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Abstract. We provide new tools, such as k-troikas and good subtree-
representations, that allow us to give fast and simple algorithms computing
branchwidth. We show that a graph G has branchwidth at most k if and
only if it is a subgraph of a chordal graph in which every maximal clique
has a k-troika respecting its minimal separators. Moreover, if G itself is
chordal with clique tree T then such a chordal supergraph exists having
clique tree a minor of T. We use these tools to give a straightforward
O(m + n + ¢°) algorithm computing branchwidth for an interval graph on
m edges, n vertices and ¢ maximal cliques. We also prove a conjecture of
F. Mazoit [12] by showing that branchwidth is polynomial on a chordal
graph given with a clique tree having a polynomial number of subtrees.

1 Introduction

Branchwidth and treewidth are connectivity parameters of graphs and whenever
one of these parameters is bounded by some fixed constant on a class of graphs,
then so is the other [13]. Since many graph problems that are in general NP-
hard can be solved in linear time on such classes of graphs both treewidth and
branchwidth have played a large role in many investigations in algorithmic graph
theory. Recently there has been a focus on branchwidth [6,5,4,7,8] to give e.g.
good heuristics for the travelling salesman problem and fast parameterized algo-
rithms for various types of optimization problems. These algorithms always in-
volve a stage that constructs a branch-decomposition with small branchwidth,
and another stage solving the problem using the decomposition by a running time
depending heavily on that branchwidth. Efficient algorithms computing optimal
branch-decompositions, like we give in this paper, could therefore be the crucial
factor that can make or break the application.

The study of branchwidth has not enjoyed the rich toolbox that treewidth has
with its connections to k-trees, chordal graphs of maximum clique size, intersec-
tion graphs of subtrees of a tree etc. We try to rectify this in the current paper,
by introducing various new tools like k-troikas, k-good chordal graphs and good
subtree representations, whose definitions will follow later. To give an example
using only standard terminology, we remark that using these tools we arrive at a
succinct expression of the common basis of treewidth and branchwidth: For any
k > 2 a graph G on vertices v1,va, ..., v, has branchwidth at most k (treewidth at
most k — 1) if and only if there is a cubic tree T' with subtrees Ty, T5, ..., T, such
that if v; and v; adjacent then subtrees T; and T; share at least one edge (node)
of T, and each edge (node) of T is shared by at most k of the subtrees (replace
underlined words by the words in parenthesis.)




The understanding of branchwidth of special graph classes is relatively lim-
ited. We give a brief overview of the literature. In a paper from 1994 Seymour and
Thomas showed that branchwidth is NP-complete in general, and followed this
by their celebrated ratcather method computing branchwidth of planar graphs
in polynomial time [14]. In 1997 Bodlaender and Thilikos used fairly brute-force
methods to give a linear-time algorithm deciding if a graph has branchwidth at
most some constant k [1] and a very elegant algorithm for graphs of branchwidth
3 [2]. Then in 1999 Kloks, Kratochvil and Miiller [11] pushed into new territory by
showing that branchwidth is NP-complete already for split graphs and bipartite
graphs, with the bulk of their paper being an O(n?®logn) algorithm for branch-
width of interval graphs with the comment that ”it is somewhat surprising that
this algorithm is by no means straightforward and its correctness proof requires a
nontrivial proof.” In contrast, using our branchwidth tools for the case of interval
graphs we arrive at a straightforward O(n?) algorithm whose self-contained cor-
recteness proof is easy to follow. In fact, our algorithm has runtime O(m +n + ¢?)
for an interval graph on m edges, n vertices and ¢ maximal cliques. In a recent
investigation Mazoit gave a polynomial-time algorithm for branchwidth of circular-
arc graphs and conjectured that branchwidth can be computed in polynomial-time
for chordal graphs given with a clique tree having a polynomial number of subtrees
[12]. We prove his conjecture in this paper. Indeed, it follows by a generalization
of the interval graph algorithm since we show a structural property stating that
branchwidth of a chordal graph with clique tree T' can be found by considering
chordal supergraphs whose clique tree is a minor of 7'.

In Section 2 we give some standard definitions. In Section 3 we use subtree-
representations to characterize graphs of branchwidth k as subgraphs of chordal
graphs. In Section 4 we study the central new concept of k-troikas in a purely set-
theoretic setting. In Section 5 we give a simple algorithm computing branchwidth
for interval graphs and more generally for chordal graphs with a clique tree having
a polynomial number of subtrees.

2 Standard definitions

We consider simple undirected and connected graphs G with vertex set V(G)
and edge set E(G). We denote G subgraph of H by G C H which means that
V(G) =V (H) and E(G) C E(H). For aset A C V(G), G(A) denotes the subgraph
of G induced by the vertices in A. A is called a clique if G(A) is complete. The
set of neighbors of a vertex v in G is N(v) = {u | wv € E(G)}. A vertex set
S C V(G) is a separator if G(V(Q) \ S) is disconnected. Given two vertices u and
v, S is a u,v-separator if v and v belong to different connected components of
G(V(G)\ S). A u,v-separator S is minimal if no proper subset of S separates u
and v. In general, S is a minimal separator of G if there exist two vertices v and v
in G such that S is a minimal wu,v-separator. A graph is chordal if it contains no
induced cycle of length > 4. In a clique tree of a chordal graph G the nodes are
in 1-1 correspondence with the maximal cliques of G and the set of nodes whose
maximal cliques contain a given vertex form a subtree. For further terminology,
see e.g. [10]. We usually refer to nodes of a tree and vertices of a graph.

A branch-decomposition (T, ) of a graph G is a tree T with nodes of degree
one and three only, together with a bijection u from the edge-set of G to the set of



degree-one nodes (leaves) of T'. For an edge e of T let T; and T5 be the two subtrees
resulting from T\ {e}, let G1 and G2 be the graphs induced by the edges of G
mapped by p to leaves of Ty and T respectively, and let mid(e) = V(G1) NV (G2).
The width of (T, ) is the size of the largest mid(e) thus defined. For a graph G
its branchwidth bw(G) is the smallest width of any branch-decomposition of G.

NB: The graphs of branchwidth 1 are the stars, and constitute a somewhat
pathological case. To simplify we therefore restrict attention to graphs having
branchwidth & > 2, in other words our statements are correct only for graphs
having at least two vertices of degree more than one.

3 Good subtree-representations

Definition 1. A subtree-representation R = (T, {T1,Ts,...,Tn}) is a pair where
T is a tree with vertices of degree at most three and T1,T>,...,T, are subtrees of
T. Its edge intersection graph EI(R) has vertex set {vi,vs,...,un} and edge set
{viv; : T; and T; share an edge of T'}, while its vertex intersection graph VI(R)
has the same vertex set but edge set {v;v; : T; and T} share a node of T}. For a
node u of T, we call the set of vertices X,, = {v; : T; contains u} the bag of u,
and {X, :u € V(T)} the bags of R.

With the above terminology we can easily move between the view of a subtree-
representation R as a tree T with a set of subtrees {77,T5,...,T,,} or as a tree
T with a set of bags {X, : v € V(T)}. When manipulating the latter we must
simply ensure that for any vertex in EI(R) the set of bags containing that vertex
corresponds to a set of nodes of T" inducing a subtree, i.e. a connected subgraph.

Definition 2. The edge-weight of subtree-representation R = (T,{T1,T>,...,Tp})
is the mazimum, over all edges uv of T, of the number of subtrees in {T1,Tz,...,Ty}
that contain edge uwv. R is a good subtree-representation if EI(R) = VI(R).

We are in this paper only interested in the edge intersection graphs of subtree-
representations having bounded edge-weight k. We start by showing that we can
restrict ourselves to good subtree-representations if we want.

Lemma 1. For any subtree-representation R of edge-weight k there exists a good
subtree-representation R' of edge-weight k with EI(R) = EI(R') = VI(R').

Proof: Assume some bag X; of R contains two vertices a,b with ab not an edge
of EI(R), meaning that no neighbor j of ¢ has {a,b} C X;. Since ¢ has at most
three neighbors, this means that one of a or b, say a, is in the bag of only one
of these neighbors, say j. We subdivide the edge ij in the tree T' with the new
node having bag X; N X, and remove a from X;. Repeat this procedure until the
resulting subtree-representation R’ is good. When we are done R' has edge-weight
k with EI(R) = EI(R") = VI(R'). O

Lemma 2. A graph G has branchwidth ot most k < there is a good subtree-
representation R of edge-weight at most k with G C EI(R).



Proof: =: Take a branch-decomposition (T, u) of G of width &, i.e. with |mid(e)| <
k for each e € E(T). We construct a subtree-representation R = (T”,S) of edge-
weight k& with G C EI(R). T' is constructed from T by for each leaf [ of T
adding a new leaf I’ and making it adjacent to I. For vertex a € V(G) consider
the smallest spanning subtree of T' containing all leaves of T' that are mapped
by p to an edge incident with a. The subtree T, will be this subtree augmented
by leaf I’ for each leaf I of T that it contains. This completes the description of
R = (T',{T, : a € V(G)}. For any two adjacent vertices {a,b} of G we have
put(l) = {a,b} for some leaf I of T, and thus the subtrees corresponding to a and
b share the edge I’ of T' which implies that G C EI(R). If vertex a has subtree
T, containing edge e of T, then there are edges incident with @ mapped to leaves
in both subtrees of T' arising from deleting the edge e, and thus a € mid(e). But
this means that the edge-weight of R is at most k. If R is not good then we can
make it good by applying Lemma 1.

<: Let R = (T,S5) be a good subtree-representation R of edge-weight at most
k with G C EI(R). We construct a branch-decomposition (T, u) of G with width
k. Associate each edge ab of G with an edge e of T such that the subtrees T, and
T} corresponding to a and b both contain e. Subdivide the tree edge e by as many
new nodes as there are edges of G associated to e, thus creating for each edge ab
associated to e a new tree node eup. Furthermore, add a new leaf node [,;, make
it adjacent to esp and set u(ab) = lup. Let T be the tree we have constructed
so far. It contains T as a minor. Consider the smallest spanning subtree T" of
T'" having the set of leaves {l,; : ab € E(G)}. Iteratively contract edges of T"
incident to a vertex of degree two until all inner vertices have degree three. The
resulting tree is 7'. Note that as we constructed 7' from T in stages we could
at each stage have updated the subtree T, corresponding to vertex a to a new
subtree T, so that we would still have a subtree-representation R’ = (T", S") with
G C EI(R'). For example, T; should contain every ’subdivision node’ on a tree
edge f if T, contained f, it should contain l,; for any edge ab incident with a,
and it should naturally shrink if it contained a removed leaf or contracted edge.
Moreover, (T", S') has edge-weight at most k since never during this process did we
increase the edge-weight beyond what it was. 7" has nodes of degree one and three
only and p is a bijection between its leaves and the edges of G so (T", ) is a branch-
decomposition of G. It remains to show that it has width k, i.e. that for any edge
e of T' we have |mid(e)| < k. We claim that mid(e) C {a : T, contains edge e}.
Consider a € mid(e). There must exist two leaves lqp, . of T', one in each of the
two subtrees of T" \ e, such that a € p=1(l,5) and a € p~1(l,.). Since the subtree
T(; of a contains both l,; and [,. it must also contain e. O

We introduce the concept of k-troikas' which is a central tool in our investiga-
tion of branchwidth.

Definition 3. A k-troika (A, B,C) of a set X are 3 subsets of X, called the three
parts, such that |A| < k, |B| <k, |C| <k, and AUB=AUC=CUB=X.
(A, B,C) respects Si,S, ..., S, if any S;,1 < i < q is contained in at least one of
A, B orC.

1 A troika is a horse-cart drawn by three horses, and when the need arises any two of
them should also be able to pull the cart



Definition 4. A k-good chordal graph is a chordal graph in which every maximal
cligue X has a k-troika respecting the minimal separators contained in X .

Theorem 1. A graph G has branchwidth at most k < G is subgraph of a k-good
chordal graph

Proof: =-: By Lemma 2 there exists a good subtree-representation R of edge-
weight k with G C EI(R) = VI(R). Since VI(R) is a vertex intersection graph
of subtrees of a tree it is a chordal graph [9], and H = EI(R) = VI(R) will
indeed be our chordal graph H having G as a subgraph. By the Helly property of
(vertex) intersection of subtrees of a tree, every maximal clique of H is a bag X,
for some node u of the tree. If | X,| < k then it clearly has a k-troika respecting
any subset, so let us assume |X,| > k. Since any pair a,b of nodes from X, is
adjacent in H, we must have {a, b} contained also in one of the neighboring bags.
Let the intersection of X,, and the bags of its three neighbors be A, B and C. This
means that any two of A, B, C' must have union X, since if for example a € X, but
a ¢ AUB then we would be forced to have C = X, since C' would have to contain
a and all its neighbors in X, contradicting the fact that R has edge-weight k. Any
minimal separator S of the chordal graph H is the intersection of two maximal
cliques corresponding to two bags X, X,. If we assume A = X, N X,,, for w the
neighbor of u on the path from « to v in T, then we have S = X, N X, C A since
the subtree corresponding to a vertex a € (X, N X,) \ A would be disconnected.
<«: Consider any clique tree of the k-good chordal graph H containing G. In
fact this can be viewed as a pair R = (T, S) just as our subtree-representations
with H = VI(R) and every bag inducing a maximal clique of H, except that
nodes of T can have degree larger than 3. We construct from this a subtree-
representation R' = (T",5") of edge-weight k£ with G C H C EI(R') which by
Lemma 2 and Lemma 1 will imply that G has branchwidth at most k. Let X be a
maximal clique whose node in T" has ¢ neighbors corresponding to maximal cliques
Z1, Za, ..., Zg, and let (A, B, C) be the k-troika of X respecting minimal separators
X N Zi,...,X N Z,. This means there exists a partition P4, Pg, Pc of {1,2,...,¢}
such that XNZ; C Afori € Py, XNZ; C Bfori € Pg, XNZ; C C fori € Pc. For
maximal clique X we construct a ternary subtree as follows: We have a central
node with bag X adjacent to three paths: one path with max{1,|Pa|} bags A,
one path with max{1,|Pg|} bags B and one with max{1, |Pc|} bags C. For each
i €{1,2,...,q} we have a leaf-node with bag X N Z; as neighbor of a node on these
paths, e.g. if i € P4 the leaf-node should be the neighbor of a node with bag A,
if i € Pg then B, and if i € Py then C, such that g of the nodes on the 3 paths
get one leaf each. (see Figure 3 in Appendix). Construct such a ternary subtree
for each maximal clique X, i.e. for each node of T'. Then, for each pair of maximal
cliques X,Y that are bags of two neighboring nodes in T we identify the following
two leaves into a single node: X NY in the subtree constructed for X and Y N X
in the subtree constructed for Y. The resulting tree T’ has no node of degree more
than three and together with bags as indicated it forms the subtree-representation
R' =(T",5"). R' has edge-weight at most k since any part of a k-troika has size at
most k. We show that H C EI(R'). For any edge ab € E(H) we have {a,b} C X
for some maximal clique X . The k-troika (A, B, C) of X has the property that any
vertex a € X must be in two out of A, B, C, so that we must have {a, b} contained
in one of A, B or C. Thus the edge ab is in EI(R') and H C EI(R'). O



4 k-Troikas

This section will be devoted to a study of the conditions under which a set X
has a k-troika respecting a given set of subsets. As with branchwidth, we restrict
attention to the case k > 2. These conditions on the given sets, which will turn
out to be testable by simple algorithms, will in conjunction with Theorem 1 be
useful for designing algorithms computing branchwidth of graphs.

Observation 1 If X has a k-troika respecting S1, Sa, ..., S, then |S;| < k for each
1<i<gqand|X|<|3k/2].

The above is obvious, every subset must be of size at most k since it must
be contained in a part of size at most k, and the fact that every pair of parts
must have union X means that every element of X must belong to at least two
parts which implies 2|X| < 3k. Note that the case of respecting a single subset
is trivial, the necessary and sufficient conditions are that the subset has at most
k elements and |X| < |3k/2]. Likewise, if |S1 U S U ... U S,| < k then G has a
k-troika respecting Si, S2, ..., Sy precisely when | X| < [3k/2] since we may as well
view the union of all the subsets as a single subset.

4.1 k-Troikas respecting two subsets

In this section we consider conditions under which a set X has a k-troika respecting
two subsets Si,S2. As mentioned above we assume that |S; U Sz| > k and also
wlog that any k-troika (A4, B, C) respecting S1,S2 has S; C A and S2 C B. Note
that if X has a k-troika respecting Si,S2 then it has one where no element of X
belongs to all three parts. This motivates the following definition.

Definition 5. A k-tripartition of a set X is a partition of X into three (disjoint)
partition classes, such that the sum of sizes of any two partition classes is at most
k. A k-tripartition (T1,T2,T3) of X respects S1,S2 if S1NSy C T3, Sy CTyNTs,
and Ss CThoNTs.

Observation 2 If (Ty,T>,T3) is a k-tripartition of X then (T1UT3, ToUT3, ToUTY)
is a k-troika of X, and the former respects S1,S2 iff the latter does. Conversely,
if (A,B,C) is a k-trotka of X with ANBNC =0 then (ANC,BNC,BNA) is
a k-tripartition of X, and the former respects S1,Sa iff the latter does (assuming
[S1 U Sa| > k as discussed above).

In view of this observation, when it comes to k-troikas respecting two subsets
51,52 we need only consider those that arise from k-tripartitions. In Observation
1 we gave some obviously necessary conditions on | X, |S1],|S2|. What other nec-
essary conditions do we have? Note that if |X| = 3k/2 and k is even then only
a ’balanced’ k-tripartition with each partition class having k/2 vertices will do.
Since we must have S; NSy C T3 the case where |S; N S2| > k/2 therefore implies
a stronger size restriction on X. The best we could hope for is to set T3 = S; N Sy
and put k — |S1 N Ss| vertices into each of T and Ty which yields:

Observation 3 If X has a k-troika respecting Si,Sa then | X| < |S1NSa|+2(k -
[S1 N Ss|) =2k —|S1 NS,



Note that we did not need to preface this observation by the condition ”if
[S1 N Sa| > k/2” since | X| < |3k/2] and |S; N Sa| < k/2 together imply | X| <
2k — |S1 N S3|. As the next theorem shows, these obviously necessary conditions
are also sufficient (ONCAS).

Theorem 2. A set X has a k-troika respecting S1,S2 (assume |S1 U Sa| > k) if
and only if | X| < [3k/2], [S1| <k, [S2| <k and |X| <2k —[S1 NS,

Proof: The necessity of these conditions have already been argued for. We prove
that they are sufficient by considering two cases: |S1NSa| < k/2 and |S1NS2| > k/2.
In the first case we can construct a ’balanced’ k-tripartition (T, T%, T3) where each
partition class has at most k/2 elements. For the vertices in S; NSz we put them all
in T5. For the vertices in S; \ S2 we put up to k/2 of them in T} and the remainder
in Ts. For the vertices in S, \ S; we put up to k/2 of them in T, and the remainder
in T3. The conditions |X| < [3k/2], |S1| <k, |S2| < k, and |S1 N S2| < k/2 will
ensure that each of T1,T»,T5 constructed so far has at most k/2 elements. The
vertices in X'\ \S1US, are now put into Ty, T or T3 freely while simply ensuring that
each partition class has at most k/2 elements, which is doable since | X| < |3k/2]
(note that if k is odd then '< k/2’°, up to k/2’ and ’at most k/2’ is the same as
< [k/2].)

We turn to the case |S; NSa| > k/2. Let fi = k—(|S1NS2|+[S1\Sz2|) and fo =
k—(|51052|+|S2\51|). Note that |X|—|51U52| S 2k—|51052|—|S1U52| = f1+f2
where the first inequality comes from |X| < 2k — |S1 N Sz|. Thus we can partition
X\ S1US; into Fy and Fy of sizes at most f; and at most f respectively. The
desired k-tripartition is then T3 = S1 NSy, Ty = (S1\ S2) U F1,T> = (S2\ S1) U Fs.
O

Corollary 1. The smallest k such that X has a k-troika respecting Sy, S> is
max{|S1|, |Sz2|, [2|X]/3], min{|S1 US|, ([|X|+|S1NS2|)/2]}} and can be computed
in constant time given |Si|,|Sa|, | X|,|S1 N Sa|.

Note that |S; USs| is easily found from |Si],|S2], |S1NS2|- The two terms inside
the minimum covers the two cases where the resulting smallest k-troika (A, B, C)
has either S; U Sy C A or S; C A and S> C B, respectively. Let us remark that
for the interval graph algorithm the above Corollary suffices, since we then only
deal with 2 minimal separators for each maximal clique.

4.2 k-Troikas respecting g subsets

We first consider the case of a set X respecting three subsets S1, S2, S3 and denote
by L the elements of X not belonging to any subset and by U;,1 < ¢ < 3 the
elements belonging to S; only: L = X \ (S U S; U S3), Uy = S1\ (S2 U Ss),
U2 = S2 \ (Sl U 53), U3 = 53 \ (Sz U Sl) (see Figure 4 in Appendix).

Lemma 3. X has a k-troika A, B,C with Sy C A, S C B,S; C C < the follow-
ing system of linear equations in 5 non-negative integer variables a,b,c,d,e has a
solution:

a <|Ui|;b < |Usl;e < |Usl;d+e < | L)
|S3] 4+ |Us| +a—b+d+e<k



|Si|+|Us|+|L|+b—c—e<k
|So| +|Uh| +|L| —a+c—d<k

Proof: <«: Partition U; into L1, F} with |L;| = a and |F;| = |U;| — a. Partition
U2 into F2,R2 with |F2| = b and |R2| = |U2| — b. Partition U3 into R3,L3 with
|R3| = ¢ and |Ls| = |Us| — ¢. Partition L into Fr, Rr,Lp with |Fr| = d and
|[Rr| =eand |Lp| = |L|—d —e.

Thenlet A=S1UL3UF,UF, ULy, let B=S,UR3UF, UF,URyp, and let
C=S3ULiURs UL, URy,.

The system of equations guarantee that the cardinalities of A, B, C are at most
k, and by construction we have AUB=BUC = AUC =X and S; C 4,5, C
B,S; C C.

=: Note that if X has the desired k-troika then it has one with AN BNC =
51082053. Let Ll = CﬂUl, let Fl = BﬂUl, let F2 =AﬂU2, let R2 = CﬂUQ,
let R3 = BNU;s, and let Ly = A N Us. Furthermore, let F, = LN AN B, let
Lpy=LNANC,andlet R, =LNBNC.

It follows that A = 51 UL3UF2 UFLULL, that B = SQ UR3UF1 UFL URL,
and C =S3 UL URyULp URy,.

Since the cardinalities of A, B,C are at most k¥ we must have a = |L1|,b =
|F>|,¢ = |R3|,d = |FL|,e = |Ryp| a solution to the system of equations. O

The only other possibility is that the union of two of the subsets is at most
k and in this case we may appeal to the conditions for respecting two subsets,
giving:

Lemma 4. X has a k-troika respecting S1,S2,S535 & it has one satisfying the
conditions of Lemma 8 or it has one where either Sy U S2,S3 or S; U S3,S; or
So U S3, 51 satisfies the conditions of Lemma 2.

To respect ¢ > 3 subsets we simply note that since each subset must be con-
tained in one of the three parts of the k-troika, there must exist a partition of the
subsets into three classes such that every subset in the same class is contained in
the same part.

Theorem 3. X has a k-troika respecting Sy, S, ..., S, < there exists a partition
of {1,2,...,q} into three classes Py, Py, P; such that by Lemma 4 X has a k-troika
respecting the 3 subsets Wi = U,;cp, Si; W2 = U,cp, Sis Wz = U,ep, Si-

Since a set of size ¢ has 37 partitions into three classes we have:

Corollary 2. In time O(poly(|X|)3?) we can decide if o set X has a k-troika
respecting subsets Si,S53,...,5q.

5 Algorithms computing branchwidth

Throughout this section G is a chordal graph with m edges, n vertices, maximal
cliques {X1, X»,...X,}, having a clique-tree Tz with nodes {1,2, ..., ¢} such that
node i corresponds to maximal clique X;. Mazoit [12] conjectured that branchwidth
is computable in polynomial-time for any chordal graph given with a clique tree
having polynomially many subtrees. We will prove his conjecture, but along the



way we also give a fast algorithm for the case of interval graphs, i.e. when the
clique tree is a path. We first define a merged supergraph of G which is obtained
by taking certain sets of maximal cliques that are connected in T and merging
each set into a larger clique.

Definition 6. H is a merged supergraph of G if there exists a partition of Tg into
subtrees {Hy ...Hp} (each node j € V(Tg) belongs to one and only one subtree
H;) such that the set of mazimal cliques in H is: {X| = Ujer, X;} (1 <i < h).

It is straightforward to see that a merged supergraph H of a chordal graph G is
chordal with clique-tree T built by making maximal cliques X and X J’ adjacent
iff H; and H; contains two adjacent nodes of T, in other words Ty is a minor
of Tz. We first show that to find the branchwidth & of G it suffices to search for
k-good chordal graphs among the merged supergraphs of G.

Lemma 5. Let G be a chordal graph of bw(G) = k and let H be a k-good chordal
supergraph of G. Let X be a mazximal clique of G whose neighboring mazximal
cliqgues in Tg are X1,X5...X;. If X does not have a k-troika respecting the mini-
mal separators in X, then there exists X; (1 < i < 1) such that X; U X is a clique
i H.

Proof: Let S; = X NX; (1 <4 <1). Let us first recall that as X and X; are
adjacent maximal cliques S; is a minimal separator and moreover any minimal
separator contained in X is a subset of some such S; (1 < ¢ < I). Therefore it
suffices that the k-troika respects Sy, S5, ..., S;.

Proof by contradiction. S; is a minimal a, b-separator, for any a € X; \ X and
be X\ X;. X is a subset of some maximal clique X' of H. Assume X; U X is
not a clique of G'. As H is chordal, there must exist a subset S; of X which is
a miminal a, b-separator S} for some a € X; \ X' and b € X'\ X;. Moreover, S;
has to be included in S}, since otherwise we would have an a, b-path avoiding S;.
Likewise, for any 1 < 4 < [, unless X U X; is a clique we find S} C X' a minimal
separator containing S;. As X C X', S; C S} for 1 < i < I, X' cannot have a
k-troika respecting 5] ...S] as long as X did not have one respecting Si...5;, a
fact that follows from Theorem 3. This contradicts the fact that H is a k-good
chordal graph. O

Lemma 6. A chordal graph G has bw(G) < k < there exists a k-good chordal
graph H that is a merged supergraph of G.

Proof: <=: By Theorem 1 the existence of a k-good chordal graph H that is a
merged supergraph of G implies that bw(G) < k.

=-: By induction on the number ¢ of maximal cliques of G. If G has at most
2 maximal cliques, then Lemma 5 establishes the claim. Assume by induction
that the property holds for any chordal graph of branchwidth & having ¢ > 2
maximal cliques. If G is not a k-good chordal graph, then it has a maximal clique
X which does not have a k-troika respecting the minimal separators X; N X, Xo N
X, ..., XiNnX, where X; ... X are the neighbors of X in the clique tree T. Since G
has branchwidth & it has some k-good chordal supergraph in which, by Lemma 5,
some neighbor X; (1 < j <) has been merged with X into a bigger clique. But
then consider the merged supergraph of G arising from merging exactly X and X



into one clique. It has ¢ — 1 maximal cliques and by the induction hypothesis there
is a k-good chordal graph H which is a merged supergraph of G’ and therefore
also of G. O

5.1 Branchwidth of interval graphs

A graph is an interval graph iff it enjoys a consecutive cliqgue arrangement (cca)
that is an ordering of its maximal cliques C = (X7, ... X,) such that for any vertex
z, the maximal cliques containing x occur consecutively. From any linear time
interval graph recognition algorithm such a cca can be computed (see e.g. [3]). It is
well known that for any 1 < ¢ < ¢, the set S; = X; 1 N X; is a minimal separator.
Let S = Sgy1 = 0 be dummy separators. Let us denote by X;; = Uicy<;j Xy
(1 <4< j <¢q) amerged set of consecutive cliques.

Given a cca Cg = (X7 ...X,) of an interval graph G, a merged supergaph H
of G has caa Cy = (X ... X)) with h < ¢ such that forany 1 <i < h, X] = X, ,,
with Iy =1,1; =r;_1 + 1 for ¢ > 1 and r, = ¢q. Note that a merged supergraph of
an interval graph is also an interval graph.

Our algorithm first computes for each pair 1 < i < j < ¢ the smallest value
KTi, j] such that if we merge the consecutive cliques X ; into one big clique, it will
have a KTi, j]-troika respecting S; and S; ;. Then by simple dynamic programming
it computes the best way of merging various such sets into a merged supergraph, see
Figure 1. Incrementally, in step 7, we optimize over the possible cutoff points 1 <
1 < j that define the ’rightmost’ merged set of cliques X; ;. We prove correctness
before considering the running time.

Pre-processing (see below) to find |S;|, | X;|, |S: N Sj1, | X5,5]

For 1 <3< j<g+1 Do Compute K[i, j] by the formula of Corollary 1
A[0] =0

For j =1 to ¢ Do A[j] = min{max{A[s — 1], K[i,j]} : 0 < i < j}

Fig. 1. Computation of bw(G) = A[g] for interval graph G.

Theorem 4. The computed value Alq] is the branchwidth of interval graph G.

Proof: Let us prove by induction that, for 1 < i < ¢, A[i] = bw(G;) where G;
is the graph induced by X;; with an extra dummy vertex z; adjacent to S;;1.
By Corollary 1 KJi,j] is the minimum such that set X;; has a K[i, j]-troika
respecting S; and Sjy1. As A[l] = K[1,1], X; has a A[l]-troika respecting Ss.
Therefore {21} U S» also has a A[l]-troika respecting Ss. Theorem 1 implies that
bw(G1) = A[1]. Assume that A[j — 1] = bw(G;_1) for j > 1. Let H; be the merged
supergraph of G; such that bw(G;) = bw(H;). Then by Lemma 5 the maximal
clique X; is contained in H; in a maximal clique X' = X ; for some 1 < i < j.
It therefore follows from Lemma 6, that bw(G;) < maz{A[i — 1], K[i, j]} for any
1 <4 < j and thus bw(G;) = A[j]. We proved that bw(Gy) = Alq]. Since G, is the
union of two connected components, the first one being G itself and the second an
isolated vertex z,, bw(G) = bw(G,). O



By Corollary 1 the computation of matrices K and A takes time O(q?) if the
values |S;|, | Xi|, |SiNSj+1], and |X; ;| can be accessed in O(1) time. We now show
that these values can be made available in array locations S[i], X [j], S[¢, 4], X [¢, ]
by pre-processing stage. Any interval graph recognition algorithm [3] is able to
ouput in O(n +m) time the size X[i] = | X;| of any maximal clique and S[i] = |S;]
of any minimal separator, and also for any vertex x the range [Left(z), Right(x)]
of consecutive cliques containing x. From those values, assuming for any 1 < i < ¢
X[i,i] = |X;|, we have for i +1 < j < ¢, X[i,j] = X[i,5 — 1] + X[j] — SI]-
To find the values S[i,j] = |S; N S;41| fast, we first compute the intermediary
g x g-matrix M such that for i < j, M[i,j] = |(S; N S_,) \Sj+1|. Since |S; N S]| =
2 ong [(Si N Sj) \ Sjt1], the array S[i, j] can be computed as follows:

Initialize each entry of M[i, j] to 0;
For any S; (2< ¢ < q) and z € S; Do If Right(z) = j Then add 1 to M[i, j]
For i =2 to ¢ Do | S[i,q] = M]3, q]

For j = q— 1 downto ¢ Do S[i, j] = S[¢, 5 + 1] + M[3, j]

As the sum of the sizes of the minimal separators of an interval graph is
bounded by m, this preprocessing requires O(m + n + ¢?) time. We have shown:

Theorem 5. Branchwidth of an interval graph G = (V, E) on m edges, n vertices
and q < n mazimal cliques can be computed in time O(n +m + ¢?).

5.2 Clique trees with polynomial number of subtrees

For a subtree T of a tree T we define its connection points as the pairs of vertices
a1b1, a2ba, ..., apb, such that a;b; is an edge of T with a; € T' and b; € T\ T".
Assume clique tree T of chordal graph G has a polynomial number of subtrees
T1,T3, ..., Ty, ordered by size. Let T; have connection points a;bi,azbs, ..., apbp.
Define the connection separators of T; to be S; = X,;, N X, for 1 < j < p,
where X,,, X3, are the maximal cliques of G' corresponding to tree nodes a;,b;.
Define KTi] to be True if V(T;) has a k-troika respecting the connection separators
51,82, ..., Sp of T;. The following algorithm will in polynomial time decide if G has
branchwidth at most k:

For i =1 to t Do Compute boolean K[i] by the system of equations of Theorem 3
Ali] =T if K[i] =T or if 3e € E(T;) with Ale:] =T and Ales] =T
for subtrees T.,,T., of T; \ e; otherwise A[i] = F

Fig. 2. Branchwidth of G < k iff A[t] =T

Theorem 6. For a chordal graph G given with a clique tree having a polynomial
number t of subtrees the above algorithm will in polynomial time decide if branch-
width of G is at most k.



Proof: We first argue for the timing: Since clique tree T on ¢ nodes has a number
of subtrees that is polynomial in ¢ then the number of connection points p for any
subtree T; must be logarithmic in ¢ < n (a subtree with p leaves has itself at least
2P subtrees.) Corollary 2 tells us that we can then in time polynomial in n decide
if V(T;) has a k-troika respecting its p subsets.

Now the correctness: Let G; be the graph induced by |J jev(r, X; with p extra
dummy vertices adjacent to each of the p connection separators Si, S, ..., Sp of T;.
We prove by induction on the size of the subtrees that, for 1 < i < ¢, A[{] = True
iff bw(G;) < k. By Theorem 3 K[i] is True iff the set V(T;) has a K[i]-troika
respecting its connection separators. Thus, A[i] is certainly correct if 7; has no
edge. Assume A[i] correct for all subtrees on f edges. For some T; on f + 1 edges,
if G; has branchwidth at most & then some merged supergraph of G; is a k-good
chordal graph, by Lemma 6. Either this merged supergraph has V(G;) as one big
clique, in which case K[i] is True, or there is an edge e of T; such that for the two
subtrees T,, and Te, of T; \ e we have bw(G,) < k and bw(G.,) < k. Since T,
and T¢, have at most f edges each, this is correctly recorded by Ale;] and Ales].
O
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Fig. 3. Theorem 1. On top a clique tree of a k-good chordal graph H with k-troika of any
maximal clique M being (Aar, Bar, Car). Below the constructed subtree-representation
R’ of edge-weight k such that H C EI(R'). The square nodes correspond to the ternary
subtree associated with clique Y and the grey nodes to the ternary subtree associated to
clique X. Both ternary subtrees share the leaf X N'Y where they connect.



Fig. 4. Venn diagram of a set X consisting of the 6 circles S1,S52,S3, Fr,Lr,Rr. If X
has k-troika (A, B, C) respecting S1, S2, S3 then we may as well require S1 N S2 N S3 =
ANBNC. The sets A, B,C are otherwise illustrated using the dotted lines at 2, 6 and
10 o’clock, e.g. A contains elements between 6 and 2 o’clock. Elements belonging to only
one of the S; sets are named U; and further partitioned in two parts by the dotted lines,
as defined in subsection 4.2.



