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Abstract

Treewidth and branchwidth are two closely related connectivity parameters of graphs.
Graphs of treewidth at most k have well-known alternative characterizations as
subgraphs of chordal graphs and as partial k-trees. In this paper we give analogous
alternative characterizations for graphs of branchwidth at most k. We first show
that they are the subgraphs of chordal graphs where every maximal clique X has
three subsets of size at most k each such that any two subsets have union X, with
the property that every minimal separator contained in X is contained in one of
the three subsets. Secondly, we give a characterization of the edge-maximal graphs
of branchwidth k, that we call k-branches.
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1 Introduction

Branchwidth and treewidth are connectivity parameters of graphs introduced
in the proof of the Graph Minors Theorem by Robertson and Seymour [RS91].
The two parameters are related by the following inequalities branchwidth(G) 6

treewidthG+1 6 b3/2 branchwidth(G)c illustrated in Figure 1. The graphs of
treewidth at most k have also been studied under the name of partial k-trees
[AP85]. The k-trees are in fact the edge-maximal graphs of treewidth k, defin-
able as chordal graphs having all minimal separators of size k and all maximal
cliques of size k + 1 [Ros74]. In this paper we give a similar characterization

? Part of these results have appeared in the extended abstracts [PT05b, PT05a]
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Fig. 1. Venn diagram showing branchwidth of graphs of treewidth at most 8. Two
chordal graphs of branchwidth 4 are shown: the 5-tree K6 and a 3-tree on 8 vertices.

of the edge-maximal graphs of branchwidth k, that we call k-branches. It was
previously known that the 1-branches are the stars, that the 2-branches are
the 2-trees, and it could be deduced from work of Bodlaender and Thilikos
[BT99] that the 3-branches are the 3-trees having no three-dimensional cube
as a minor. Also, it could be deduced from work of Kloks, Kratochvil and
Muller [? ] that k-branches are chordal. Apart from this, little was known
previously about the edge-maximal graphs of branchwidth k.

Chordal graphs are the node intersection graphs of subtrees of a tree and
a central tool in many investigations of tree-like properties of graphs. A re-
cent result by Mazoit [Maz04] established links between chordal graphs and
branchwidth by showing that the branchwidth of a graph is equal to the min-
imum over the branchwidth of all its efficient triangulations, see his paper for
exact definitions. Graphs of treewidth at most k are precisely the subgraphs of
chordal graphs where every maximal clique X has size k +1. In this paper we
characterize graphs of branchwidth at most k as subgraphs of chordal graphs
where every maximal clique X has three subsets of size at most k each such
that any two subsets have union X, with the property that every minimal
separator contained in X is contained in one of the three subsets. In fact the
following succinct definition of both treewidth and branchwidth follows from
these characterizations, by replacing the underlined words by the words in
parenthesis:

For any k ≥ 2 a graph G on vertices v1, v2, ..., vn has branchwidth at most k
(treewidth at most k− 1) if and only if there is a ternary tree T with subtrees
T1, T2, ..., Tn such that if vi and vj adjacent then subtrees Ti and Tj share at
least one edge (node) of T , and each edge (node) of T is shared by at most k
of the subtrees.

Finally, let us mention that the results in this paper have also been applied
to obtain an algorithm generating k-branches [PPT06].
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2 Standard definitions

We consider simple undirected and connected graphs G with vertex set V (G)
and edge set E(G). We denote G subgraph of H by G ⊆ H which means that
V (G) = V (H) and E(G) ⊆ E(H), and we also say that H is a supergraph
of G. For a set A ⊆ V (G), G(A) denotes the subgraph of G induced by the
vertices in A. A is called a clique if G(A) is complete. The set of neighbors
of a vertex v in G is N(v) = {u | uv ∈ E(G)}. A vertex set S ⊂ V (G)
is a separator if G(V (G) \ S) is disconnected. Given two vertices u and v,
S is a u, v-separator if u and v belong to different connected components of
G(V (G) \S). A u, v-separator S is minimal if no proper subset of S separates
u and v. S is a minimal separator of G if there exist two vertices u and v in
G such that S is a minimal u, v-separator. A graph is chordal if it contains
no induced cycle of length ≥ 4. A triangulation of a graph G is a chordal
supergraph of G. In a clique tree of a chordal graph G the nodes are in 1-1
correspondence with the maximal cliques of G and the set of nodes whose
maximal cliques contain a given vertex form a subtree. We usually refer to
nodes of a tree and vertices of a graph.

A tree-decomposition (T,X ) of a graph G is a tree T with nodes mapped to a
set X of vertex subsets of V (G), also called bags, such that 1) the set of bags
covers the vertices of V (G); 2) for any edge xy of E(G) there exists a bag
containing both x and y; and 3) the bags containing any given vertex induce
a subtree of T . The width of a tree-decomposition is the size of its largest bag
minus one and the treewidth of a graph is the smallest width of any of its
tree-decompositions (see e.g. [Bod97]).

A branch-decomposition (T, µ) of a graph G is a tree T with nodes of degree
one and three only, together with a bijection µ from the edge-set of G to the
set of degree-one nodes (leaves) of T . For an edge e of T let T1 and T2 be
the two subtrees resulting from T \ {e}, let G1 and G2 be the graphs induced
by the edges of G mapped by µ to leaves of T1 and T2 respectively, and let
mid(e) = V (G1)∩V (G2). The width of (T, µ) is the size of the largest mid(e)
thus defined. For a graph G its branchwidth bw(G) is the smallest width of
any branch-decomposition of G 1 (see e.g. [RS91]).

1 The connected graphs of branchwidth 1 are the stars, and constitute a some-
what pathological case. To simplify we therefore restrict attention to graphs having
branchwidth k ≥ 2, in other words our statements are correct only for graphs having
at least two vertices of degree more than one.
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Fig. 2. The chordal graph on the left has branchwidth 4 (the maximal clique 123456
has the three subsets 1234, 3456, 1256 of size 4 that satisfy the conditions of Theorem
2) whereas the graph on the right has branchwidth 5.

3 Subgraphs of chordal graphs

Here is a well-known alternative characterization of treewidth, see e.g. [vL90].

Theorem 1 A graph has treewidth at most k iff it is a subgraph of a chordal
graph H where every maximal clique X of H satisfies |X| ≤ k + 1.

In this section we give a similar alternative characterization of branchwidth.

Theorem 2 A graph has branchwidth at most k iff it is a subgraph of a chordal
graph H where every maximal clique X of H has three subsets of size at most
k each such that any two subsets have union X, with the property that every
minimal separator of H contained in X is contained in one of the three subsets.

See Figure 3 for an example. We prove the theorem in two steps, first showing
a characterization in terms of subtree-representations of a ternary tree. For
sake of completeness, we give a proof from basic principles, not relying on
previous work.

Definition 1 A ternary subtree-representation R = (T, {T1, T2, ..., Tn}) is a
pair where T is a tree with vertices of degree at most three and T1, T2, ..., Tn

are subtrees of T .

• Its edge intersection graph EI(R) has vertex set {v1, v2, ..., vn} and edge set
{vivj : Ti and Tj share an edge of T};

• Its node intersection graph NI(R) has the same vertex set but edge set
{vivj : Ti and Tj share a node of T}.

For a node u of T , we call the set of vertices Xu = {vi : Ti contains u} the
bag of u, and {Xu : u ∈ V (T )} the bags of R.

With the above terminology we can easily move between the view of a ternary
subtree-representation R as a tree T with a set of subtrees {T1, T2, ..., Tn} or
as a tree T with a set of bags {Xu : u ∈ V (T )}. When manipulating the
latter we must simply ensure that for any vertex in EI(R) the set of bags
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containing that vertex corresponds to a set of nodes of T inducing a subtree,
i.e. a connected subgraph.

Definition 2 Let R = (T, {T1, ..., Tn}) be a ternary subtree-representation.
The edge-weight of R is the maximum, over all edges uv of T , of the number
of subtrees in {T1, ..., Tn} that contain edge uv.

We are in this paper only interested in the edge intersection graphs of ternary
subtree-representations having bounded edge-weight k. We start by showing
that we can restrict ourselves to ternary subtree-representations for which the
edge intersection and node intersection graphs are the same.

Lemma 1 For any ternary subtree-representation R = (T, {T1, . . . Tn}) of
edge-weight k there exists a ternary subtree-representation R′ = (T ′, {T ′

1
, . . . T ′

n})
of edge-weight k with EI(R) = EI(R′) = NI(R′).

Proof: Clearly EI(R) ⊆ NI(R). Assume ab ∈ E(NI(R)) \ E(EI(R)), i.e.
some bag Xi of R contains two vertices a, b with no neighbor j of i having
{a, b} ⊆ Xj. Since i has at most three neighbors, this means that one of a or
b, say a, is in the bag of at most one of these neighbors. We can wlog assume
that EI(R) is connected and thus let j be the neighbor of i to whose bag a
belongs. We subdivide the edge ij in the tree T with the new node having
bag Xi ∩Xj, and remove a from Xi. Repeat this procedure until the resulting
ternary subtree-representation R′ satisfies EI(R′) = NI(R′). When we are
done R′ has edge-weight k with EI(R) = EI(R′) = NI(R′). 2

Lemma 2 A graph G has branchwidth at most k ⇔ there is a ternary subtree-
representation R of edge-weight at most k with G ⊆ EI(R) = NI(R).

Proof: ⇒: Take a branch-decomposition (T, µ) of G of width k, i.e. |mid(e)| ≤
k for each e ∈ E(T ). We construct a ternary subtree-representation R =
(T ′, S) of edge-weight k with G ⊆ EI(R). T ′ is constructed from T by for
each leaf l of T adding a new leaf l′ and making it adjacent to l. For vertex
a ∈ V (G) consider the smallest spanning subtree of T containing all leaves of
T that are mapped by µ to an edge incident with a. The subtree Ta will be
this subtree augmented by leaf l′ for each leaf l of T that it contains. This
completes the description of R = (T ′, {Ta : a ∈ V (G)}. For any two adjacent
vertices {a, b} of G we have µ−1(l) = {a, b} for some leaf l of T , and thus the
subtrees corresponding to a and b share the edge ll′ of T ′ which implies that
G ⊆ EI(R). If R does not satisfy EI(R) = NI(R) we apply Lemma 1. If
vertex a has subtree Ta containing edge e of T , then there are edges incident
with a mapped to leaves in both subtrees of T arising from deleting the edge
e, and thus a ∈ mid(e). But this means that the edge-weight of R is at most
k.
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⇐: Let R = (T,S) be a ternary subtree-representation R of edge-weight at
most k with G ⊆ EI(R) = NI(R). We construct a branch-decomposition
(T ′, µ) of G with width k. Associate each edge ab of G with an edge e of
T such that the subtrees Ta and Tb corresponding to a and b both contain
e. Subdivide the tree edge e by as many new nodes as there are edges of G
associated to e, thus creating for each edge ab associated to e a new tree node
eab. Furthermore, add a new leaf node lab, make it adjacent to eab and set
µ(ab) = lab. Let T ′′′ be the tree we have constructed so far. It contains T as
a minor. Consider the smallest spanning subtree T ′′ of T ′′′ having the set of
leaves {lab : ab ∈ E(G)}. Iteratively contract edges of T ′′ incident to a vertex
of degree two until all inner vertices have degree three. The resulting tree is
T ′. Note that as we constructed T ′ from T in stages we could at each stage
have updated the subtree Ta corresponding to vertex a to a new subtree T

′

a so
that we would still have a ternary subtree-representation R′ = (T ′,S ′) with
G ⊆ EI(R′). For example, T

′

a should contain every ’subdivision node’ on a
tree edge f if Ta contained f , it should contain lab for any edge ab incident with
a, and it should naturally shrink if it contained a removed leaf or contracted
edge. Moreover, (T ′,S ′) has edge-weight at most k since never during this
process did we increase the edge-weight beyond what it was. T ′ has nodes of
degree one and three only and µ is a bijection between its leaves and the edges
of G so (T ′, µ) is a branch-decomposition of G. It remains to show that it has
width k, i.e. that for any edge e of T ′ we have |mid(e)| ≤ k. We claim that
mid(e) ⊆ {a : T

′

a contains edge e}. Consider a ∈ mid(e). There must exist
two leaves lab, lac of T ′, one in each of the two subtrees of T ′ \ e, such that
a ∈ µ−1(lab) and a ∈ µ−1(lac). Since the subtree T

′

a of a contains both lab and
lac it must also contain e. 2

The notion of k-troikas 2 in the following definition will simplify several state-
ments.

Definition 3 A k-troika (A, B, C) of a set X are 3 subsets of X such that
|A| ≤ k, |B| ≤ k, |C| ≤ k, and A ∪ B = A ∪ C = C ∪ B = X. (A, B, C)
respects S1, S2, ..., Sq if any Si, 1 ≤ i ≤ q is contained in at least one of A, B
or C.

For example, ({1, 2, 3, 4}, {3, 4, 5, 6}, {1, 2, 5, 6}) is a 4-troika of {1, 2, 3, 4, 5, 6}.
We are ready to prove Theorem 2 which can now be rephrased as follows:

Theorem 2 A graph G has branchwidth at most k ⇔ G is subgraph of a
chordal graph H and every maximal clique X of H has a k-troika respecting
the minimal separators of H contained in X.

2 A troika is a horse-cart drawn by three horses, and when the need arises any two
of them should also be able to pull the cart
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Fig. 3. Illustration of how the local conditions, i.e. existence of a k-troika
(AM , BM , CM ) at each maximal clique M , yields a global condition, i.e. branch-
width at most k. R is a clique tree of chordal graph H and R′ the ternary sub-
tree-representation of edge-weight k with H ⊆ EI(R′). Rectangular nodes form the
subtree of clique Y and circular nodes the subtree of clique X, sharing the node
X ∩ Y .

Proof: ⇒: By Lemma 2 there exists a ternary subtree-representation R of
edge-weight k with G ⊆ EI(R) = NI(R). Since NI(R) is a node intersection
graph of subtrees of a tree it is a chordal graph [Gav74], and H = EI(R) =
NI(R) will indeed be our chordal graph H having G as a subgraph. By the
Helly property of (vertex) intersection of subtrees of a tree, every maximal
clique of H is a bag Xu for some node u of the tree. If |Xu| ≤ k then it clearly
has a k-troika respecting any subset, so let us assume |Xu| > k. Since any pair
a, b of nodes from Xu is adjacent in H, we must have {a, b} contained also
in one of the neighboring bags. Let the pairwise intersection of Xu and the
three bags of its three neighbors be A, B and C. This means that any two of
A, B, C must have union Xu since if for example a ∈ Xu but a 6∈ A ∪ B then
we would be forced to have C = Xu, since C would have to contain a and
all its neighbors in Xu contradicting the fact that R has edge-weight k. Any
minimal separator S of the chordal graph H is the intersection of two maximal
cliques corresponding to two bags Xu, Xv. If we assume A = Xu ∩ Xw, for w
the neighbor of u on the path from u to v in T , then we have S = Xu∩Xv ⊆ A
since otherwise the subtree corresponding to a vertex a ∈ (Xu∩Xv)\A would
be disconnected.

⇐: Consider any clique tree of H. Note that this clique tree can be viewed as a
pair R = (T,S) just as our ternary subtree-representations with H = NI(R)
and every bag inducing a maximal clique of H, except that nodes of T can have
degree larger than 3. We construct from this a ternary subtree-representation
R′ = (T ′,S ′) of edge-weight k with G ⊆ H ⊆ EI(R′) which by Lemma 2 will
imply that G has branchwidth at most k. Let X be a maximal clique whose
node in T has q neighbors corresponding to maximal cliques Z1, Z2, ..., Zq,
and let (A, B, C) be the k-troika of X respecting minimal separators X ∩
Z1, ..., X ∩ Zq. This means there exists a partition PA, PB, PC of {1, 2, ..., q}
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such that X∩Zi ⊆ A for i ∈ PA, X∩Zi ⊆ B for i ∈ PB, X∩Zi ⊆ C for i ∈ PC .
For maximal clique X we construct a ternary subtree as follows: we have a
central node with bag X adjacent to three paths: one path with max{1, |PA|}
bags A, one path with max{1, |PB|} bags B and one with max{1, |PC|} bags
C. For each i ∈ {1, 2, ..., q} we have a leaf-node with bag X ∩ Zi as neighbor
of a node on these paths, e.g. if i ∈ PA the leaf-node should be the neighbor
of a node with bag A, if i ∈ PB then B, and if i ∈ PC then C, such that q
of the nodes on the 3 paths get one leaf each. (see Figure 3). Construct such
a ternary subtree for each maximal clique X, i.e. for each node of T . Then,
for each pair of maximal cliques X, Y that are bags of two neighboring nodes
in T we identify the following two leaves into a single node: X ∩ Y in the
subtree constructed for X and Y ∩ X in the subtree constructed for Y . The
resulting tree T ′ has no node of degree more than three and together with
bags as indicated it forms the ternary subtree-representation R′ = (T ′,S ′). R′

has edge-weight at most k since any subset of a k-troika has size at most k.
We show that H ⊆ EI(R′). For any edge ab ∈ E(H) we have {a, b} ⊆ X for
some maximal clique X. The k-troika (A, B, C) of X has the property that
any vertex a ∈ X must be in two out of A, B, C, so that we must have {a, b}
contained in one of A, B or C. Thus the edge ab is in EI(R′) and H ⊆ EI(R′).
2

4 Characterization of edge-maximal graphs

Here is a well-known characterization of edge-maximal graphs of treewidth k,
the so-called k-trees [Ros74].

Theorem 3 [Ros74] A graph G is a k-tree iff

(1) G is chordal
(2) Every minimal separator of G has size k
(3) Every maximal clique of G has size k + 1

The edge-maximal graphs of branchwidth k have not been studied previously.

Definition 4 A graph G of branchwidth k is called a k-branch if adding any
edge to G will increase its branchwidth.

In this section we characterize k-branches by five conditions. The first two
conditions are common with k-trees, i.e. being chordal and having minimal
separators of size k only. The third condition comes from Theorem 2, i.e. that
maximal cliques have a k-troika respecting minimal separators, and this con-
dition can be compared to the third condition for k-trees above. The fourth
condition is a size constraint and could be compared to the trivial size con-
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Fig. 4. The tree representation R = (T,S) of a graph G of branchwidth k having a
minimal a, b-separator S of size strictly less than k. Then G can be augmented by
adding an edge cd without increasing the branchwidth.

straint |V (G)| ≥ k + 1 for k-trees (strictly speaking Theorem 3 needs such
a size constraint to avoid the empty graph.) We start by proving these four
conditions on k-branches.

Lemma 3 Any k-branch G satisfies the four conditions:

(1) G is chordal
(2) Every minimal separator of G has size k
(3) Every maximal clique of G has a k-troika respecting minimal separators
(4) G has at least b3(k − 1)/2c + 1 vertices

Proof: By Theorem 2, we know that any k-branch must be a chordal graph in
which every maximal clique has a k-troika respecting its minimal separators.
If |V (G)| < b3(k − 1)/2c+ 1 then, by Theorem 2, G would have branchwidth
less than k since the clique on |V (G)| vertices would have a (k − 1)-troika.
Thus conditions 1, 3 and 4 hold.

It remains to show condition 2, i.e. that all minimal separators of G must have
size k. Let S be a minimal (a, b)-separator of G and consider a ternary subtree-
representation R = (T,S) of edge-weight k with G = EI(R) = NI(R), which
is guaranteed to exist by Lemma 2. There is a unique path P in T between
the subtrees corresponding to a and b. For every node i on this path its bag Xi

contains S and there must exist two adjacent nodes i, j for whom Xi∩Xj = S,
otherwise S would not be a minimal a, b-separator. But then we must have
|S| ≤ k since otherwise the edge-weight of R would be more than k. We now
show that if |S| < k then we can add an edge to G without increasing its
branchwidth. Assume that moving from left to right on path P we first hit i
and then its neighbor j. Move left from node i and right from node j until
encountering the first nodes l and r with bags not contained in S, say c ∈ Xl\S
and d ∈ Xr \S. We now add vertex c to every bag corresponding to a node on
the path from l to i and vertex d to every bag on the path from r to j. Note
that the intersection of any two bags corresponding to adjacent nodes on the
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Fig. 5. A graph of branchwidth 4 satisfying all four conditions of Lemma 3 and
yet edge af can be added without increasing its branchwidth. Its maxclique-minsep
graph is also given and the mergeable subtree is shaded.

l to r path now has size |S|+1. Now subdivide the edge ij with the new node
having bag S ∪ {c, d} and also hang a new leaf attached to it with bag {c, d}
(see Figure 4). If |S| < k we would now have a ternary subtree-representation
R′ of edge-weight k with EI(R′) = NI(R′). By Lemma 2 this would mean
that the graph EI(R′) which is G with added edge cd has branchwidth k. So
G could not have been a k-branch. 2

Note that any graph satisfying the four conditions in Lemma 3 will have
branchwidth k, by Theorem 2 and the fact that no k − 1-troika can respect
a minimal separator of size k. However, Figure 4 shows a graph satisfying
all four conditions for k = 4 and yet it is not a 4-branch. To state the fifth
condition needed to characterize k-branches, the following auxiliary structure
will be useful.

Definition 5 Let CG be the set of maximal cliques and SG the set of minimal
separators of a graph. The maxclique-minsep graph of G is a bipartite graph
with vertex set CG ∪ SG and edge set {SX : S ∈ SG ∧ X ∈ CG ∧ S ⊂ X}.

See Figure 4 for an example. We first show that the maxclique-minsep graph
defines a tree-decomposition of the graph whenever conditions 1 and 2 of
Lemma 3 hold.

Observation 1 If G is a chordal graph where every minimal separator has
size k then its maxclique-minsep graph is a tree-decomposition of G where ev-
ery bag induces a clique, and we call it the maxclique-minsep tree-decomposition
of G.

Proof: We first show that the maxclique-minsep graph is a tree. Let S be a
minimal separator of G that is the intersection of two maximal cliques, say X
and Y . Then S is a minimal x, y-separator for any x ∈ X\S and y ∈ Y \S, since
otherwise there would exist a minimal separator of size larger than k. Assume
by way of contradiction that the maxclique-minsep graph has an X, Y -path
X, S1, X1 . . . Sk, Y avoiding S. As the minimal separators of G all have size k,
for any minimal separator Si (1 6 i 6 k), we have Si \ S non-empty, which
implies that the induced subgraph G((X∪X1∪· · ·∪Y )\S) is connected. This
contradicts the fact that S is an x, y-separator and thus the maxclique-minsep
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graph is a tree. It is easy to check that it is also a tree-decomposition where
every bag induces a clique. 2

The fifth condition ensures that the maxclique-minsep tree-decomposition is in
some sense maximal, and uses the following definition of a mergeable subtree.

Definition 6 Let G be a chordal graph where every minimal separator has
size k, thus having a maxclique-minsep tree-decomposition (T,X ). A merge-
able subtree of (T,X ) is a non-trivial subtree T ′ of T all of whose leaves are
maxclique nodes, satisfying |{v : v ∈ X where X a node in T ′}| ≤ b3k/2c and
either

(1) T ′ has at most one node that in T has a neighbor in V (T ) \ V (T ′), or
(2) T ′ is a path X, B, Y with X, B, Y and all their neighbors in T inducing

a path A, X, B, Y, C satisfying B \ (A ∪ C) = ∅

See Figure 4 for an example of a mergeable subtree for k = 4.

Theorem 4 A graph G is a k-branch iff

(1) G is chordal
(2) Every minimal separator of G has size k
(3) Every maximal clique of G has a k-troika respecting minimal separators
(4) G has at least b3(k − 1)/2c + 1 vertices
(5) The maxclique-minsep tree-decomposition of G has no mergeable subtree

Proof: ⇒: By Lemma 3 we already know that the first four conditions hold.
If the fifth did not hold then let T ′ be a mergeable subtree of its maxclique-
minsep tree-decomposition (T,X ). In that case the graph obtained from G
by adding edges to make the set of vertices X ′ = {v : v ∈ X where X a
node in T ′} into a clique (i.e. merging the maximal cliques in T ′) would still
have branchwidth k. Its maxclique-minsep tree-decomposition is obtained by
merging the subtree T ′ into a single node X ′ of T . We need to show that X ′

has a k-troika respecting its minsep neighbors. We have |{v : v ∈ X where
X a node in T ′}| ≤ b3k/2c, so in case there exists at most one node A in
V (T )\V (T ′) that has a neighbor in T ′, then we can trivially find a k-troika of
X ′ satisfying A. Let us therefore assume T ′ is a path X, B, Y with X, B, Y and
all their neighbors in T inducing a path A, X, B, Y, C satisfying B\(A∪C) = ∅.
We show that in this case (A, C, S) is a k-troika of X∪Y respecting A, C, where
S = A \ C ∪ C \ A. Firstly, since by assumption X has a k-troika respecting
A, B, and Y has a k-troika respecting B, C, and |A| = |B| = |C| = k, we
must have X = A ∪ B and Y = B ∪ C and since B \ (A ∪ C) = ∅ we must
therefore have X ∪ Y = A ∪ C. Also, A ∪ S = C ∪ S = A ∪ C = X ∪ Y , and
obviously (A, C, S) respects A, C. It remains to show that |S| ≤ k. Note that
|S| = |A \ C ∪ C \ A| = |A ∪ C| − |A ∩ C|. Since A ∪ C = X ∪ Y we have by
assumption that |A∪C| ≤ b3k/2c. Also, we must have |A∩C| ≥ bk/2c since
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otherwise |A ∪ C| = |A| + |C| − |A ∩ C| = k + k − |A ∩ C| > b3k/2c. Thus
|S| = |A ∪ C| − |A ∩ C| ≤ b3k/2c − bk/2c ≤ k.

⇐: Conditions 1 and 3 imply that G has branchwidth at most k by Theorem 2.
If G has only one maximal clique then it has branchwidth k by condition 4. If
G has more than one maximal clique then it has branchwidth k by conditions
4 and 2 and the fact that no k − 1-troika can respect a minimal separator of
size k. To prove that G is a k-branch we assume for sake of contradiction that
some strict supergraph H of G is a k-branch and that it has a maxclique-
minsep tree-decomposition TH . Note first that since every minimal separator
of both G and H is of size k then H cannot contain a minimal separator that
is not also a minimal separator of G. Thus the minsep nodes of TH are a subset
of the minsep nodes of TG. Consider the connected subtrees that result from
removing the minsep nodes of TH from TG. Note that the maximal cliques of H
must be in 1-1 correspondence with these subtrees. As H is a strict supergraph
of G, there is at least one such subtree T ′ of TG, corresponding to a maximal
clique X ′ = {v : v ∈ X where X a node in T ′} of H, containing at least two
maxclique nodes of TG. We show that either T ′ is a mergeable subtree of TG

or else it contains a mergeable subtree.

The rest of the proof is a case analysis on the number d of neighbors that X ′

has in TH . Firstly, we must have |X ′| ≤ b3k/2c since otherwise X ′ would not
have a k-troika. If d = 1 then T ′ is a mergeable subtree of TG by case 1 of
Definition 6. We cannot have d ≥ 4 since a k-troika can respect at most three
distinct subsets of size k. If d = 3 then X ′ has three distinct minsep neighbors
A, B, C and the only possible k-troika respecting all three is (A, B, C) and
thus A ∪ B = B ∪ C = A ∪ C = X ′. A, B, C are three nodes of the tree
TG and thus wlog we can assume that the path from A to B in TG does not
pass through C. But this means that C is not contained in A ∪ B and thus
A ∪ B 6= A ∪ C and thus X ′ does not have a k-troika respecting A, B, C.
Thus we have d = 2 so that X ′ has two minsep neighbors A, B. We show
that T ′ is a mergeable subtree or contains a mergeable subtree. Since X ′ has
a k-troika respecting A, B we have A ∪ B = X ′ which means that the path
from A to B in TG must pass through all maxclique nodes of T ′. Thus T ′ is a
path X1, S1, X2, ..., St−1, Xt, with all these nodes and all their neighbors in TG

inducing a path A, X1, S1, X2, ..., St−1, Xt, B in TG. We claim that X1, S1, X2

would already be a mergeable subtree of TG. Since X ′ has a k-troika respecting
A, B we must have A∪B = X1∪X2∪...∪Xt. But then by the interval structure
of these maximal cliques we have S1 \ (A ∪ S2) = ∅ and thus X1, S1, X2 is a
mergeable subtree of (T,X ) of G by case 2 of Definition 6. Thus, we have shown
that if some strict supergraph of G is a k-branch then G satisfies condition 5.
2
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