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Abstract

We introduce g-proper interval graphs as interval graphs with interval
models in which no interval is properly contained in more than ¢ other
intervals, and also provide a forbidden induced subgraph characterization
of this class of graphs. We initiate a graph-theoretic study of subgraphs of
g-proper interval graphs with maximum clique size k41 and give an equiv-
alent characterization of these graphs by restricted path-decomposition.
By allowing the parameter ¢ to vary from 0 to k, we obtain a nested hi-
erarchy of graph families, from graphs of bandwidth at most & to graphs
of pathwidth at most k. Allowing both parameters to vary, we have an
infinite lattice of graph classes ordered by containment.

1 Introduction

Interval graphs model the intersection structure of a set of intervals of any
linearly ordered structure, and have applications in fields as diverse as VLSI
channel routing, molecular biology and scheduling. Our interest in subgraphs of
interval graphs stems in part from the completion problem [5] and also from the
elusiveness of results relating several graph parameters based on linear layouts
of graphs. Pathwidth is a graph parameter closely associated with interval
graphs, of importance to both algorithmic and structural graph theory, and
with applications to VLSI layout [6, 11]. Bandwidth is another widely studied
graph parameter, with applications to sparse matrices [1], and notorious for the
difficulty of its computation even for trees [3]. Recently, in a study of problems
motivated by molecular biology, Kaplan and Shamir [5] showed a somewhat
surprising connection between bandwidth and pathwidth, using the well-known
notion of proper interval graphs, or equivalently unit interval graphs. A similar
connection was shown by [2] based on a variant of the pursuit-evasion game of
Cops and Robbers, where the Cop searches a graph by visiting its vertices in an
attempt to apprehend the Robber that moves with a finite speed along graph
edges. Depending on the rules of the game, the minimum speed needed by the



Robber to avoid capture reflects either the bandwidth, or the pathwidth of the
graph. In this paper we generalize and extend this connection. We fill in the gap
between bandwidth and pathwidth, by giving a class of graphs parameterized
by two integers where varying one parameter changes bandwidth gradually into
pathwidth.

In the next section we introduce g-proper interval graphs and give some pre-
liminary definitions and results related to these graphs. In section 3, we give
a forbidden induced subgraph characterization for g-proper interval graphs. In
section 4, we fix a maximum clique size, k + 1, and vary q from 0 to k£ to study
subgraphs of g-proper interval graphs with maximum clique size k£ + 1. We
characterize these nested families of graphs, that range from bandwidth & to
pathwidth k graphs as ¢ ranges from 0 to k, by properties of their restricted
path-decompositions. By varying both ¢ and k& we obtain an infinite lattice of
graph classes, ordered by containment. In section 5 we investigate structural
properties of these graphs by studying the edge maximal graphs and their min-
imal separators. In section 6 we show that these classes provide alternative
characterizations of k-caterpillars and k-paths, and we introduce the class of k-
rays as a compact and simple characterization of graphs of bandwidth at most
k.

2 g-proper interval graphs

We use standard graph theory notation, as can be found, for instance, in [4].
An interval model of a graph can be specified by the left and right endpoints
for each interval; these can be expressed as integers [(v) and r(v), respectively.
The interval graph with this interval model has a vertex for each interval and
an edge wv if and only if the (closed) intervals [[(v),r(v)] and [I(u),r(u)] have
non-empty intersection.

Definition 2.1 A graph G is a q-proper interval graph if it has an interval
model such that no interval is properly contained in more than q other intervals.

Fact 2.2 (-proper interval graphs are usually called proper interval graphs.

In general, an interval [a1, b1] is said to be properly contained in interval [asz, bo)
if either a; > as and by < by or a; > as and b; < bs. We show that in the
context of avoiding proper containments in interval models it suffices to deal
only with proper containments where strict inequalities hold on both sides.

Definition 2.3 Interval [a1,b1] is 2-sided properly contained in interval [az, bs]
if ay > az and by < bs.

Theorem 2.4 For any interval model M of an interval graph G we can find a
new interval model N of G such that the only proper interval containments of
N are the 2-sided proper interval containments of M.



Proof. Without loss of generality (w.l.0.g.), let all interval endpoints of M be
integers between 1 and some maximum value maz. For each vertex v, define
e(v) = 1/(r(v)—I(v)+2) We construct a new interval model N of G by replacing
the interval [I(v),r(v)] of every vertex v by [I(v) —e(v),r(v) +€(v)]. Note that no
new proper containments or nonempty intersections of intervals are introduced
by these changes. Additionaly, all proper interval containments which were not
2-sided in M are not proper in N. m

The following corollary is immediate.

Corollary 2.5 If an interval graph G is not g-proper interval then in any in-
terval model of G we can find an interval which is 2-sided properly contained in
at least ¢ + 1 other intervals.

3 Forbidden subgraphs

A graph G is said to be H-free, for a fixed graph H, if it does not contain an
induced subgraph isomorphic to H. We denote by K, the g-clique (g completely
connected vertices) and by K, , the complete bipartite graph (with partitions
of p and ¢ vertices).

Definition 3.1 We denote by T, the graph consisting of a K, and 3 additional
non-adjacent vertices, each adjacent to every vertex of the K.

In the following, we generalize the earlier characterization of proper interval
graphs to the class of g-proper interval graphs.

Theorem 3.2 [10] G is a 0-proper interval graph if and only if G is a Ti-free
(equivalently, K; 3-free) interval graph.

Theorem 3.3 G is a g-proper interval graph if and only if G is a Tyyq-free
interval graph.

Proof. (only if) Assume G contains an induced Tj;, consisting of a copy of
K441 and the 3 non-adjacent vertices a, b, c, and consider an interval model of
G. Let (w.l.o.g.) the interval of b lie entirely between intervals of a and ¢ and
let I be the (non-empty) common intersection of all the intervals corresponding
to vertices of K,41 intersect. Since intervals of a, b, c must each intersect I, the
interval of b must be properly contained in I and thereby G is not g-proper
interval.

(if) Assume that G is interval but not g-proper and take any integer interval
model of G. Modify this model by fixing the overall minimum left and maximum
right endpoints and in turn for each vertex of G extending its interval left
and right as far as possible, with integer endpoints only, while maintaining
an interval model of G. Let b be a vertex whose interval is 2-sided properly
contained in all intervals of some vertex set K, with |K| > ¢+ 1, as guaranteed
by Corollary 2.5. Let the interval of z € K have the leftmost right endpoint r(x)



(of vertices in K). By our construction, if we extend the interval of b to r(z),
the resulting interval model does not represent the graph G. Hence b acquired
a new neighbor ¢ ¢ K such that r(b) < I(c) < r(z). This means that ¢ is (in G)
adjacent to every vertex in K but not to b. Similarly we cannot move the left
endpoint of b to the left because of some vertex a with similar properties as c.
Note that a and ¢ are not neighbors since the interval of b lies entirely between
their intervals. Thus G contains an induced Tj41. =

4 An infinite lattice of graph classes

In this section we define an infinite lattice of graph classes, ordered by contain-
ment, which will serve to elucidate the relationship between graphs of bandwidth
at most k& and graphs of pathwidth at most k. We first define bandwidth and
pathwidth.

Definition 4.1 G has bandwidth at most k if there exists a bijection f : V(G) —
{1,2,...,|V(G)|} such that for every edge uv of G we have |f(u) — f(v)| < k.

Definition 4.2 [11] A path-decomposition of a graph G is a sequence of bags,
subsets of the vertex set V(G) of G, whose union is V(QG), such that for each
edge of G there is a bag containing both its end-vertices and the bags containing
any given vertex are consecutive in the sequence. The mazimum cardinality of a
bag, minus one, is called the width of the path-decomposition. G has pathwidth
at most k if and only if it has a width k path-decomposition.

The pathwidth parameter can also be defined in terms of restricted interval
graphs.

Definition 4.3 Given a path-decomposition X1, ..., X, of a graph G, the in-
terval model corresponding to it is given by I(v) = min{i : v € X;} and
r(v) = max{i:v € X;}. We say the path-decomposition specifies an embedding
of G into the interval graph with this interval model.

Theorem 4.4 [6] G is the subgraph of an interval graph with mazimum clique
size at most k + 1 if and only if G has pathwidth at most k.

In a recent paper, Kaplan and Shamir [5] show a connection between band-
width and interval graphs.

Theorem 4.5 [5] G is the subgraph of a 0-proper interval graph with mazimum
clique size at most k + 1 if and only if G has bandwidth at most k.

A definition analogous to the one above, for graphs of pathwidth at most k,
follows immediately from Theorem 4.4 using the notion of g-proper interval
graphs:



“@ is the subgraph of a k-proper interval graph with maximum clique
size at most k + 1 if and only if G has pathwidth at most k.”

We fill in the gap between these two definitions of bandwidth and pathwidth, by
defining a class of graphs parameterized by two integers k and ¢ where varying
the parameter ¢ from 0 to k gradually moves the class from graphs of bandwidth
at most k to graphs of pathwidth at most k.

Definition 4.6 We denote by By 4, for integers 0 < g < k, the class of graphs
that are subgraphs of q-proper interval graphs with maximum clique size at most
kE+1.

Fact 4.7 By, and By, o contain precisely the graphs of pathwidth at most k and
bandwidth at most k, respectively.

This fact follows from Theorems 4.4 and 4.5. Trivially, we have that By, 4 C
By g for any k < k' and ¢ < ¢’. Hence, the graph classes {B, : 0 < ¢ <
k}, ordered under containment, form an infinite lattice, where the least upper
bound of By, and By ¢ i8S Brax {k,k'},max {q,¢'} and their greatest lower bound
is Bmin {k,k'},min{q,q’}-

We conclude this section by giving an alternative characterization of the
graphs in By, in terms of a restricted path-decomposition.

Definition 4.8 A full width k path-decomposition Xq,..., X,, has all bags of
cardinality k + 1 and | X; N Xjpa| =k for 1 <i<m.

Analogous restrictions have previously been applied to the study of tree-decompositions
of graphs. Note that in a full path-decomposition Xji, ..., X,, each bag except

X is the leftmost (lowest-numbered) bag for exactly one vertex and similarly

each bag except X,, is the rightmost (highest-numbered) bag for exactly one
vertex.

Theorem 4.9 G € By 4 if and only if G has a full width k path-decomposition
X1, ... X, where each vertex that does not belong to either bag X, or X,, appears
in at least k — q + 1 bags.

Proof. (if) Assume G has a path-decomposition Xi, ..., X,,, as in the statement
of the Theorem. Consider the corresponding interval model I(v) = min{i : v €
X} and r(v) = max{i : v € X;}. If G is not ¢g-proper we find, by Corollary 2.5,
an interval 2-sided properly contained in at least ¢ + 1 other intervals. We
therefore find k — ¢ + 1 consecutive bags, X;, Xit+1,..., Xiyr—q, with ¢ > 1 and
1+ k — ¢ < m that share g + 2 vertices. Each of the bags X1, ..., Xiyx—q has
to be the leftmost bag for at least one of the remaining vertices in bag X;5—4-
But this is a contradiction, since for these k¥ — g bags there are only k —q — 1
such vertices. We conclude that G is g-proper.

(only if) Consider a g-proper integer interval model of a supergraph of G
with maximum clique size k£ + 1. W.l.o.g. we can assume that no two intervals



are equal. We show that this supergraph of GG, and therefore G itself, has the
desired path-decomposition. Order vertices of G by left endpoint of intervals
U1, U2, ..., Up, thus u; € V(G) with I(u;) < I(uiy1) and by right endpoints of
intervals, vy,vs,...v,, breaking ties arbitrarily. We construct a full width &
path-decomposition of G defined by X; = {uy,us,...,up+1} and X; = X;_1 U
{ug4i} \ {vi—1} for 2 <4 < n — k. Note that v; € X; (and similarly v;_; €
X;—1,2 <1 <n—k) as otherwise the maximum clique size would exceed k + 1.
By construction, all bags thus have size k£ + 1 and are distinct, and this is
indeed a path-decomposition of G since every pair of vertices corresponding to
intersecting intervals belongs to a common bag. Let v be a vertex not contained
in bags X3 or X,,_; which appears in the least number of bags, p. There are
p vertices, including v, whose leftmost bag is among these bags. There are
therefore k — p + 1 vertices other than v that are shared by all these p bags,
and each of these vertices belongs to more bags than v does. The interval of v
must therefore have been properly contained in the interval of kK —p+ 1 vertices.
Since the interval model is ¢g-proper we conclude that K —p+1 < ¢+ 1 and
therefore p > k — ¢ so that each vertex not in bags X; or X,,_; belongs to at
least kK — g+ 1 bags. »

5 Edge maximal graphs

In this section we investigate several important structural properties of graphs
in By,4 by focusing on edge maximal graphs in these classes. Our first goal
will be to show that the full path-decompositions of Theorem 4.9 specify an
embedding into an edge-maximal graph. First some preliminary definitions and
results.

Definition 5.1 We denote by C}, 4, for integers 0 < g < k, the class of edge
mazimal graphs in By, 4.

Note that Cj,q C C,q for ¢ < ¢’ and Cj g N Chr g =0 for k < k'.

For a connected graph G, a subset of vertices S C V(G) is a separator of G
if there exist vertices u and v, not in S, which are disconnected by removal of
S. S is a minimal separator of G if no proper subset of S is a separator.

Definition 5.2 For a graph G we define the separator graph S(G) to be the
union of all subgraphs of G induced by minimal separators of G.

Lemma 5.3 If G € Cy 4 with full width k path-decomposition X1, ..., X, then
the minimal separators of G are {Y; = X; N X1 bi<i<m—1-

Proof. We show that Y;,1 < i < m — 1 is a minimal separator. Let u be a
vertex for which X; is a rightmost bag and let v be a vertex for which X, is a
leftmost bag. Clearly, Y; is a separator since its removal disconnects u and v. No
proper subset of Y; is a separator since both u and v are adjacent to all vertices
of Y; (otherwise G would not be maximal), and the removal of Y; separates
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Figure 1: The 3-ray on 7 vertices (a graph in Cs 2), its separator graph the 2-ray
on 5 vertices (a graph in Cs 1), and i4ts separator graph the 1-ray on 3 vertices
(a graph in Ca ).

G into two connected graphs containing v and v, respectively. Moreover, any
separator of G must properly contain some X;NX; 1 in order to split its interval
representation into two disjoint parts. =

We can now show that the full path-decomposition of G € By, 4 of Theo-
rem 4.9 specifies an embedding of G into a graph in C} 4.

Lemma 5.4 G € Cy if and only if G has an interval model corresponding to
a full width k path-decomposition X1, ..., X,, with k —q + 1 being the minimum
number of bags to which any vertex not in X, or X,, belongs.

Proof. The forward direction of the proof is a corollary to Theorem 4.9. For
the other direction, we note that by Theorem 4.9 G is a subgraph of a graph in
C},q- Moreover, intersections of adjacent bags have size k and by Lemma 5.3
these are precisely the minimal separators of G. Any connected graph with no
(k + 2)-clique where all minimal separators induce Ky, is a k-tree [12]. The only
subgraphs of graphs in C}, 4 that are k-trees are the maximal graphs and hence

Ge Ck,q. n

We turn to another main result of this section. Proskurowski [7] shows that
for k > 0 the separator graph of a k-caterpillar (a graph in Cy ), is a (k — 1)-
caterpillar (a graph in C_; ;—1). The following Theorem generalizes this result
(see Figure 5 for an example.)

Theorem 5.5 Let q and k be integers such that 0 < g < k and k > 0. We then
have

Ck—l,q ifq <k

{8(G): G €Cho} = { Cr-1k-1 ifqg=k



Proof. We first show that for G € Cy 4 where ¢ < k, S(G) € C_1,4. It follows
by Lemma 5.3 that {Y; = X; N X;1+1}1<i<cm—1 forms a path-decomposition of
S(G) with the corresponding interval model. Note that all bags in {Y;} are
distinct, since the equality of Y; and Y;;; would imply that ¥; = X; N X;4».
Since all bags X; are distinct, this would mean that X;1 has a vertex appearing
only in this bag, which contradicts Theorem 4.9. Each bag Y;, 1 < i < m, has
size k by Lemma 5.4. Moreover, since each vertex of G appears in at least
k —q+1 bags of {X;}1<i<m it must appear in at least k — ¢ bags of {Yi}1<ic<m.
Any bag Y;, 1 < i < m — 1 is the rightmost bag for exactly one vertex, since
otherwise the corresponding X;;; would be the rightmost for two vertices in
G. Similarly, each bag Y;, 1 < i < m is leftmost for exactly one vertex. From
Lemma 5.4 we therefore conclude that S(G) is a graph in Cj_1 4.

In the above argument, the only place we assume g < k is in the argument
that all bags Y;, 1 < ¢ < m are distinct. In the case of ¢ = k we may have
Y; = Yiy1. By removing all duplicate bags from {Y;}1<i;<m, we obtain a path-
decomposition of S(G) with otherwise the same properties as above. Since k = ¢
we need only show the trivial restriction that each vertex appears in at least
one bag. This proves that S(G) is in Cg_1 g—1-

To prove equality of the two graph classes, {S(G) : G € Ciq} = Cr_1,4
for 0 < g < k, it remains to show that for any graph H in Cj_ 4 with a full
width k — 1 path-decomposition Yi,...,Yy,—1 there is a graph G in C} 4 with
S(G) isomorphic to H. Let us define the edge maximal graph G whose interval
model corresponds to the path-decomposition X; = Y;_1 UY; for 1 < i < m and
X1 =Y1 U {u} and X,, =Y, U {v} with new vertices u and v not appearing
in H. G has H as its separator graph and satisfies also the remaining criteria,
as it is easy to check using Lemma 5.4. For ¢ = k — 1, we already showed that
G € Ch -1 and hence G € Cyp, with S(G) = H. =

6 Caterpillars, paths and rays

In this section we continue the investigation of the edge-maximal graph classes
C,q, providing alternative characterizations of k-caterpillars and k-paths, and
introducing the class of k-rays as a compact and simple characterization of
graphs of bandwidth at most k. We also give a simple algorithm finding, for a
given k-caterpillar G, the minimum ¢ for which G € Cy,.

In the study of graphs with a tree structure or a linear structure, the k-
trees, k-caterpillars and k-paths are well-known (note that some authors call
k-caterpillars “k-paths”, but we follow the earlier terminology introduced in
[7, 13] which implies that 1-paths are exactly paths, just as 1-trees are exactly
trees). Their iterative definitions are related as follows: (i) The complete graph
on k+ 1 vertices is a k-tree. (ii) A k-tree with n+ 1 > k+ 1 vertices is obtained
from a k-tree on n vertices by adding a new vertex adjacent to a k-clique, and
iterative applications of this operation suffice to construct any k-tree. (iii) A
vertex of degree k in a k-tree is called a k-leaf. (iv) A k-path is a k-tree with two



k-leaves. (v) A k-caterpillar is a k-tree consisting of a k-path with additional
k-leaves (“hair” vertices) adjacent to some of its separator k-cliques.
It is well-known that k-trees are precisely the edge maximal graphs of treewidth

k and similarly k-caterpillars are precisely the edge maximal graphs of pathwidth
k. Takahashi et al. [13] introduce the analogous graph parameter for k-paths
by saying that a graph has proper pathwidth at most k if and only if it is a
subgraph of a k-path. (Note that Kaplan and Shamir in their paper [5] give
the name “proper pathwidth” to a different parameter which they later show to
be equivalent to bandwidth.) The following graph classes have the most rigid
linear structure among generalizations of paths.

Definition 6.1 We denote by k-rays the class of edge-mazimal graphs of band-
width at most k.

See Figure 5 for an example of k-rays.

Theorem 6.2 Cy 1, Cr -1 and Cio are precisely the k-caterpillars, k-paths
and k-rays, respectively.

Proof. The claims for k-caterpillars and k-rays follow from the above comments
and Fact 4.7. To prove the claim for k-paths, we need to show that k-paths are
precisely the graphs in Cj r—;. By Theorem 4.9, we know that any graph G
in Ck -1 has a full width k path-decomposition Xi, ..., X, where each vertex
not in X; or X,, belongs to at least 2 bags. By Lemma 5.4 we know that the
graph with the corresponding interval model is a graph in Ci t—2+1 = Ck k-1,
hence G itself has this interval model. Moreover, C r—1 C C, so that G
is a k-caterpillar and we need only show that G has at most two vertices of
degree k. By definition there are exactly two vertices appearing only in X; and
X . Every other vertex in G must appear in at least two disjoint bags X; and
Xi+1, each containing k other vertices, and must therefore have at least k£ + 1
neighbors. =

Corollary 6.3 For each positive integer n and any k < n, Cro contains pre-
cisely one graph (up to isomorphism) with n vertices {vi,...,un}. This graph
has interval model l(v;) = i,7(v;) =i+ k.

Proof. This follows from the definition of full width k& path-decompositions
and Lemma 5.4 since with ¢ = 0 the only path-decomposition satisfying those
restrictions, up to a re-labeling of vertices, is given by {X;}1<i<n—r where X; =
{1),', Vig1,y--s 'U'H-k}- u

The following characterization of k-rays follows immediately from the above:
Corollary 6.4 Let G be a graph. The following statements are equivalent:

1. G has bandwidth at most k.

2. G € Byp.



3. G is a subgraph of the k-ray on |V (G)| vertices.

4. G has a path-decomposition {X;}1<i<n—r where X; = {v;,Viq1, ..., Vixk}
for some labeling of its vertices V(G) = {v1,...,vn}.

We conclude this section with a simple algorithm for the following problem:
Given a k-caterpillar G what is the minimum value of ¢ for which G € Cy 47

Let a full path-decomposition of a k-caterpillar G be P(G) = {X;}o<i<m.,
this is the unique width-£ path-decomposition in which no bag is a subset of
another.

For a bag X;, 0 < i < m, of P(G), let us define the entry vertex v;, to be
the only vertex in X; \ X;_;. Let the exit vertex of X;, u;, be the only vertex
in X; \ X;+1. We will say that v; replaces u;. For the vertex ug appearing only
in Xo, any other vertex in Xy can be said to replace it. Similarly, the vertex v,
appearing only in X,,, can be said to replace any other vertex in X,,.

The width-(k —1) path-decomposition of H = S(G) is given by bags Y; =
XiNX;41 = X1\ {vit+1}. We have shown in Theorem 5.5 that, for ¢ < k, G €
Crqg = H € Cx_1,4. When ¢ < k—1, H is thus a (k — 1)-path. We will now
prove the inverse relation.

Lemma 6.5 Given a k-path G and its separator graph H = S(G), for all ¢ <
k, H € Ck—l,q =>Ge€ Ck,q.

Proof. Let us assume that G has an induced subgraph isomorphic to Tj41.
We will show that so does H. Let the three mutually non-adjacent (inde-
pendent) vertices of the copy of Ty41 in G be wy, w2 and ws. Consider the
path-decomposition P(G) = {X;}o<i<m and wlog. let wo be the entry vertex of
some X;, w; be the exit vertex of some X, j < i and ws be the entry vertex of
some X;, ¢ < l. Since all the neighbors of wy share bags with wa, we can always
choose w; to be the exit vertex of X;_; and ws to be the entry vertex of the bag
succeeding the bag of which ws is the exit vertex. Thus ws is in X;N...NX;_;.
Since G is not a k-caterpillar, wy is in more than one bag and i < [ — 1. The
copy J of K441 isin X;N...NX; and therefore also in the corresponding bags of
a path decomposition of H, Y;_; N...NY;_;. The vertices exit(Y;_1), entry(Y;)
and entry(Y;—;) are independent in H, and thus, together with J form in H an
induced subgraph isomorphic to Ty41. =

Theorem 6.6 For a k-path G, the smallest value of q for which G € Cy 4 is
the smallest q for which H = 8(G) € Cx—1,4. »

The theorem follows from Lemma 6.5 and suggests the following high-level
classification algorithm determining the smallest g for which a given k-caterpillar
G isin Ck,q:

Algorithm 6.7 :

Decomposition: Construct a path-decomposition P(G) = {X;}o<i<m. Setq=
k.

10



Hair? If X; N X;—1 = X; N X;41 for some ¢ > 0, then G ¢ Ck r—1. Return q .

Iteration: While G contains mo hair vertices
Find H = S(G).
Decrement q. Set G = H.

Return: ¢ —1ie G € Crq-1 and G ¢ Cpq—2.

A path-decomposition P(G) of G can be constructed in linear time by find-
ing vertices of degree k and their neighborhoods in G, removing the k-leaves
and iterating the process. Each construction of the separator graph S(G) and
determination of the presence (or absence) of hair vertices can be done in linear
time using, for instance, the string representation of G (cf. [8]).

7 Future Research

We intend to investigate further algorithmic issues related to g-proper interval
graphs. Indeed, in [9], we give some preliminary results related to the complexity
of computing various graph parameters associated with the graph classes {By 4 :
0 < g < k}. These graph classes form an infinite lattice when ordered by
containment. Various graph parameters can be defined by fixing a particular
chain or a set of elements in the lattice and asking for the least class in the
chain containing a given graph. Pathwidth and bandwidth are examples of such
parameters defined by the diagonal ¢ = k and the line ¢ = 0 of the lattice,
respectively.
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