similar.
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not assign () to any concept in C, then SMN(G_y) < d. Otherwise, if M(cy) = 0 for some
co € C, then we may arbitrarily pick a set A C X of size d + 1 and replace the M-partner
0 of co by the set B = {(a,co(a)) : a € A}. The resulting matching now witnesses that
SMN(Gyp) < d+ 1.

We still have to specify concept classes C” and C” which satisfy ([25)). As for €, there are
plenty of choices, e.g., C" = {{z;} : i =1,...,m} satisfies

MLE-TD*?(C’) = MAP-TD*?(C") =1 .

In order to specify an appropriate class C”, we assume again that (o, 3) = (O, R) and
proceed as follows. Let X = {z1,...,2,}, let Z = X x {0,1}, let C,, be the powerset of
X, and let = be given by . Let Z<4 (vesp. Z_,;) be the set of subsets (resp. non-empty
subsets) of Z of size at most d. Consider the bipartite graph G with vertex sets C,, and
Z.4 an edge (¢, A) if and only if ¢ = A. If m is sufficiently large (while d is kept fixed),
G admits a Z<4-saturating matching, say M. Let C” be the set of concepts in C,, having
an M-partner. By construction: SMN(G(C")9f) = d. For cardinality reasons, namely
C"| = |M| = |Z<a| > |Z<a| — 1 = |2L,], we have SMN(G(C")%;") > d, which implies that

SMN(G(C") %) = d + 1. O

5.3 Parameters Bounding MLE-TD from Above

Since MLE-TD can never be smaller than MAP-TD, it follows that MLE-TD%®(C) is
the largest among the parameters occurring in Corollary [5.3] Hence upper bounds on
MLE-TD®®(C) are, all the more, upper bounds on the other parameters. For this rea-
son, we confine ourselves to MLE-learners and to sampling mode (O, R) in what follows. In
order to simplify notation, we will write

e 27 instead of Zaﬁ,
e MLE-TD(C) instead of MLE-TD?®(C),
o G*(C) instead of G(C)%y".

Among the parameters that bound MLE-TD(C) from above are the antichain number
of C, the VC-dimension of C' and the so-called no-clash teaching dimension of C. We begin
with the definition of the antichain number:

Definition 5.7 (Antichain Mapping and Antichain Number). T' : C' — 2Z is called an
antichain mapping for C' if the following holds:

1. Each concept ¢ € C' is consistent with T (c).

2. The sets (T(c))cec form an antichain, i.e.,
Vey #£ea € C:T(e1) LT(eo) NT(eo) L T(cr) -
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The smallest possible order of an antichain mapping for C' is called the antichain number of

C' and denoted by AN(C).
It is well-known that the antichain number is upper-bounded by the VC-dimension:

Theorem 5.8 ([10]). Suppose that the concept class C is a family of subsets of a finite
domain X. Then AN(C') < VCdim(C).

We proceed with the definition of the teaching dimension in the so-called no-clash model of
teaching:

Definition 5.9 (No-clash Teaching Dimension [9, B]). A mapping T : C — 2% is called
clash-free on C' if it satisfies the following:

1. FEach c € C is consistent with T(c).
2. If ¢1 # co € C, then ¢y is inconsistent with T(cq) or ¢y is inconsistent with T(cl).ﬁ

The no-clash teaching dimension of C, denoted as NC-TD(C), is the smallest possible order
of a mapping T : C' — 2% that is clash-free on C.

Theorem 5.10. Suppose that (C,Z, =) is of the form as described in Example[2.4 Then
MLE-TD(C) < AN(C) and MLE-TD(C)) < NC-TD(C).

Proof. Because MLE-TD(C) = SMN(G™(()), it suffices to show that SMN(G™(C")) is upper-
bounded by AN(C) and NC-TD(C'). An antichain mapping 7' : C' — 27 clearly satisfies
and does not have () in its image. Thus, an application of Remark yields AN(C') >
SMN(G*(C)). A clash-free mapping T : C' — 2% must be of order at least 1. There can be
at most one concept ¢ in C such that T'(¢) = (). Suppose that T'(¢) = (). Consider an arbitrary,
but fixed, concept ¢ € C'\ {c}. Since ¢ is consistent with (the empty sample) T'(c) and T is
clash-free, the concept ¢ must be inconsistent with 7'(¢’). Let us redefine T'(¢) as a singleton
set {(z,b)} such that b = ¢(z). This modification of T is still clash-free and leaves the order
of T unchanged. Moreover, after this modification, 7" satisfies and does not have () in
its image. Now another application of Remark [4.1| yields NC-TD(C) > SMN(G*(C)). O

The inequality MLE-TD(C') < NC-TD(C) had been proven already in [4]. The proof
given there does not make use of saturating matching numbers and is more complicated.
Because AN(C) < VCdim(C), we immediately obtain the following result:

Corollary 5.11. Suppose that (C, Z, =) is of the form as described in Ezample 2.3, Then
MLE-TD(C) < VCdim(C).

6The situation that c; is consistent with T'(cy) and ¢y is consistent with T'(c;) would be called a clash of
c1 and co. This explains why the mapping T is called clash-free.
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5.4 Computational Considerations

We will show in the course of this section that SMN(G™(C)) (and related quantities) can
be computed in time poly(|C], | X|) from a given (finite) concept class C' C 2X. The central
observation will be that, in order to find a C-saturating matching of minimum order in
G*(C), we do not need to compute the (possibly exponentially large) bipartite graph G*(C').
All pieces of information about G*(C) that we need in the course of the algorithm can be
efficiently extracted from the much smaller bipartite graph G(C').

We start with a lemma that is particularly interesting when we have a bipartite graph
whose first vertex set, V7, is much smaller than its second vertex set, V5:

Lemma 5.12. Let G = (V}, Vo, E) with E C Vy x V, be a bipartite graph. Let O be an
oracle that, upon request (v, k) with v € Vi and k € [|V1]], returns min{deg.(v), k} distinct
neighbors ofv. Then there is an oracle algorithm A® which computes a mazimum matching
in G and has a time bound that is polynomial in |V1].

Proof. For sake of brevity, we set n = |Vj|. Let V/ C Vi be the set of vertices in V; with
less than n neighbors, and let V" = V; \ V/ be the set of remaining vertices in Vi, i.e., the
vertices with at least n neighbors. The algorithm A proceeds as follows:

1. For each v € V7, it sends the request (v,n) to O and receives a list of all neighbors if
v € V], resp. a list of n distinct neighbors if v € V.

2. Now A® computes a maximum matching M’ in the subgraph G’ of G that is induced
by V{ and T'(V}).

3. A% augments M’ to a Vj-saturating matching in a greedy fashion: for each v € V}’,
it inspects the list of n distinct neighbors of v and matches v with the first neighbor
which had not been matched before.

Note that G’ has at most n(n— 1) vertices. Moreover, among n neighbors of a vertex v € V",
there must be at least 1 neighbor which is not already matched with another vertex in V.
It easily follows that A® returns a maximum matching in poly(|V4|) time. O

With a bipartite graph G = (V3, V5, E), we associate the bipartite graph
Gt = (V,2"2\ {0}, ET) with Et ={(v,B) € V; x22\ {0} : {v} x BC E} . (26)

In other words: the pair (v, B) with v € V; and ) C B C V5 is an edge in EV iff, for every
v" € B, the pair (v,?) is an edge in E.

Theorem 5.13. Given a bipartite graph G = (V1, Vs, E), a Vi-saturating matching of mini-
mum order in Gt (resp. an error message if a Vy-saturating matching does not exist) can be
computed in polynomial time:

1"The oracle O can be implemented efficiently if, for instance, G is represented by the adjacency lists for
the vertices in V7 and there is direct access to each of these lists.
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Proof. We consider first the problem of computing a Vj-saturating matching of minimum
order in G*. Let us fix some notation. For £ = 1,...,|Va], let G© = (V, VQ(K , E®) be the
bipartite graph given by

V9 ={BCV,:1<|B|<f}) and E = {(v,B) e i x V. : {u} x BC E} .

In other words, G is the subgraph of G* induced by V; and VQM). Given G, ¢ € [|V5]],
k € [|[V1]] and v € Vi, it is easy to compute a list of min{deg(v), k} distinct neighbors of
v in G®. Tt follows from Lemma m that, given G and ¢ € [|V4]], we can compute in
poly(|Vi|, |Vz]) steps a maximum matching M, in G). Let ¢* be the minimum ¢ such that
M, is of size |V;], respectively /T = 1 + |V4| if none of the M, saturates Vi. If £ < [V3],
then M+ is the desired Vj-saturating matching of minimum order in G*. If ¢t = |V,] + 1,
we may report error because Gt does not admit a Vi-saturating matching. O]

Corollary 5.14. Suppose that (C, Z, =) is of the form as described in Ezample (2.3, Then
the following objects can be computed in polynomial time:

e the bipartite consistency graph G(C') with vertex sets C and Z
e the (identical) parameters SMN(GT(C)) and MLE-TD(C)
e a C-saturating matching M in G*(C') of order SMN(G™(C))

e parameters representing an MLE-learner L for C' and a teacher T' for L who is of order

MLE-TD(C)

Proof. Given C, the set Z and the bipartite graph G(C) can clearly be computed in poly-
nomial time. We may now apply Theorem to the bipartite graph G = G(C'). Then G*
in Theorem equals GT(C), Hence the algorithm sketched in the proof of Theorem m
can be used for finding a C-saturating matching M in G*(C) of minimum order (which is
order SMN(GT(C))). As a byproduct, the parameter SMN(G*(C)) is now known as well.
As for the specification of an appropriate MLE-learner L, we may use the parameter setting
that is found in the proof of Theorem . As also shown in that proof, M (already known
to be computable from C' in polynomial time) represents a teacher of order MLE-TD(C') for
L. This completes the proof of the corollary. m

It is straightforward to extend Corollary from sampling mode (O, R) to other sam-
pling modes, and from MLE-TD to MAP-TD. The main point is to adjust the definition
of Gt in 1) so that G(C)* becomes identical to G(C')%y resp. to G(C)*P. We omit the
details.

Open Problems and Future Work. What are “natural parameterizations” of MAP-
or MLE-learners? Does MAP-based teaching of naturally parameterized learners force the
teacher to present observations/examples which illustrate the underlying target concept in
an intuitively appealing way?
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A Proof of Facts 1-4

Fact 1: Suppose that 0 < |A] < p < 1/2. Let c*2 be the concept given by . Then
POER(z1, z)|c*2) and P9E(z), z|ct®) are both strictly decreasing when |A] is in-
creased.

Proof. The assertion is obvious for P?%(z;, z,)[c*2) = (p+ A)(p — A) = p? — A2, Consider
now the function

w0y _ P+A)p—4)  p=D)+A) _20-p(p*-—A?
1—-p—A l—-p+A (1—p)2—A% ~

where the last equation can be obtained by a straightforward calculation. Another straight-
forward, but tedious, calculation shows that

4(1 —p)(1 = 2p)A
(1 —p)? —A2)2

Hence the function h(A) is strictly increasing for A < 0 and strictly decreasing for A > 0.
It is therefore strictly decreasing when |A| is increased. ]

B(A) = —

Fact 2: Suppose that 0 < A < p < 1/2. Let ¢*® be the concept given by . Then

B B =0 if Ae{0,{ p}
PO’R(Zh 22|CiA) — PO’R(Z1, 2| >0 f0<A< lp—p
< 0 otherwise

Proof. We set

(p+A)p—A4A) p*— A

h(A) = PO (21, 25|c™2) = 1-p—A 1-p—-A

and observe that

PO’R(Zl, 22|ciA) - PO’R(zl7 2|c?) = h(A) — h(0)
(1=~ A% — (1=p - A)p?
(I-p—A)1-p)
A(p* — (1 —p)A)
(I=p=A)(1-p)

The denominator of the latter expression is strictly positive. Moreover

=0 if A€o0, - p}
AP*=(1-pA)§ >0 if0<A<Z
< 0 otherwise

which accomplishes the proof of Fact 2. n
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Fact 3: Suppose that 0 < A < p < 1/2. Let ¢*® be the concept given by . Then
=0 if Ae{0,5v5—1)p}

POR(21, 21, 25| ¢™) — POB(21, 21, 2] ¢ >0 if0< A< LWs=1)p
< 0 otherwise

Proof. Let 0 < < 1 be given by A = dp and note that

POf(z1, 21, 2]c*F) = (p+0p)* - (p = 0p) = (1 +6)*- (1 =0) - p° = (1+6 — 6" = &%) -p

It follows that
POR(zy, 20, 20| c97) — POR(zy, 2y, ) 0) = 6 (1= 65— 62) -

Furthermore
=0 ifée{0,1(v5-1)}
§-(1—=6-0%¢ >0 if0<d<i(v6-1)
< 0 otherwise

We may conclude from this discussion that is valid.

3

]

Fact 4: Suppose that 0 < p <1/2and 1 <t < %. Let ¢® be the concept given by .

Then POR(z, z,|c®) is strictly increasing with ¢.

Proof. Set
POR(z 2]c® 1 1 1 t
ht) = (21, 2217) _ - = -
p? l—pt 1—p/t 1—pt t—p
(t—p+(1—pt)s  2t—pt’—p

(1 —=pt)(t—p) P+ 1)t —pt2 —p

It suffices to show that h(t) is strictly increasing with ¢. To this end, we compute the first

derivative:

2=2pt) - ((p* + D)t —pt*> —p) — (2t —pt> —p)(p* + 1 — 2pt)
(1—pt)?-(t—p)? '

w(t) =

The denominator is strictly positive. After an application of the distributive law and some

cancellation, the numerator has the form

ft) =p—p)(t*—1) .

Hence the numerator equals 0 for ¢ = 1 and is strictly positive for ¢ > 1. It follows that h(¢)

with ¢t > 1 is strictly increasing.
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