
Towards a Taxonomy of Techniques for

Designing Parameterized Algorithms

Christian Sloper and Jan Arne Telle

Department of Informatics, University of Bergen, Norway
{sloper, telle}@ii.uib.no

Abstract. A survey is given of the main techniques in parameterized
algorithm design, with a focus on formal descriptions of the less familiar
techniques. A taxonomy of techniques is proposed, under the four main
headings of Branching, Kernelization, Induction and Win/Win. In this
classification the Extremal Method is viewed as the natural maximiza-
tion counterpart of Iterative Compression, under the heading of Induc-
tion. The formal description given of Greedy Localization generalizes the
application of this technique to a larger class of problems.

1 Introduction

The field of parameterized algorithms continues to grow. It is a sign of its success
that in the literature today there exists over twenty differently named techniques
for designing parameterized algorithms1. Many parameterized algorithms build
on the same ideas, and as a problem solver it is important to be familiar with
these general themes and ideas. Several survey articles [F03,DFRS04] and books
[N02,DF99] have identified common themes like Bounded Search Trees, Kernel-
ization and Win/Win. In this paper we make an attempt at a full taxonomy
encompassing all known techniques. In addition to its pedagogic value, we be-
lieve that such a taxonomy could help in developing both new techniques and
new combinations of known techniques.

We classify the known techniques under the four main themes of Branch-
ing, Kernelization, Induction and Win/Win, see Figure 1. The four main themes
are described in separate sections. Each technique is introduced, possibly with
an example, and its placement in the taxonomy is argued for. In this extended
abstract we focus on the most novel aspects, e.g. the grouping of Greedy Lo-
calization and Color Coding together with Bounded Search Trees under the
heading of Branching algorithms, and the placement of the Extremal Method
as the maximization counterpart of Iterative Compression under the heading of

1
This includes Bounded Search Trees [DF99], Data Reduction [N02], Kernelization [DF99], The

Extremal Method [FMRS00], The Algorithmic Method [P05], Catalytic Vertices [FMRS00], Crown
Reductions [CFJ04], Modelled Crown Reductions [DFRS04], Either/Or [PS03], Reduction to In-
dependent Set Structure [PS05], Greedy Localization [DFRS04], Win/Win [F03], Iterative Com-
pression [DFRS04], Well-Quasi-Ordering [DF99], FPT through Treewidth [DF99], Search Trees
[N02], Bounded Integer Linear Programming [N02], Color Coding [AYZ95], Method of Testsets
[DF99], Interleaving [NR00]

Fig. 1. The first two levels of the taxonomy, labelled by section number.

Induction. We give a generic and formal description of Greedy Localization that
encompasses problems hitherto not known to be FPT solvable by this technique.

Sometimes a technique is known under different names2 or it is a variant
of a more general technique3. Clearly, the fastest FPT algorithm for a problem
will usually combine several techniques. In some cases such a combination has
itself been given a separate name4. For simplicity and lack of space this extended
abstract does not consider all these variations of the most general techniques,
and our discussion is restricted to the first two levels of the hierarchy in Figure 1.
A note on notation: the chosen parameter for a problem is usually not stated
explicitly, instead we use the convention that the variable name k always denotes
the parameter.

2 Branching Algorithms

We start by considering algorithm techniques that use a branching strategy to
create a set of subproblems such that at least one of the subproblems is a yes-
instance if and only if the original problem is a yes-instance. Techniques that
create branching algorithms are Bounded Search Trees, Greedy Localization and
Color Coding. For a branching algorithm to have FPT running time it suffices
to require that it (see [S06] for a proof):

– terminates with a polynomial time base case
– makes O((log n)g(k)f(k)) branches at each step
– reaches a polynomial time base case in at most h(k) nested calls

2
This is the case with Data Reduction=Local Reduction Rules, Either/Or=Win/Win, Search
Trees=Bounded Search Trees and other names like Hashing [DF99]=Color Coding which do not
seem to be in use anymore

3
This is the case with Catalytic Vertices ⊆ Local Reduction Rules, The Algorithmic Method

⊆ Extremal Method, Modelled Crown Reductions ⊆ Crown reductions, FPT by Treewidth ⊆
Imposing FPT structure, Reduction to Independent set structure ⊆ Imposing FPT structure,
Method of Testsets ⊆ Imposing FPT structure.

4
This is the case with Interleaving which combines Bounded Search Trees and Local Reduction
Rules. The technique known as Bounded Integer Linear Programming can in a similar way be
viewed as a combination of a Branching algorithm with Local Reduction Rules.

2.1 Bounded Search Trees

The method of Bounded Search Trees is arguably the most famous parameterized
algorithm design technique and good general descriptions of it are plentiful, see
for example the books [DF99,N02]. For lack of space we describe it very simply
by saying that it is a branching algorithm which is strictly recursive.

2.2 Greedy Localization

Greedy Localization is a technique that uses a clever first branching to start off
the recursive search for the solution. It was introduced in a paper that has since
appeared in Journal of Algorithms [JZC04] and popularized in an IWPEC’04
paper [DFRS04]. Our aim is to show that if a parameterized problem satisfies
the following conditions 1 and 2 then Greedy Localization will give an FPT
algorithm.

1. The problem can be formulated as that of finding k pairwise non-overlapping
’objects’ in an input instance G, with objects being special subsets of size
depending only on k of a ground set W of G.

2. For any R ⊆ W and X ⊆ W we can decide in FPT time if there exists
S ⊆ W \ X such that S ∪ R is an object.

Not all bounded-size subsets of W are objects, and an obvious requirement
for the problem to have an FPT algorithm is that for any R ⊆ W we must be
able to decide in FPT time if R is an object or not. Condition 2 can be seen as a
strengthening of this obvious requirement and we will refer to S as an ’extension’
of the ’partial object’ R to a ’full object’ R ∪ S avoiding X .

The figure on the next page gives the Greedy Localization algorithm, in
non-deterministic style, for a problem satisfying these two conditions. It uses
the notation that for a set of partial objects B = {B1, B2, . . . , Bk} the ground
elements contained in B are denoted by WB =

⋃

Bi∈B Bi.

Theorem 1. If a parameterized problem satisfies conditions 1 and 2 above then

the algorithm ’GREEDY LOCALIZATION’ is an FPT algorithm for this prob-

lem.

Proof. The algorithm starts by computing an inclusion maximal non-overlapping
set of objects A. By condition 2 this first step can be done in FPT time as follows:
repeatedly extend the emptyset to a full object while avoiding a set X , by calling
subroutine EXTEND(∅, X) with X initially empty, and adding the extension to
X before the next iteration. When no extension exists we are assured that the
sequence of extensions found must be an inclusion maximal non-overlapping set
of objects A.

The crucial aspect that makes the algorithm correct is that if A and B are
two inclusion maximal non-overlapping sets of objects then for any object Bi in
B there is an object Aj in A such that Aj and Bi overlap, since otherwise A is
not maximal. Thus, if the instance contains such a set B of at least k objects,

Algorithm GREEDY LOCALIZATION /* non-deterministic */
Input: Instance G with ground set W , and an integer k

Output: Yes if G has k non-overlapping objects, otherwise No
compute an inclusion maximal non-overlapping set of objects A

if A contains at least k objects then halt and answer ’Yes’
else if |WA| < k then halt and answer ’No’
else guess {v1, v2, . . . , vk} ⊆ WA and let Bi be partial object containing vi (1 ≤ i ≤ k)
BRANCHING(B = {B1, B2, . . . , Bk})

Subroutine BRANCHING
Input: Set of partial objects B = {B1, B2, . . . , Bk}
Output: Yes if B can be extended to a set of full objects, otherwise No
F = S = ∅
for j = 1 to k

if Bj not full then {
S =EXTEND(Bj , WB ∪ F)
if S == ∅ then break

else F = F ∪ S

}
if all objects could be extended then halt and answer ’Yes’
else if F == ∅ then halt and answer ’No’
else guess v ∈ F and add v to Bj /* j is value of parameter at break */
BRANCHING(B = {B1, B2, . . . , Bk})

Subroutine EXTEND
Input: Partial object Bi, unavailable ground elements X

Output: Ground elements S ⊆ W \ X whose addition to Bi gives a full object or
S = ∅ if this is not possible

then we can guess k ground elements appearing in A, with A constructed in the
first step of the algorithm, such that these ground elements belong to k separate
objects of B (and if |WA| < k we can answer ’No’.) The Branching subroutine
is called on these k one-element partial objects and we greedily try to extend
them to full objects. If this fails for some object Bj , after having added extension
elements F to objects B1, B2, ..., Bj−1, then there must exist an element v from
F that should have instead been used to extend Bj . We then simply guess the
element v and try again.

For a deterministic algorithm the guesses are replaced by branchings, and we
give a No answer iff all branches answer No. The first branching is of size

(|WA|
k

)

,
the remainder of the branches are of size |F |, and the total height of the tree is
bounded by k times the maximum size of an object since at each level one new
ground element is added to VB . All these are bounded by a function depending
on k as we assumed in condition 1 that each object had size depending on k
only. The calls to the Extend subroutine are FPT by condition 2. Hence the
algorithm is FPT. 2

For example, this implies that deciding if a graph G contains k vertex-disjoint
cycles on k vertices is FPT by Greedy Localization. The ground set W will be the
vertex set of G and the objects will be subsets of k vertices inducing a subgraph
containing a k-cycle, to satisfy condition 1. Given R, X ⊆ W we can by an
FPT algorithm designed using the Color Coding technique, see the next section,
decide if there exists S ⊆ W \X such that R∪S induces a subgraph containing
a k-cycle, to satisfy condition 2. By Theorem 1 the Greedy Localization meta-
algorithm therefore solves the problem in FPT time. For packing of edge-disjoint
cycles a similar argument holds, with W being the edge set of the graph.

2.3 Color Coding

Color Coding is a technique that was introduced by Alon, Yuster, and Zwick
in their paper ’Color Coding’ [AYZ95] and is characterized by a powerful first
branching step. Given an input to a parameterized graph problem we color the
vertices with k colors such that the structure we are looking for will interact
with the color classes in a specific way. To do this we create many branches of
colored graphs, using a family of perfect hash functions for the coloring.

Definition 1. A k-perfect family of hash functions is a family H of functions

from {1, . . . , n} onto {1, . . . , k} such that for each S ⊂ {1, . . . , n} with |S| = k
there exists an h ∈ H that is bijective when restricted to S.

Schmidt and Siegal [SS90] describe a construction of a k-perfect family of
hash functions of size 2O(k) log2 n, and [AYZ95] describes how to obtain an even
smaller one of size 2O(k) log n.

The technique applies a family of perfect hash functions to partition vertices
of the input graph into k color classes. By the property of perfect hash families
we know that for any k-sized subset S of the vertices, one of the hash functions in
the family will color each vertex in S with a different color. Thus, if we seek a k-
set C with a specific property (e.g., a k-cycle), we know that if there is such a set
C in the graph then its vertices will, for at least one function in the hash family,
be colored with each of the k colors. The color coding technique gives an FPT
algorithm whenever this colored subproblem can be solved in FPT time. Perhaps
the strongest results using Color Coding are obtained in [FKNRSTW04] where
it is combined with kernelization to give FPT algorithms for a large variety of
problems.

A major drawback of these algorithms is that while the hash family has an
asymptotically good size, the O-notation hides a large constant. Thus, from a
practical viewpoint the color coding algorithms could be slower than, for exam-
ple, a 2k log k algorithm obtained through other techniques.

3 Kernelization

Under the heading of kernelization we combine techniques that reduce a general
instance into an equivalent kernel, i.e. , an instance whose total size is bounded

by a function depending only on the parameter. We distinguish between local

reductions and global reductions.

3.1 Local Reductions

Local reduction is a well known technique. We say that a local reduction rule is
a rule that identifies a certain constant-size structure LHS in the instance (the
left-hand-side) and modifies it to RHS (the right-hand-side). This must be done
in such a way that the original instance (G, k) has a positive solution iff the
reduced instance (G′, k′) has one. The goal is to find a set of rules such that
repeatedly applying the rules to an instance will either determine the answer
directly or give a kernel.

3.2 Global Reduction Rules - Crown Reduction

Lately there has been a focus on reduction rules that do not follow the pattern
of finding a local structure of constant size. In this section we describe reduction
rules based on finding crown decompositions in graphs.

Definition 2. A crown decomposition of a graph G = (V, E) is a partitioning

of V into sets C, H, R, where C and H are both nonempty, such that:

1. C is an independent set.

2. There is no edge between a vertex in C and a vertex in R.

3. There exists an injective map m : H → C, such that m(a) = b implies that

ab is an edge. We call ab a matched edge if m(a) = b.

When using a crown decomposition (C, H, R) in a reduction rule for a graph
G we must show that we can can remove or modify (C ∪H) to obtain a reduced
instance (G′, k′) which is a Yes-instance if and only if (G, k) is a Yes-instance.
For example, it is easy to see that G has a Vertex Cover of size k iff the graph G′

resulting from removing C ∪H has a Vertex Cover of size k−|H |. Usually more
complicated reduced instances and arguments are necessary. For example, an
FPT algorithm for k-Internal Spanning Tree [PS05] uses crown reduction rules
that remove only the vertices of C not incident to a matched edge.

Although it is possible to determine if a graph has a crown decomposition in
polynomial time [ACFL04], this technique is often combined with the following
lemma by Chor, Fellows, and Juedes [CFJ04]

Lemma 1. If a graph G = (V, E) has an independent set I such that |N(I)| <
|I |, then a crown decomposition (C, H, R) for G such that C ⊆ I can be found

in time O(|V | + |E|).

The notation N(I) denotes vertices in V \ I that are adjacent to a vertex
in I . Since it is W[1]-hard to find a large independent set we cannot directly
apply Lemma 1. To see how the Lemma can be used, consider k-Vertex Cover
on a graph G. We first compute a maximal matching M in G, and let VM be

the vertices incident to the edges in M . If |VM | > 2k then there does not exist a
Vertex Cover for G of size k. If |VM | ≤ 2k and |V \VM | ≤ 2k then G is a kernel.
Otherwise, |VM | ≤ 2k and |V \ VM | > 2k and since V \ VM is an independent
set with |N(V \ VM)| ≤ |VM | ≤ 2k < |V \ VM | we have, by Lemma 1, a crown
decomposition of G, that can be used to reduce the graph as described above.
Repeating this process gives an FPT algorithm for k-Vertex Cover.

Although crown reduction rules were independently discovered by Chor, Fel-
lows, and Juedes [CFJ04] one should note that a similar type of structure has
been studied in the field of boolean satisfiability problems (SAT). An autarky

is a partial truth assignment (assigning true/false to only a subset of the vari-
ables) such that each clause that contains a variable determined by the partial
truth assignment is satisfied. In a matching autarky we require in addition that
the clauses satisfied and the satisfying variables form a matching cover in the
natural bipartite graph description of the satisfiability problem. It is easy to see
that the matching autarky is a crown decomposition in this bipartite graph. The
main protagonist in this field is Oliver Kullmann [K00,K03], who has developed
an extensive theory on different types of autarkies.

4 FPT by Induction

We discuss techniques closely related to mathematical induction. If we are pro-
vided a solution for a smaller instance (G, k) we can for some problems use the
information to determine the solution for one of the larger instances (G + v, k)
or (G, k + 1). We will argue that the two techniques Iterative Compression and
Extremal Method are actually two facets of this inductive technique, depending
on wether the problem is a minimization problem or a maximization problem.

In his book Introduction to Algorithms [M89] Udi Manber shows how induc-
tion can be used as a design technique to create remarkably simple algorithms
for a range of problems. He suggests that one should always try to construct a
solution based on the inductive assumption that we have a solution to smaller
problems. For example, this leads to the well known Insertion Sort algorithm
by noting that we can sort sequences of n elements by first sorting n−1 elements
and then inserting the last element at its correct place.

This inductive technique may also be applied to the design of FPT algo-
rithms but more care must be taken on two accounts: (a) we have one or more
parameters and (b) we are dealing with decision problems. The core idea of the
technique is based on using the information provided by a solution for a smaller
instance. When an instance contains both a main input and a parameter in-
put, we must be clear about what we mean by ’smaller’ instances. Let (G, k)
be an instance, where G is the main input and k the parameter. We can now
construct three distinctly different ’smaller’ instances (G − v, k), (G, k − 1) and
(G − v, k − 1). Which one of these to use?

We first show that using smaller instances of the type (G − v, k) is very
suitable for minimization problems and leads to a technique known as Iterative
Compression. Then we show that using smaller instances of the type (G, k − 1)

can be used to construct algorithms for maximization problems and is in fact
the technique known as the Extremal Method.

4.1 For Minimization - Iterative Compression

In this section we present Iterative Compression which works well on certain
parameterized minimization problems. Let us assume that we can inductively
(recursively) compute the solution for the smaller instance (G − v, k). Since
our problems are decision problems, we get either a ’Yes’-answer or a ’No’-
answer. In both cases we must use the information provided by the answer to
compute the solution for (G, k). We must assume that for a ’Yes’-instance we
also have a certificate that verifies that the instance is a ’Yes’-instance and it is
this certificate that must be used to compute the solution for (G, k). However,
for a ’No’-answer we may receive no extra information. A class of problems where
’No’-answers carry sufficient information is the class of monotone problems in
which the ’No’-instances are closed under element addition. Thus if a problem
is monotone we can immediately answer ’No’ for (G, k) whenever (G− v, k) is a
’No’-instance.

Two papers that use this type of induction on monotone graph minimization
problems are [RSV03] which shows that k-Odd Cycle Cover (is it possible to
delete k vertices from G to obtain a bipartite graph) is FPT, and [DFRS04]
where a 2k kernel is given for k-Vertex Cover without using the complicated
Nemhauser-Trotter results [NT75].

Note that many minimization problems are not monotone, like Dominating

Set where the addition of a universal vertex always changes a ’No’ answer to
’Yes’ (unless k ≥ n). For such problems we believe that Iterative Compression
is ill suited.

4.2 For Maximization - The Extremal Method

For maximization problems we consider smaller instances of the type (G, k− 1),
and induct on k instead of n. We say that a problem is parameter monotone if
the ’No’-instances are closed under parameter increment, i.e. if instance (G, k)
is a ’No’-instance then (G, k′) is also a ’No’-instance for all k′ > k.

The Method of Extremal Structure5 is a design technique that works well for
parameter monotone maximization problems. In this technique we do not focus
on any particular instance (G, k), but instead investigate the structure of graphs
that are ’Yes’-instances for k, but ’No’-instances for k + 1. Let G(k) be the class
of such graphs, i.e., G(k) = {G | (G, k) is a ’Yes’-instance, and (G, k + 1) is a
’No’-instance }.

Our ultimate goal is to prove that there exists a function f(k) such that
h max{|V (G)| | G ∈ G(k)} ≤ f(k). This is usually not possible without some
refinement of G(k), to do this we make a set of observations E of the following
type:

5 An exposition of this design technique can be found in E. Prieto’s PhD thesis [P05]

Since (G, k) is a ’Yes’-instance, but (G, k + 1) is a ’No’-instance, G has
property p. (1)

Given a set of such observations E and consequently a set of properties P
we try to devise a set of reduction rules R that apply specifically to large graphs
having the properties P . We call our refined class GR(k) = {G | no reduction
rule in R applies to (G, k), and (G, k) is a ’Yes’-instance, and (G, k+1) is a ’No’-
instance }. If we can add enough observations to E and reductions rules to R to
prove that there is a function f(k) such that max{|V (G)| | G ∈ GR(k)} ≤ f(k)
we have proven that:

If i) no rule in R applies to (G, k) and ii) (G, k) is a ’Yes’-instance and
iii) (G, k + 1) is a ’No’-instance, then |V (G)| ≤ f(k)

Given such a boundary lemma and the fact that the problem is a parameter

monotone maximization problem a kernelization lemma follows, saying that ’If
no rule in R applies to (G, k) and |V (G)| > f(k), then (G, k) is a ’Yes’-instance.

It is not immediately obvious that this can be viewed as an inductive pro-
cess, but we will now make this clear by presenting the Algorithmic Method, a
version of the ’Extremal Method’. Here the ’Extremal Method’ can be used as
the inductive step, going from k to k + 1, in an inductive algorithm.

As its base case, the algorithm decides (G, 0), which is usually a trivial ’Yes’-
instance for a maximization problem. Our induction hypothesis is that we can
decide (G, k′). Then as long as k′ + 1 ≤ k we try to compute (G, k′ + 1). If
(G, k′) is a ’No’-instance we can immediately answer ’No’ for (G, k′ + 1) as the
problem is parameter monotone. Otherwise we can now make an algorithmic use
of observations of the type defined for extremal method ((1) above). For each
of the properties p ∈ P we check if G has the property p. If G does not have
property p then since (G, k′) is a ’Yes’-instance it follows that (G, k′ + 1) is also
a ’Yes’-instance. By the same reductions and observations (although the reader
should observe that we here require properties to be FPT time verifiable), we
obtain that

If no observation in E or reduction rule R applies to (G, k′ + 1) then
|V (G)| < f(k).

At that point we can invoke a brute force algorithm to obtain either a solution
S or a ’No’-answer for (G, k′ + 1). This answer for (G, k′ + 1) can then be used
in the next step, k′ + 2, of our inductive algorithm.

This technique, either the ’Extremal Method’ or its variant the ’Algorithmic
Method’, can be applied successfully to a range of problems, such as: k-Max
Cut [P04], k-Leaf Spanning Tree [P05], k-Non-Blocker [P05], k-Edge-disjoint
Triangle-Packing [MPS04], k-K1,s-packing [PS04], k-K3-packing [FHRST04], k-
Set Splitting [DFR03], and k-Internal Spanning Tree [PS05].

5 Win/Win

Imagine that we solve our problem by first calling an FPT algorithm for another
problem and use both its ’Yes’ and ’No’ answer to decide in FPT time the
answer to our problem. Since we then ’win’ if its answer is ’Yes’ and we also
’win’ if its answer is ’No’, this is called a ’Win/Win’ situation. In this section we
focus on techniques exploting this behavior. According to [DH05] the only known

algorithms with sub-exponential running time O∗(c
√

k) are algorithms based on
imposing treewidth and branchwidth structure on the complicated cases, and
these fall into the Win/Win category.

5.1 Well-quasi-ordering and Graph Minors

Robertson and Seymour have shown that i) the set of finite graphs are well-quasi-
ordered under minors and ii) the H-Minor problem that checks if H is a minor
of some input graph, with k = |V (H)|, is FPT. These two facts suffice to prove
that any parameterized graph problem whose Yes-instances (or No-instances)
are closed under minors is FPT. If analogous structural results could be shown
for some other relation, besides minors, then for problems closed under this other
relation we would also get FPT algorithms. Thus the general technique is called
’well-quasi-ordering’. We consider this a Win/Win algorithm as we relate the
problem we wish to solve to the FPT problem of checking if one of the forbidden
minors (or whatever other relation is involved) appear in our problem instance.

Let us briefly explain the main ideas. A well-quasi-ordering is a reflexive
and transitive ordering which has no infinite antichain, meaning that any set
of elements no two of which are comparable in the ordering must be finite. A
graph H is a minor of a graph G, denoted H �m G, if a graph isomorphic
to H can be obtained from contracting edges of a subgraph of G. The Graph
Minors Theorem [RS99] states that ’The set of graphs are well-quasi-ordered
by the minor relation’. Combined with H-minor testing this can be used to
prove existence of an FPT algorithm for any problem A with the property that
for any k the ’Yes’-instances are closed under minors. In other words, let us
assume that if Ak is the class of graphs G such that (G, k) is a ’Yes’-instance
to problem A and H �m G for some G ∈ Ak then H ∈ Ak as well. Consider
the Minimal Forbidden Minors of Ak, denoted MFM(Ak), defined as follows:
MFM(Ak) = {G | G /∈ Ak and (∀H �m G, H ∈ Ak ∨ H = G)}.

By definition, MFM(Ak) is an antichain of the �m ordering of graphs so by
the Graph Minors Theorem it is finite. Beware that the non-constructive nature
of the proof of the Graph Minors Theorem implies that we can in general not
construct the set MFM(Ak) and thus we can only argue for the existence of an
FPT algorithm. We do this by noting that (G, k) is a Yes-instance of problem
A iff there is no H ∈ MFM(Ak) such that H �m G. Since MFM(Ak) is
independent of |G| we can therefore decide if (G, k) is a Yes-instance in FPT
time by |MFM(Ak)| calls of H-Minor. Armed with this powerful tool, all we
have to do to prove that a parameterized graph problem is FPT is to show

that the Yes-instances are closed under the operations of edge contraction, edge
deletion and vertex deletion.

5.2 Imposing FPT structure and Bounded treewidth

In the literature on parameterized graph algorithms there are several notable
occurrences of a Win/Win strategy that imposes a tree-like structure on the class
of problematic graphs, in particular by showing that they must have treewidth
bounded by a function of the parameter. This is then combined with the fact
that many NP-hard problems are solvable in FPT time if the parameter is the
treewidth of the input graph.

Let us briefly explain this technique in the case of finding k-dominating sets
in planar graphs, where a very low treewidth bound on Yes-instances gives very
fast FPT algorithms. In [ABFKN02] it is shown that a planar graph that has a
k-dominating set has treewidth at most c

√
k [ST94], for an appropriate constant

c. Thus we have a win/win relationship, since we can check in polynomial time
if a planar graph has treewidth at most c′

√
k, for some slightly larger constant

c′, and if so find a tree-decomposition of this width. If the treewidth is higher we
can safely reject the instance, and otherwise we can run a dynamic programming
algorithm on its tree-decomposition, parameterized by c′

√
k, to find in FPT time

the optimal solution. In total this gives a O∗(c′′
√

k) algorithm for deciding if a
planar graph has a dominating set of size k.

A series of papers have lowered the constant c′′ of this algorithm, by several
techniques, like moving to branchwidth instead of treewidth, by improving the
constant c, and by improving the FPT runtime of the dynamic programming
stage. Yet another series of papers have generalized these ’subexponential in k’
FPT algorithms from dominating set to all so-called bidimensional parameters
and also from planar graphs to all graphs not having a fixed graph H as minor
[DH05].

6 Conclusion

We believe that a taxonomy of techniques for designing parameterized algorithms
will invariably develop over time and in this paper we made a comprehensive
attempt. Many such classification schemes are possible, and the one proposed in
this paper is the result of many discussions, primarily between the two authors,
but also with other people in the field, see [S06]. Given the nature of such
classifications and the continual development of the field we expect that this
proposal will be criticized and altered over time, but it is our hope that it will
lay the ground for fruitful discussions.

References

[ACFL04] F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Algorithms for
the Vertex Cover Problem: Theory and Experiments. Proceedings ALENEX 2004, Springer-
Verlag, Lecture Notes in Computer Science 3353, p 235-244(2004).

[ABFKN02] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameter
algorithms for dominating set and related problems on planar graphs, Algorithmica, vol. 33,
pages 461–493, 2002.

[AYZ95] N. Alon, R. Yuster, and U. Zwick. Color-Coding, Journal of the ACM, Volume 42(4),
pages 844–856, 1995.

[CFJ04] B. Chor, M. Fellows, and D. Juedes. Linear Kernels in Linear Time, or How to Save k

Colors in O(n2) steps. Proceedings of WG2004, LNCS, 2004.
[DF99] R. Downey and M. Fellows. Parameterized Complexity, Springer-Verlag, 1999.
[DFR03] F. Dehne, M. Fellows, and F. Rosamond. An FPT Algorithm for Set Splitting, in Proceed-

ings WG2004 - 30th Workshop on Graph Theoretic Concepts in Computer science, LNCS.
Springer Verlag, 2004.

[DFRS04] F. Dehne, M. Fellows, F. Rosamond, P.Shaw. Greedy Localization, Iterative Compression
and Modeled Crown Reductions: New FPT Techniques and Improved Algorithms for Max Set
Splitting and Vertex Cover, Proceedings of IWPEC04, LNCS 3162, pages 271–281, 2004

[DH05] E. Demaine and M. Hajiaghayi. Bidimensionality: New Connections between FPT Algo-
rithms and PTASs, Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2005), January 23–25, pages 590–601, 2005.

[F03] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New Directions in FPT, Proceedings
WG 2003, Springer Verlag LNCS 2880, pages 1–12, 2003.

[FKNRSTW04] M. Fellows, C. Knauer, N. Nishimura, P. Ragde, F. Rosamond, U. Stege, D. Thi-
likos, and S. Whitesides. Faster fixed-parameter tractable algorithms for matching and packing
problems, Proceedings of the 12th Annual European Symposium on Algorithms (ESA 2004),
2004.

[FHRST04] M.Fellows, P.Heggernes, F.Rosamond, C. Sloper, J.A.Telle, Finding k disjoint triangles
in an arbitrary graph. To appear in proceedings 30th Workshop on Graph Theoretic Concepts
in Computer Science (WG ’04), Springer Lecture Notes in Computer Science, (2004).

[FMRS00] M.R. Fellows, C. McCartin, F. Rosamond, and U.Stege. Coordinatized Kernels and Cat-
alytic Reductions: An Improved FPT Algorithm for Max Leaf Spanning Tree and Other Prob-
lems, Foundations of Software Technology and Theoretical Computer Science, 2000.

[JZC04] W. Jia, C. Zhang and J. Chen. An efficient parameterized algorithm for m-set packing,
Journal of Algorithms, 2004, vol. 50(1), pages 106–117

[K00] O. Kullmann. Investigations on autark assignments, Discrete Applied Mathematics, vol. 107,
pages 99–138, 2000.

[K03] O. Kullmann. Lean clause-sets: Generalizations of minimally unsatisfiable clause-sets, Dis-
crete Applied Mathematics, vol 130, pages 209–249, 2003.

[MPS04] L. Mathieson, E. Prieto, P. Shaw. Packing Edge Disjoint Triangles: A Parameterized View.
Proceedings of IWPEC 04, 2004, LNCS 3162,pages 127-137.

[M89] U. Manber. Introduction to algorithms, a creative approach, Addison Wesley Publishing,
1989.

[MR99] M. Mahajan, V. Raman. Parameterizing above guaranteed values: MaxSat and MaxCut,
Journal of Algorithms, vol. 31, issue 2, pages 335-354, 1999.

[N02] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Manuscript, 2002, a book version
was recently announced by Oxford University Press.

[NR00] R. Niedermeier and P. Rossmanith. A general method to speed up fixed parameter algo-
rithms, Information Processing Letters, 73, pages 125–129, 2000.

[NT75] G. Nemhauser and L. Trotter Jr. Vertex Packings: Structural properties and algorithms,
Mathematical Programming, 8, pages 232–248, 1975.

[P04] E. Prieto. The Method of Extremal Structure on the k-Maximum Cut Problem. Proc. Com-
puting: The Australasian Theory Symposium (CATS 2005). Conferences in Research and
Practice in Information Technology, 2005, vol. 41, pages 119-126.

[P05] E. Prieto. Systematic kernelization in FPT algorithm design. PhD thesis, University of New-
castle, Australia 2005.

[PS03] E. Prieto, C. Sloper. Either/Or: Using Vertex Cover Structure in designing FPT-algorithms
- the case of k-Internal Spanning Tree, Proceedings of WADS 2003, LNCS vol 2748, pages
465–483.

[PS04] E. Prieto, C. Sloper. Looking at the Stars,Proceedings of International Workshop on Pa-
rameterized and Exact Computation (IWPEC 04), LNCS vol. 3162, pages 138-149, 2004.

[PS05] E. Prieto, C. Sloper. Reducing to Independent Set Structure — the Case of k-Internal

Spanning Tree’, Nordic Journal of Computing, 2005, vol 12, nr 3, pp. 308-318.
[RS99] N. Robertson, PD. Seymour. Graph Minors XX Wagner’s conjecture. To appear.
[RSV03] B.Reed, K.Smith, and A. Vetta. Finding Odd Cycle Transversals, Operations Research

Letters, 32, pages 299-301, 2003.
[S06] C.Sloper. Techniques in Parameterized Algorithm Design. PhD thesis, University of Bergen,

2006, (http://www.ii.uib.no/ sloper).
[SS90] J.P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash functions. SIAM

Journal of Computing, 19(5), pages 775-786, 1990.
[ST94] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, vol 14(2),

pages 217 – 241, 1994.

