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Abstract. Imagine a learner L who tries to infer a hidden concept from
a collection of observations. Building on the work [4] of Ferri et al., we as-
sume the learner to be parameterized by priors P (c) and by c-conditional
likelihoods P (z|c) where c ranges over all concepts in a given class C
and z ranges over all observations in an observation set Z. L is called
a MAP-learner (resp. an MLE-learner) if it thinks of a collection S of
observations as a random sample and returns the concept with the max-
imum a-posteriori probability (resp. the concept which maximizes the
c-conditional likelihood of S). Depending on whether L assumes that
S is obtained from ordered or unordered sampling resp. from sampling
with or without replacement, we can distinguish four different sampling
modes. Given a target concept c∗ ∈ C, a teacher for a MAP-learner L
aims at finding a smallest collection of observations that causes L to
return c∗. This approach leads in a natural manner to various notions
of a MAP- or MLE-teaching dimension. Our main results are as follows.
First, we show that this teaching model has some desirable monotonicity
properties. Second we clarify how the four sampling modes are related to
each other. Third, we characterize the MAP-teaching dimensions associ-
ated with optimally parameterized MAP-learners graph-theoretically. As
a by-product of this characterization, these dimensions can be bounded
from above by the so-called antichain number of C, the VC-dimension of
C and related combinatorial parameters. The third result is shown only
for the (important!) special case where concepts are subsets of a domain
and observations are 0,1-labeled examples.
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1 Introduction

In formal models of machine learning we have a concept class C of possible
concepts/hypotheses, an unknown target concept c∗ ∈ C and training data given
? Supported by the Norwegian Research Council, project Machine Teaching for XAI.
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by correctly labeled random examples. In formal models of machine teaching a
collection T (c∗) of labeled examples is instead carefully chosen by a teacher T
in a way that the learner can reconstruct the target concept c∗ from T (c∗). In
recent years, the field of machine teaching has seen various applications in fields
like explainable AI [8], trustwhorthy AI [15] and pedagogy [12].

Various models of machine teaching have been proposed, e.g. the classi-
cal teaching model [6], the optimal teacher model [1], recursive teaching [16],
preference-based teaching [5], or no-clash teaching [9, 3]. These models differ
mainly in the restrictions that they impose on the learner and the teacher in
order to avoid unfair collusion or cheating. The common goal is to keep the size
of the largest teaching set, maxc∈C |T (c)|, as small as possible.

There are also other variants using probabilities, from Muggleton [11] where
examples are sampled based on likelihoods for a target concept, to Shafto et al
[12] who calls this pedagogical sampling and leads into Bayesian Teaching [2, 13],
to the Bayesian learners of Zhu [14] with a proper teacher selecting examples.

In this paper we continue this line of research and consider the probabilistic
model that had been described in the abstract. This model is inspired by and
an extension of the model that was introduced in [4]. As already observed in
[4], the condition for collusion-avoidance from [7] may here be violated, i.e., the
learner may first reconstruct a concept c1 from some given observations but,
after having received additional observations, switch to another concept c2 even
if the new observations have given additional support to c1. As the authors of
[4], we would like to argue that this should not be considered as collusion or
cheating as long as the parameters assigned to the learner reflect some factual
information about the world.

As already outlined in the abstract, we will distinguish between four dis-
tinct sampling modes: ordered sampling with replacement ((O,R)-mode), un-
ordered sampling with replacement ((O,R)-mode), ordered sampling without re-
placement ((O,R)-mode) and unordered sampling without replacement ((O,R)-
mode). The smallest number d such that every c∗ ∈ C can be taught to a
given MAP-learner L by a collection of at most d observations is denoted by
MAP-TDα,βL (C) where (α, β) ∈ {O,O} × {R,R} indicates the underlying sam-
pling mode. Then MAP-TDα,β(C) = minLMAP-TDα,βL (C) is the corresponding
parameter with an optimally parameterized learner L. The analogous notation
is used for MLE-learners. Our main results are as follows:

1. The MAP-teaching model has two desirable and quite intuitive monotonicity
properties. Loosely speaking, adding new observations (making Z larger)
leads to smaller MAP-TD while adding new concepts (making C larger)
leads to larger MAP-TD. See Section 3.1 for details.

2. The sampling modes (O,R) and (O,R) are equivalent, which implies that
MAP-TDO,R(C) = MAP-TDO,R(C) for each concept class C. Furthermore,
the sampling modes (O,R), (O,R) and (O,R) are pairwise incomparable
(i.e., which one leads to smaller values of MAP-TDL(C) depends on the
choice of C and L). Note that incomparability of the modes (α, β) and (α′, β′)
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does not rule out the possibility that MAP-TDα,β(C) ≤ MAP-TDα
′,β′(C)

for each concept class C.
3. For a (properly defined) bipartite graph G(C)α,β associated with C and

(α, β) 6= (O,R), one gets4

MAP-TDα,β(C) = SMN(G(C)α,β) . (1)

If we replace G(C)α,β by a slightly modified graph, we obtain the corre-
sponding result for MLE-TD at the place of MAP-TD.5 Fig. 1 visualizes
this result.

The third result holds (in this strength) only for the special case where C is a
family of subsets of a domain X and Z = X × {0, 1} is the set of 0, 1-labeled
examples (but is partially true in the general case). As mentioned in the abstract
already, the SMN-characterization of MAP-TD implies that MAP-TD can be
upper-bounded by the antichain number of C, the VC-dimension of C and related
parameters.

rep
rep

ord ord ordord

SMN MAP

Fig. 1. For any binary concept class C ⊆ 2X and 0, 1-labeled examples as observations,
the tree visualizes the identities in (1). Using the same color for the two leftmost leaves
in the MAP-subtree is justified by the equivalence of the modes (O,R) and (O,R).
A parameter represented by a leaf in the MAP-subtree has the same value as the
parameter represented by a leaf of the same color in the SMN-subtree. The parameters
represented in the SMN-subtree are ordered as indicated by the rightmost diagram,
with lowest value on top and highest value at bottom. We will see later that parameters
represented in different colors can generally have different values.

4 SMN(G) denotes the saturating matching number of a bipartite graph G (formally
defined in Section 4).

5 Some bounds on MLE-TD numbers in terms of SMN numbers are already found
in [4], but no results that hold with equality (as in (1)) are proven there.
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2 Definitions and Notations

We first fix some general notation. Afterwards, in Sections 2.1, 2.2, and 2.3, the
MAP- and MLE-based teaching model is introduced, step-by-step.

Mappings. Suppose that B is a set that is equipped with a size function which
associates a size |b| with each b ∈ B. Then the order of a mapping f : A→ B is
defined as the size of the largest element in the image of f , i.e., the order of f
equals maxa∈A |f(a)|.

Graphs and Matchings. A matching M in a bipartite graph G = (V1, V2, E) can
be viewed as a (partially defined and injective) function M : V1 → V2 with the
property that (v,M(v)) ∈ E for each v having anM -partner. If V1 is saturated by
M , i.e., every vertex in V1 has an M -partner, then this function is fully defined.

2.1 Concept Classes

Let C be a finite set of size at least 2, let Z be another non-empty finite set
and let |= be a relation on C × Z. We refer to C as a concept class and to Z
as a set of observations. If c |= z, then we say that the concept c is consistent
with the observation z. We say that c is consistent with a set (resp. multi-set) A
of observations, which is written as c |= A, if c is consistent with every z ∈ A.
The notation c |= z with z = (z1, . . . , zn) ∈ Zn is understood analogously. For
each c ∈ C, we define Zc = {z ∈ Z : c |= z}. The special setting described in
the following example is the setting which is used in most papers on machine
teaching:

Example 1 (Labeled Examples as Observations). Let Z = X × {0, 1} be a set of
labeled examples and let C be a family of subsets of X. We refer to examples
with label 1 (resp. with label 0) as positive (resp. as negative) examples. Let the
consistency relation be given by

∀c ∈ C, (x, b) ∈ Z : c |= (x, b)⇔ (b = 1 ∧ x ∈ c) ∨ (b = 0 ∧ x /∈ c) .

Note that Zc = {(x, 1) : x ∈ c} ∪ {(x, 0) : x /∈ c} in this setting. It follows that
|Zc| = |X| for all c ∈ C. Moreover c 6= c′ implies that Zc 6= Zc′ so that each
concept c ∈ C is uniquely determined by the full set Zc of observations that c is
consistent with.

2.2 Variants of Sampling

As formalized in the definitions below, we distinguish between ordered and un-
ordered sampling and we may have sampling with or without replacement.

Definition 1 (Sampling with Replacement). Let Q = (q(z))z∈Z be a col-
lection of probability parameters, i.e., q(z) ≥ 0 and

∑
z∈Z q(z) = 1. For n ≥ 0,

we define n-fold (ordered resp. unordered) Q-sampling with replacement as the
following random procedure:
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1. Choose z1, . . . , zn independently at random according to Q.
2. In case of ordered sampling, return the sequence (z1, . . . , zn) whereas, in case

of unordered sampling, return the multi-set {z1, . . . , zn}.6

Let z = (z1, . . . , zn) ∈ Zn be a sequence that contains k distinct elements, say
z′1, . . . , z

′
k, and let ni denote the number of occurrences of z′i in z. Let Az ⊆ Z be

the corresponding multi-set. The probability that z (resp. Az) is obtained from
n-fold ordered (resp. unordered) Q-sampling with replacement is henceforth de-
noted by PO,R(z|Q) (resp. by PO,R(Az|Q)). With these notations, the following
holds:

PO,R(z|Q) =

n∏
i=1

q(zi) =

k∏
i=1

q(z′i)
ni and PO,R(Az|Q) =

n!

n1! . . . nk!
·
k∏
i=1

q(z′i)
ni .

Definition 2 (Sampling without Replacement). Let Q = (q(z))z∈Z be a
collection of probability parameters. Let N+(Q) be the number of z ∈ Z such
that q(z) > 0. For 0 ≤ n ≤ N+(Q), we define n-fold (ordered resp. unordered)
Q-sampling without replacement as the following random procedure:

1. Choose z1 at random according to Q.
2. For i = 2, . . . , n do the following:

Choose zi ∈ Z\{z1, . . . , zi−1} at random where, for each z ∈ Z\{z1, . . . , zi−1},
the probability for zi = z equals q(z)

1−(q(z1)+...+q(zi−1))
.7

3. In case of ordered sampling, return the sequence (z1, . . . , zn) whereas, in case
of unordered sampling, return the set {z1, . . . , zn}.
Let z = (z1, . . . , zn) ∈ Zn be a repetition-free sequence and let Az ⊆ Z

be the corresponding set. For a permutation σ of 1, . . . , n, we define zσ =
(zσ(1), . . . , zσ(n)). The probability that z (resp. Az) is obtained from n-fold or-
dered (resp. unordered) Q-sampling without replacement is henceforth denoted
by PO,R(z|Q) (resp. by PO,R(Az|Q)). With these notations, the following holds:

PO,R(z|Q) =

n∏
i=1

q(zi)

1− (q(z1) + . . .+ q(zi−1))
and PO,R(Az|Q) =

∑
σ

PO,R(zσ|Q) ,

where σ ranges over all permutations of 1, . . . , n.
We introduce the following notation. ZO,R = Z∗ denotes the set of sequences

over Z (including the empty sequence). ZO,R denotes the set of multi-sets over Z
(including the empty multi-set). ZO,R denotes the set of repetition-free sequences
over Z (including the empty sequence). ZO,R = 2Z denotes the powerset of Z.

The pairs (α, β) ∈ {O,O} × {R,R} are called sampling modes. We use the
symbol ∅ not only to denote the empty set but also to denote the empty multi-set
or the empty sequence. If A is a finite set or multi-set, then |A| denotes its size
where, in case of a multi-set, the multiple occurrences of elements are taken into
account. The length of a finite sequence z is denoted by |z|.
6 If n = 0, then the empty sequence resp. the empty multi-set is returned,
7 Note that the probability parameters for z ∈ Z\{z1, . . . , zi−1} are the same as before
up to normalization.
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2.3 MAP- and MLE-based Teaching

An MLE-learner will always choose a hypothesis from a class C that maximizes
the likelihood of a given set of observations. MAP-learners are a bit more gen-
eral because they additionally bring into play priors (P (c))c∈C . The notion of
likelihood depends on how the observations are randomly sampled. We proceed
with the formal definition of MAP- and MLE-learners and their teachers.

Definition 3 (MAP- and MLE-Learner). A MAP-Learner L for C is given
by parameters P (z|c) ≥ 0 and P (c) ≥ 0 for z ∈ Z and c ∈ C such that∑
c∈C P (c) = 1 and

∑
z∈Z P (z|c) = 1. The parameters P (c) are referred to

as priors. The parameters P (z|c), referred to as c-conditional likelihoods, must
satisfy the following validity condition:

c 6|= z ⇔ P (z|c) = 0 .

L can be in four different sampling modes. These modes determine the form of
L’s input and the choice of its output as explained in detail below.

(O,R)-mode: For every n ≥ 0 and every sequence a ∈ Zn, we denote by
PO,R(a|c) the probability that a is obtained from n-fold ordered P (·|c)-sampling
with replacement. Given a sequence a ∈ ZO,R, L returns the concept
arg!maxc∈C

[
P (c) · PO,R(a|c)

]
if it exists, and a question mark otherwise.8

(O,R)-mode: For every n ≥ 0 and and every multi-set A ⊆ Z of size n, we
denote by PO,R(A|c) the probability that A is obtained from n-fold unordered
P (·|c)-sampling with replacement. Given a multi-set A ∈ ZO,R, L returns
the concept arg!maxc∈C

[
P (c) · PO,R(A|c)

]
if it exists, and a question mark

otherwise.
(O,R)-mode: Set N = minc∈C |Zc|.9 For every 0 ≤ n ≤ N , and every repetition-

free sequence a ∈ Zn, we denote by PO,R(a|c)) the probability that a is
obtained from n-fold ordered P (·|c)-sampling without replacement. Given a
repetition-free sequence a ∈ ZO,R with |a| ≤ N , L returns the concept
arg!maxc∈C

[
P (c) · PO,R(a|c)

]
if it exists, and a question mark otherwise.

If |a| > N , then also a question mark is returned.
(O,R)-mode: Set again N = minc∈C |Zc|. For every 0 ≤ n ≤ N , and every set

A ⊆ Z of size n, we denote by PO,R(A|c) the probability that A is obtained
from n-fold unordered P (·|c)-sampling without replacement. Given a set A ∈
ZO,R with |A| ≤ N , L returns the concept arg!maxc∈C

[
P (c) · PO,R(A|c)

]
if

it exists, and a question mark otherwise. If |A| > N , then also a question
mark is returned.

8 The operator arg!maxc∈C f(c) returns the unique maximizer c∗ ∈ C of f(c) provided
that it exists.

9 Because of the validity condition, |Zc| equals the number of non-zero parameters in
the collection (P (z|c)z∈Z).
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An MLE-learner is a MAP-learner with uniform priors (so that the factor P (c)
in the above arg!max-expressions can be dropped).

Definition 4 (Teacher). Let N = minc∈C |Zc|. Suppose that L is a MAP-
learner for C that is in sampling mode (α, β). A (successful) teacher for L is a
mapping T which assigns to each concept c0 ∈ C an input I = T (c0) for L such
that L(I) = c0. In other words:

1. I ∈ Zα,β and, if β = R, then |I| ≤ N .
2. c0 = arg!maxc∈C

[
P (c) · Pα,β(I|c)

]
.

A couple of observations are in place here (proof omitted):

Remark 1. Suppose that L is a MAP-learner for C which is in sampling mode
(α, β). Suppose that T is a teacher for L. Then the following holds for all c, c′ ∈ C:

L(T (c)) = c , Pα,β(∅|c) = 1 , Pα,β(T (c)|c) > 0 , c |= T (c) , (c 6= c′ ⇒ T (c) 6= T (c′)) .
(2)

Moreover, if L is an MLE-learner and T is a teacher for L, then T (c) 6= ∅.

Definition 5 (MAP- and MLE-Teaching Dimension). Suppose that L is
a MAP-learner for C who is in sampling mode (α, β). The MAP-teaching di-
mension of C given L and (α, β), denoted as MAP-TDα,βL (C), is defined as the
smallest number d such that there exists a teacher of order d for L, respectively
as ∞ if there does not exist a teacher for L. The MAP-teaching dimension of
C with respect to sampling mode (α, β) is then given by MAP-TDα,β(C) :=

minLMAP-TDα,βL (C) where L ranges over all MAP-learners for C. If, in this
definition, the MAP-learners are replaced by MLE-learners, we obtain the cor-
responding notions for MLE-based learning and teaching. Specifically, the MLE-
teaching dimension of C given L and (α, β) is denoted as MLE-TDα,βL (C) and the
MLE-teaching dimension of C with respect to sampling mode (α, β) is denoted
as MLE-TDα,β(C).

3 Basic Results on the MAP-Based Teaching Model

We first discuss some natural monotonicity properties and, afterwards, we show
the pairwise incomparability of three of the sampling modes (and note the equiv-
alence of (O,R)- and the (O,R)-mode).

3.1 Monotonicity Properties

It is clear, intuitively, that adding concepts without adding observations should
make the teaching problem harder. Conversely, adding observations without
adding concepts should make the teaching problem easier. In this section, we
formalize these statements and sketch their proofs. All results in this section are
formulated in terms of MAP-TD. But the corresponding results with MLE-TD
at the place of MAP-TD hold es well.
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We say that (C ′, Z ′, |=′) is an extension of (C,Z, |=) if C ⊆ C ′, Z ⊆ Z ′ and,
for all c ∈ C and z ∈ Z, we have that c |= z if and only if c |=′ z. Here is the
main result of this section:

Theorem 1. 1. If (C ′, Z ′, |=′) is an extension of (C,Z, |=) with Z = Z ′, then

MAP-TDα,β(C,Z, |=) ≤ MAP-TDα,β(C ′, Z, |=′) .

2. If (C ′, Z ′, |=′) is an extension of (C,Z, |=) with C = C ′, then

MAP-TDα,β(C,Z, |=) ≥ MAP-TDα,β(C,Z ′, |=′) .

Proof. 1. It is sufficient to show that each MAP-learner L′ for (C ′, Z, |=′) can
be transformed into a MAP-learner L for (C,Z, |=) such that

MAP-TDα,βL (C,Z, |=) ≤ MAP-TDα,βL′ (C
′, Z, |=′) . (3)

Suppose that L′ is given by parameters (P (c))c∈C′ and (P (z|c))z∈Z,c∈C′ .
Then define L as the learner for (C,Z, |=) with parameters (P (c))c∈C and
(P (z|c))z∈Z,c∈C . It is obvious that L satisfies (3).

2. It is sufficient to show that each MAP-learner L for (C,Z, |=) can be trans-
formed into a MAP-learner L′ for (C,Z ′, |=) such that

MAP-TDα,βL′ (C,Z
′, |=) ≤ MAP-TDα,βL (C,Z, |=′) . (4)

Suppose that L is given by parameters (P (c))c∈C and (P (z|c))z∈Z,c∈C . Then
define L′ as the learner for (C,Z, |=) with parameters (P (c))c∈C and

P ′(z|c) =


(1− ε) · P (z|c) if z ∈ Z

ε
|Z′c\Z|

if z ∈ Z ′c \ Z
0 if z ∈ Z ′ \ Z ′c

,

where ε ≥ 0, and ε = 0 iff Z ′c ⊆ Z. It follows from a simple continuity
argument that L′ satisfies (4) provided that ε > 0 is sufficiently small.10 ut

3.2 A Comparison of the Sampling Modes

We say that the sampling mode (α, β) dominates the sampling mode (α′, β′)
if, for every concept class C and every MAP-learner L for C, we have that
MAP-TDα,βL (C) ≤ MAP-TDα

′,β′

L (C). We say they are equivalent if they mutu-
ally dominate each other. We say they are incomparable if none of them domi-
nates the other one. We start with an easy observation (proof omitted):

Remark 2. The sampling modes (O,R) and (O,R) are equivalent.

10 In case of Z′c 6⊆ Z, we cannot set ε = 0 because the parameters have to satisfy the
validity-condition.



MAP-and MLE-Based Teaching 9

The equivalence of these modes implies that

MAP-TDO,R(C) = MAP-TDO,R(C) and MLE-TDO,R(C) = MLE-TDO,R(C) .

Theorem 2. The sampling modes (O,R), (O,R) and (O,R) are pairwise in-
comparable.

In order to prove the theorem, we will consider triples (C,Z, |=) with C =
{c1, c2, c3}, Z = {z1, z2, z3} and ci |= zj for all 1 ≤ i, j ≤ 3. An important role
will be played by concepts of the form c±∆ with parameters given by

P (z1|c±∆) = p+∆ , P (z2|c±∆) = p−∆ and P (z3|c±∆) = 1− 2p .

Suppose that 0 < |∆| < p < 1/2. The following facts are easy to verify:

1. PO,R(z1, z2)|c±∆) and PO,R(z1, z2|c±∆) are both strictly decreasing when
|∆| is increased, which implies that ∆ = 0 is the unique maximizer. Loosely
speaking, in sampling modes (O,R) and (O,R), there is an incentive to split
the total mass 2p as evenly as possible among z1 and z2. We will refer to
this as the “even-split argument”.

2. In sampling mode (O,R), however, there is an incentive to split the total
probability mass 2p not evenly among z1 and z2 but slightly in favor of z1.
More precisely, the following holds:

PO,R(z1, z2|c±∆)− PO,R(z1, z2|c±0)


= 0 if ∆ ∈ {0, p2

1−p}
> 0 if 0 < ∆ < p2

1−p
< 0 otherwise

.

Note furthermore that the c-conditional likelihood of a (multi-)set or sequence of
observations becomes larger if one of the relevant c-conditional likelihood param-
eters is increased while the others are fixed. We refer to this as the “monotonicity
argument”. Theorem 2 is a direct consequence of the following three lemmas.

Lemma 1. Let L be the MLE-learner for C with parameters P (z|c) given by

P (z|c) c1 c2 c3

z1 p+∆1 p+∆2 p
z2 p−∆1 p−∆2 p
z3 1− 2p 1− 2p 1− 2p

,

where 0 < ∆1 < ∆2 = p2

1−p < p < 1/2. Then

MLE-TDO,RL (C) = 3 , MLE-TDO,RL (C) = 2 and MLE-TDO,RL (C) =∞ .

Lemma 2. Let L be the MLE-learner for C with parameters P (z|c) given by

P (z|c) c1 c2 c3

z1 p p+∆ p−∆
z2 p p−∆ p+∆
z3 1− 2p 1− 2p 1− 2p

.
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where 0 < ∆ < p2

1−p < p < 1/2. Then

MLE-TDO,RL (C) = MLE-TDO,RL (C) = 2 and MLE-TDO,RL (C) =∞ .

Lemma 3. Let L be the MLE-learner for C with parameters P (z|c) given by:

P (z|c) c1 c2 c3

z1 sp p sp+ ε
z2 p/s p p/s− ε
z3 1− sp− p/s 1− 2p 1− sp− p/s

,

where 0 < p < 1
2 and 1 < s ≤ 1−p

p . Then MLE-TDO,RL (C) = 2 < MLE-TDO,RL (C) ,
provided that ε > 0 is sufficiently small.

We omit the proofs because of space constraints. The proofs of the first two
lemmas are easy to accomplish by making use of the monotonicity and the even-
split argument.

4 Consistency Graphs and Matchings

Suppose that C is a concept class with observation set Z and consistency relation
|=. The bipartite graph G(C) = (C,Z,E) with

E = {(c, z) ∈ C × Z : c |= z}

is called the consistency graph (associated with C). Let Zα,β with (α, β) ∈
{O,O} × {R,R} be the notation that was introduced in Section 2.2. The bi-
partite graph G(C)α,β = (C,Zα,β , Eα,β) with

Eα,β = {(c, ζ) ∈ C ×Zα,β : c |= ζ}

is called the extended consistency graph (associated with C). The graph resulting
from G(C)α,β by the removal of the vertex ∅ from the second vertex class Zα,β
will be denoted by G(C)α,β6=∅ . We denote by SMN(G(C)α,β) the smallest possi-
ble order of a C-saturating matching in G(C)α,β . Analogously, SMN(G(C)α,β6=∅ )

denotes the smallest possible order of a C-saturating matching in G(C)α,β6=∅ . For
ease of later reference, we make the following observation:

Remark 3. Suppose that T : C → Zα,β is a mapping which satisfies

∀c, c′ ∈ C : (c |= T (c)) ∧ (c 6= c′ ⇒ T (c) 6= T (c′)) . (5)

Then T is of order at least SMN(G(C)α,β). Moreover, if T satisfies (5) and ∅ is
not in the image of T , then T is of order at least SMN(G(C)α,β6=∅ ).

Proof. If T satisfies (5), then T represents a C-saturating matching in G(C)α,β .
If additionally ∅ is not in the image of T , then T represents a C-saturating
matching in G(C)α,β6=∅ ). ut
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Here is the main result of this section:

Theorem 3. 1. For each sampling mode (α, β), we have

MAP-TDα,β(C) ≥ SMN(G(C)α,β) and MLE-TDα,β(C) ≥ SMN(G(C)α,β6=∅ ) .

(6)
2. If (α, β) = (O,R), then (6) holds with equality.
3. If (α, β) 6= (O,R) and (C,Z, |=) is of the form as described in Example 1,

then (6) holds with equality.

Proof. We first verify (6). Let L be a MAP-learner for C and let (α, β) denote
its sampling mode. Let T be a teacher for L. An inspection of (2) reveals that
T satisfies (5). Moreover, if L is an MLE-learner for C, then T (c) 6= ∅ for all
c ∈ C. Now an application of Remark 3 yields (6).
Because of space constraints, we omit the proof of the second assertion and
proceed directly with the third one. Since the second assertion settles the result
for sampling mode (O,R), it suffices to prove the third assertion for the sampling
modes (O,R) and (O,R). In this short abstract, we sketch only the proof of
MLE-TDO,R(C) ≤ SMN(G(C)O,R6=∅ ). Set m = |X| and let M : C → ZO,R \ {∅}
be a C-saturating matching in G(C)O,R6=∅ of minimum order. For every c ∈ C, we
set d(c) = |M(c)|. We fix for each concept c ∈ C a sequence zc = zc1, . . . , z

c
m

consisting of all elements of Zc subject to the constraint that zc1, . . . , zcd(c) =

M(c), i.e., the sequence zc must start with M(c). In the sequel, we will specify
the parameter set of an MLE-learner of C. We do this in two stages. In Stage 1,
we define a preliminary learner L with parameters P (z|c). The interim goal is
that any fixed target concept c∗ ∈ C is a (not necessarily unique) maximizer of
PO,RL (M(c∗)|c). In Stage 2, we make some infinitesimal changes of the parameter
set resulting in an MLE-learner Lε with parameters Pε(z|c). The ultimate goal
is to show that each c∗ ∈ C is the unique maximizer of PO,RLε

(M(c∗|c)) provided
that ε > 0 is sufficiently small. The MLE-learner L used in Stage 1 is given by
the following parameters:

P (z|c) =


2−i if 1 ≤ i ≤ d(c) and z = zci
2−d(c)

m−d(c) if d(c) + 1 ≤ i ≤ m and z = zci
0 if z ∈ Z \ Zc

.

In other words, given c, L assigns probability mass 2−i to the i-the element of
the sequenceM(c) and distributes the remaining probability mass, 2−d(c), evenly
on the elements of Zc \M(c). A nice (easy-to-verify) consequence of the above
definition of P (z|c) is that PO,R(M(c)|c) = 2−d(c). By a careful analysis (omitted
here because of space constraints), we can show that, with this definition of L,
the interim goal is achieved. The MLE-learner Lε used in Stage 2 is given by:

Pε(z|c) =


2−i if 1 ≤ i ≤ d(c)− 1 and z = zci
2−i + ε if i = d(c) and z = zci
2−d(c)−ε
m−d(c) if d(c) + 1 ≤ i ≤ m and z = zci
0 if z ∈ Z \ Zc

.
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The main difference to the old parameter collection is the “extra-bonus” ε that
c assigns to the last element zcd(c) of the sequence M(c). By a careful analysis
(omitted here because of space constraints), we can show that, with this defini-
tion of Lε, the ultimate goal is achieved. Note that this implies that we may view
M as a teacher for Lε. It follows that MLE-TDO,R(C) ≤ SMN(G(C)O,R6=∅ ). ut

For the remainder of the paper, we assume that (C,Z, |=) is of the form as
described in Example 1. Note that the third assertion in Theorem 3 implies the
correctness of the results which are visualized in Fig. 1. The following corollaries
(with proofs based on Theorem 3) provide some supplementary information:

Corollary 1. 1. MAP-TD(C) ≤ MLE-TD(C) ≤ 1+MAP-TD(C). One of the
two inequalities must hold with equality. Both cases can occur.

2. Let (α, β) and (α′, β′) be two different sampling modes. There exists a concept
class C such that SMN(G(C)α

′,β′) 6= SMN(G(C)α,β).

Proof. We briefly sketch the proof of the second assertion for (α, β) = (O,R)
and (α′, β′) = (O,R).11 Let X = {x1, . . . , xm}, let Z = X × {0, 1}, let Cm be
the powerset of Xm and let Z2 (resp. Z ′2) be the set of all A ∈ ZO,R (resp. A ∈
ZO,R) such that |A| ≤ 2. A simple counting argument shows that |Z ′2| < |Z2|.
From Hall’s theorem, it can be inferred that G(Cm)O,R admits a Z2-saturating
matching, sayM2. Let C be the set of concepts in Cm having anM2-partner. By
construction: SMN(G(C)O,R) = 2. For cardinality reasons, namely |C| = |M2| =
|Z2| > |Z ′2|, we have SMN(G(C)O,R) > 2. ut

The second assertion of this corollary implies that the parameters with dif-
ferent colors in Fig. 1 can generally have different values.

T : C → 2Z is called an antichain mapping for C if the following holds. First,
each concept c ∈ C is consistent with T (c). Second, the sets (T (c))c∈C form an
antichain. The smallest possible order of an antichain mapping for C is called
the antichain number of C and denoted by AN(C). It is well known [10] that
AN(C) ≤ VCdim(C). It is easy to see that SMN(G(C)O,R6=∅ ) ≤ AN(C). Hence:

Corollary 2. MLE-TDO,R(C) is upper-bounded by AN(C) and by VCdim(C).

Note that MLE-TDO,R(C) = SMN(G(C)O,R6=∅ ) is the largest among all MAP-,
MLE- and SMN-parameters associated with C. Hence any of these parameters
is upper-bounded by AN(C) and VCdim(C).

Open Problems and Future Work. What are “natural parameterizations” of MAP-
or MLE-learners? Does MAP-based teaching of naturally parameterized learners
force the teacher to present observations/examples which illustrate the underly-
ing target concept in an intuitively appealing way?

11 The proof for the other choices of (α, β) and (α′, β′) is similar.
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