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Abstract. We study the recently introduced boolean-width of graphs.
Our structural results are as follows. Firstly, we show that almost surely
the boolean-width of a random graph on n vertices is O(log2 n), and it
is easy to find the corresponding decomposition tree.
Secondly, for any constant d a graph of maximum degree d has boolean-
width linear in treewidth. This implies that almost surely the boolean-
width of a (sparse) random d-regular graph on n vertices is linear in
n.
Thirdly, we show that the boolean-cut value is well approximated by VC
dimension of corresponding set system. Since VC dimension is widely
studied, we hope that this structural result will prove helpful in better
understanding of boolean-width.
Combining our first structural result with algorithms from Bui-Xuan et

al [2, 3] we get for random graphs quasi-polynomial O∗(2O(log4 n)) time
algorithms for a large class of vertex subset and vertex partitioning prob-
lems.

1 Introduction

Width parameters of graphs, like tree-width and clique-width, are impor-
tant in the theory of graph algorithms, see e.g. [8]. Recently, Bui-Xuan,
Telle and Vatshelle [2] introduced a new width parameter of graphs called
boolean-width. It is our feeling that this parameter has interesting struc-
tural properties and is important for applications, e.g. its value for any
graph is no larger than branch-width or clique-width and if a decompo-
sition of small boolean-width k is given then we get fast algorithms for a
large class of problems. Such problems include Minimum Dominating Set
and Maximum Independent Set solved in time O(n(n + 23kk)) [2], and
also a large class of vertex subset and vertex partitioning problems in
time O∗(2d×q×k

2
), for problem-specific constants d and q [3]. This paper

is dedicated to a study of boolean-width.
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We show that asymptotically almost surely the boolean-width of a
random graph on n vertices is O(log2n), for any decomposition tree.
This implies quasi-polynomial time O∗(2O(log4 n)) algorithms for the above
mentioned problems on random graphs. This result contrasts sharply with
a recent result of Mareček [6] who showed that almost surely a random
graph on n vertices has rank-width linear in n. The latter parameter
was introduced by Oum and Seymour and is smaller than tree-width+1,
branch-width, clique-width and NLC-width.

For sparse random graphs we show a complementary result, namely
that for any constant d almost surely the boolean-width of a random d-
regular graph on n vertices is linear in n. This as corollary to another
result, that any graph of maximum degree d has boolean-width linear in
treewidth.

Finally, we show that the boolean-cut value is well approximated by
VC dimension of corresponding set system. Since VC dimension is widely
studied and relatively well understood, we hope that this structural result
will prove helpful in future studies.

2 Definitions

We consider undirected graphs without loops and denote the vertex set
of a graph G by V (G) and the neighbors of a vertex v by N(v). For
A ⊆ V (G) we let A denote the set V (G) \ A and let N(A) ⊆ A denote
the neighbors of A in A. The following formalism is standard in graph
and matroid decompositions (see, e.g., [9]).

Definition 1. A decomposition tree of a graph G is a pair (T, δ) where
T is a tree having internal nodes of degree three and n = |V (G)| leaves,
and δ is a bijection between the vertices of G and the leaves of T . Every
edge of T defines a cut {A,A} of the graph, i.e. a partition of V (G) in
the two parts given, via δ, by the leaves of the two subtrees of T we get
by removing the edge. Let f : 2V → R be a symmetric function, i.e.
f(A) = f(A) for all A ⊆ V (G), also called a cut function. The f -width
of (T, δ) is the maximum value of f(A), taken over all cuts {A,A} of G
given by an edge uv of T . The f -width of G is the minimum f -width over
all decomposition trees of G.

Definition 2 (Boolean-width). The cut-bool : 2V (G) → R function
of a graph G is defined as

cut-bool(A) = log2 |{S ⊆ A : ∃X ⊆ A ∧ S = N(X)}|
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It is known from boolean matrix theory that cut-bool is symmetric [5,
Theorem 1.2.3]. Using Definition 1 with f = cut-bool we define the
boolean-width of a decomposition tree, denoted boolw(T, δ), and the boolean-
width of a graph, denoted boolw(G).

For a vertex subset A, the value of cut-bool(A) can also be seen as
the logarithm in base 2 of the number of pairwise different vectors that are
spanned, via boolean sums (1+1=1), by the rows of the A×A sub-matrix
of the adjacency matrix of G.

3 Structural Results

3.1 Random graphs

Let Gp be a random graph on n vertices where each edge is chosen ran-
domly and independently with probability p.

Theorem 1. Almost surely, boolw(Gp) = O
(

ln2 n
p

)
.

We prove first the following lemma.

Lemma 1. Let Gp be a graph as above, and let kp = 2 lnn
p . Then, almost

surely, for all subsets of vertices S ⊂ V (G) with |S| = kp it holds that
|N(S)| ≥ |S| − kp.

Proof In what follows, we write simply G and k. Fix a particular S
with |S| = k. For every v ∈ S, let Xv be 1 if v 6∈ N(S), and 0 otherwise.
Clearly, Xv = 1 with probability (1− p)k, and

∑
v∈S Xv = |S| − |N(S)|.

Observe that E[
∑

v 6∈S Xv] = (1 − p)k(n − k) < (1 − p)kn. Call this
expectation µ. By Chernoff Bound (see e.g. [7], p.68),

Pr

∑
v∈S

Xv ≥ k

 <
(eµ
k

)k
<
(

(1− p)kn
)k

=
(

(1− p)2 lnn/pn
)k

< n−k ,

the last inequality due to the fact that for p ∈ (0, 1), (1− p)
1
p ≤ e−1.

Applying the union bound, we conclude that the probability that there
exists S of size k such that |N(S)| < |S| − k is at most(

n

k

)
· n−k < (k!)−1 = o(1)

and the statement follows. �
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Corollary 1. For G = Gp and k = kp as before, for all cuts
{
A,A

}
in

G it holds almost surely that cut-bool(A) ≥ O
(

ln2 n
p

)
.

Proof The number of distinct sets N(S) ∩ A contributed by the sets
S ⊆ A with |S| ≤ k is at most

∑k
i=0

(
n
i

)
. By the previous lemma, for all

sets S ⊆ A with |S| ≥ k, it holds almost surely that |N(S)∩A| ≥ |A|−k.
Therefore, almost surely, the sets S ⊆ A with |S| ≥ k, also contribute at
most

∑k
i=0

(
n
i

)
distinct sets N(S) ∩ A. Thus, almost surely there are at

most 2
∑k

i=0

(
n
i

)
distinct sets N(S)∩A altogether. Taking the logarithm,

we arrive at the desired conclusion. �

The Theorem 1 now follows easily: for any decomposition tree, all the cuts
it defines will almost surely have a cut-Boolean-width at most O

(
ln2 n
p

)
.

3.2 Graphs of bounded degree

Theorem 2. For G a graph of maximum degree d we have

1
6d2
· tw(G) ≤ boolw(G) ≤ tw(G) + 1 .

Proof The second inequality is known to hold for any graph [1]. Us-
ing Definition 1 with f = cut-car counting the number of edges in the
cut {A,A}, we define the carving-width of a decomposition tree, and the
carving-width of a graph, denoted carw(G). This graph-theoretic pa-
rameter has been studied previously, and in particular it is known that
3 · carw(G) ≥ tw(G) [4].

Consider now our graph G. Observe that for any A ⊆ V (G) there
exists S ⊆ A and S′ ⊆ A such that |S| = |S′| ≥ cut-car(A)/(2d2), each
vertex v in S has a single neighbour u in S′, and, moreover no other
v′ ∈ S sees u, i.e., N(u) ∩ S = v. Indeed, start with the original cut
{A,A, and as long as it is not empty, do the following. Pick an edge
(v, u) in the cut, where v ∈ A and u ∈ A, add v to S and u to S, and
remove the vertices in N(v) ∩ A and N(u) ∩ A together with incident
edges. Since in each iteration at most 2d2 edges are removed, there will
be at least cut-car(A)/(2d2) iterations, and therefore the size of S will
be as claimed.

The existence of such S, S′ at once imply that

|
{
N(K) ∩A, K ⊆ A

}
| ≥ 2|S| ,

as each subset K ⊆ S has a distinct N(K) ∩A.
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To sum up, 2d2cut-bool(A) ≥ cut-car(A).
Consider now the decomposition tree yielding the boolw(G). Us-

ing the above observation, we conclude that the maximal cut-car(A)
of any involved cut is at most 2d2boolw(G), and thus 2d2boolw(G) ≥
carw(G). Recalling that carw(G) ≥ 1

3tw(G), the conclusion follows. �

As an easy corollary of this theorem we get the following result, which
can be viewed as a counterpart of Theorem 1 for sparse random graphs.

Theorem 3. Let G be a random d-regular graph on n. Then, almost
surely, boolw(G) = Ω(nd ).

Proof It is well known that every balanced cut (in our case, up to (1
3 ,

2
3))

in a random d-regular graph contains Ω(dn) edges. Consider the decom-
position tree yielding the boolw(G). By a standard argument, one of the
involved cuts {A,A} must be (1

3 ,
2
3)-balanced, and hence almost surely

cut-car(A) = Ω(dn). Since, as we have seen in the proof of Theorem 2,
cut-bool(A) ≥ cut-car(A)/(2d2), the statement follows. �

3.3 Boolean cut-width and the VC-dimension of the family of
neighbourhoods

In this section we show that the Boolean cut-width of a cut is closely
related to the VC-dimension of the related system of neighbourhoods,
which in turn has a simple description in our case.

Let {A,A} be a cut in G, and let M be the corresponding |A| × |A|
Boolean adjacency matrix. Consider the family N = {N(K) ∩A : K ⊆
A}. The Vapnik-Chervonenkis dimension of N is defined as the maximum
size of T ⊆ A that is shattered by N , i.e., any subset T ′ ⊆ T is of the form
N(K) ∩ T for some K ⊆ A. We shall denote this dimension as VC(A).
Observe that since N is closed under unions, VC(A) is just the size of
the maximum permutation submatrix of M .

Theorem 4.

VC(A) ≤ cut-bool(A) ≤ log n ·VC(A)

Proof The first inequality is obvious, since the existence of permutation
submatrix of size k in M implies that |N | ≥ 2k. It was already expoited
in the proof of Theorem 2. For the second inequality, we use the following
fundamental lemma, variously attributed to Sauer, to Perles and Shelah,
as well as to Vapnik and Chervonenkis:
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Lemma 2. [S,PS,VC Lemma] Let F be a family of subsets of some
underlying set of size n. Then, if |F| ≥

∑k
i=0

(
n
i

)
, then VC(F) > k.

Since log2

∑k
i=0

(
n
i

)
> k log2(n/k), we conclude that

VC(A) = VC(N ) >
log2 |N |
log2 n

=
cut-bool(A)

log2 n
.

�

4 Algorithmic Results

In this section, again we let Gp be a random graph on n vertices where
each edge is chosen randomly and independently with probability p. No-
tice that the proof of Theorem 1 actually yields the stronger result:

Theorem 5. Almost surely, any decomposition tree of Gp has boolean-

width O
(

ln2 n
p

)
.

Theorem 5 implies that a large class of vertex subset and vertex partition-
ing problems, can be solved in quasi-polynomial time on random graphs.
In this section we provide two corollaries to this effect.

Definition 3. Let σ and ρ be finite or co-finite subsets of natural num-
bers. A subset X of vertices of a graph G is a (σ, ρ)-set of G if

∀v ∈ V (G) : |N(v) ∩X| ∈
{
σ if v ∈ X,
ρ if v ∈ V (G) \X.

Let d(N) = 0. For every finite or co-finite set µ ⊆ N, let

d(µ) = 1 +min{max{x : x ∈ µ},max{x : x /∈ µ}}

Let d(σ, ρ) = max{d(σ), d(ρ)}.

The (σ, ρ) vertex subset problems consist of finding the size of a min-
imum or maximum (σ,ρ)-set in G.

Theorem 6. [[3]] For every n-vertex, m-edge graph G given along with a
decomposition tree of boolean-width k, any minimum or maximum (σ, ρ)
vertex subset problem on G can be solved in O(n(m+ d · k23d·k2+k)) time,
where d stands for d(σ, ρ).
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Corollary 2. Any minimum or maximum (σ, ρ) vertex subset problem
on Gp can be solved in O∗(2O(d(σ,ρ)·log4 n)) time.

Several NP-hard problems are expressible in this framework, e.g. problems
like Max Independent Set (with σ = {0}, ρ = N, d(σ, ρ) = 1) and Min
Dominating Set (σ = N, ρ = {1, 2, . . .}, d(σ, ρ) = 2). Also problems
like Min p-Dominating Set (σ = N, ρ = {p, p + 1, . . .}, d(σ, ρ) = p + 1)
and Max Induced p-Bounded Degree Subgraph (σ = {0, 1, . . . p}, ρ = N,
d(σ, ρ) = p+ 1).

The framework is extendible to problems asking for a partition of
V (G) into q classes, with each class satisfying a certain (σ, ρ)-property,
as follows.

Definition 4. Let Dq be a q by q matrix with entries being finite or
co-finite subsets of natural numbers. A Dq-partition in a graph G is a
partition {V1, V2, ..., Vq} of V (G) such that for 1 ≤ i, j ≤ q we have
∀v ∈ Vi : |N(v) ∩ Vj | ∈ Dq[i, j]. Let d(Dq) = maxi,j d(Dq[i, j]).

The vertex partitioning problems consist of deciding if G has a Dq

partition, the so-called Dq-problem. NP-hard problems fitting into this
framework include e.g. for any fixed graph H the problems known as H-
Coloring or H-Homomorphism (with Kq-Coloring deciding if chromatic
number is at most k), H-Covering, H-Partial Covering, and in general the
question of deciding if an input graph has a partition into q (σ, ρ)-sets.

Theorem 7. [[3]] For every n-vertex, m-edge graph G given along with
a decomposition tree having boolean-width k, any Dq-problem on G can
be solved in O(n(m+ qdk23qdk2+k)) time, where d stands for d(Dq).

Corollary 3. Any Dq-problem on Gp can be solved in O∗(2O(q·d(Dq)×log4 n))
time.

Simple extensions will allow also to solve weighted versions and search
versions of both the vertex subset and vertex partitioning problems.
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