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Abstract

Branchwidth is a connectivity parameter of graphs closely related to treewidth. Graphs of
treewidth at most k can be generated algorithmically as the subgraphs of k-trees. In this paper,
we investigate the family of edge-maximal graphs of branchwidth k, that we call k-branches.
The k-branches are, just as the k-trees, a subclass of the chordal graphs where all minimal
separators have size k. However, a striking difference arises when considering subgraph-minimal
members of the family. Whereas Kk+1 is the only subgraph-minimal k-tree, we show that for
any k ≥ 7 a minimal k-branch having q maximal cliques exists for any value of q 6∈ {3, 5},
except for k = 8, q = 2. We characterize subgraph-minimal k-branches for all values of k. Our
investigation leads to a generation algorithm, that adds one or two new maximal cliques in each
step, producing exactly the k-branches.

1 Introduction

Branchwidth and treewidth are mutually related connectivity parameters of graphs: whenever
one of these parameters is bounded by some fixed constant for a graph, then so is the other
[16]. Since many graph problems that are NP-hard in general can be solved in linear time when
restricted to such classes of graphs both treewidth and branchwidth have played a large role in
many investigations in algorithmic graph theory. Tree-decompositions have traditionally been the
choice when solving NP-hard graph problems by dynamic programming to give FPT algorithms
when parameterized by treewidth, see e.g. [2, 15] for overviews. Recently it is the branchwidth
parameter that has been in the focus of several algorithmic research results. For example, several
papers [7, 5, 8, 9, 6] show that for graphs of bounded genus the base of the exponent in the
running time of these FPT algorithms could be improved by the dynamic programming following
instead a branch-decomposition of optimal branchwidth. Also, a strong heuristic algorithm for
the travelling salesman problem [4] has been developed based on branch-decompositions and an
exact (exponential-time) algorithm has been given to compute branchwidth [10]. Given these recent
developments in favor of branchwidth one may wonder why treewidth has historically been preferred
over branchwidth? Mainly, this is because of the equivalent definition of ’G has treewidth ≤ k’ by
’G is a partial k-tree’. This alternative definition is intuitively appealing since the k-trees are
the graphs generated by the following very simple algorithm: ’Start with Kk+1; Repeatedly choose
a k-clique C and add a new vertex adjacent to vertices in C ’. Can we define branchwidth in an
analogous algorithmic way? This is the question that has inspired our research and in this paper
we give an affirmative answer.

We start by investigating the family of edge-maximal graphs of branchwidth k, that we call
k-branches. The k-branches are chordal, as can be easily deduced from earlier work on branchwidth
[11, 10]. In Section 2 we report on related work [13] where we have given a characterization of k-
branches. In Section 3 we consider subgraph-minimal k-branches. They form the starting graphs
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of our algorithm generating k-branches, just as the minimal k-tree Kk+1 is the starting graph of
the generation algorithm for k-trees. Kn has branchwidth d2n/3e for any n ≥ 3 and Kb3(k−1)/2c+1

is one of the minimal k-branches. However, for k ≥ 7 we find that there is a minimal k-branch
on q maximal cliques for any q 6∈ {3, 5}, except for the pathological case k = 8, q = 2. We show
that the minimal k-branches have clique trees that are caterpillars and give a characterization of
the family of minimal k-branches for all values of k. Our investigation culminates in Section 4
with a non-deterministic generation algorithm, that adds one or two new maximal cliques in each
step, yielding as output exactly the graphs that are k-branches, and whose spanning subgraphs
(i.e., partial graphs) are exactly the graphs of branchwidth at most k. Our results lead to a
better understanding of the branchwidth parameter by defining graphs of branchwidth k through
the algorithmic concept of partial k-branches. The algorithm will generate a random graph of
branchwidth k together its branch-decomposition and can be used to provide test instances for
optimization codes based on branch-decomposition.

2 Definitions and earlier results

A branch-decomposition (T, µ) of a graph G is a tree T with nodes of degree one and three only,
together with a bijection µ from the edge-set of G to the set of degree-one nodes (leaves) of T .
For an edge e of T let T1 and T2 be the two subtrees resulting from T \ {e}, let G1 and G2 be
the graphs induced by the edges of G mapped by µ to leaves of T1 and T2 respectively, and let
mid(e) = V (G1) ∩ V (G2). The width of (T, µ) is the size of the largest mid(e) thus defined. For a
graph G its branchwidth bw(G) is the smallest width of any branch-decomposition of G. 1

A tree-decomposition (T,X ) of a graph G is an arrangement of the vertex subsets X of G,
called bags, as nodes of the tree T such that for any two adjacent vertices in G there is some bag
containing them both, and for each vertex of G the bags containing it induce a connected subtree.
For a subtree T ′ of T the induced tree-decomposition (T ′,X ′) is the result of removing from (T,X )
all nodes of V (T ) \ V (T ′) and their corresponding bags.

Definition 1 A k-troika (A,B,C) of a set X are 3 subsets of X such that |A| ≤ k, |B| ≤ k,
|C| ≤ k, and A ∪ B = A ∪ C = C ∪ B = X. (A,B,C) respects S1, S2, ..., Sq if any Si, 1 ≤ i ≤ q is
contained in at least one of A,B or C.

A necessary condition for a graph to be a k-branch is that it is a chordal graph where all minimal
separators have size k, with the property that every maximal clique has a k-troika respecting the
minimal separators contained in it [13]. This motivates the following definition.

Definition 2 Let G be a chordal graph with CG its set of maximal cliques and SG its set of minimal
separators. A tree-decomposition (T,X ) of G is called k-full if the following conditions hold: 1)
The set of bags X is in 1-1 correspondence with CG ∪ SG (we call the nodes with bags in CG the
maxclique nodes and the nodes with bags in SG the minsep nodes.) 2) The bags of the minsep nodes
all have cardinality k. 3) There is an edge ij in the tree T iff Xi ∈ SG,Xj ∈ CG and Xi ⊆ Xj. 4)
Every maxclique bag Xj has a k-troika respecting its neighbor minsep bags.

Note that if G has a k-full tree-decomposition then it is unique. We need additional constraints
on k-full tree-decompositions to characterize exactly the k-branches.

Definition 3 A mergeable subtree of a k-full tree-decomposition (T,X ) of a graph G is a subtree
T ′ of T that: contains at least one edge, has leaves that are maxclique nodes, and satisfies:

1The graphs of branchwidth 1 are the stars, and constitute a somewhat pathological case. To simplify certain
statements we therefore restrict attention to graphs having branchwidth k ≥ 2.
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1. |{v : v ∈ X where X a node in T ′}| ≤ b3k/2c

2. Either the subtree T ′ has at most one node that in T has a neighbor in V (T ) \ V (T ′) or else
T ′ is a path X,B, Y with X,B, Y and all their neighbors in T inducing a path A,X,B, Y,C
satisfying B \ (A ∪ C) = ∅.

Lemma 1 Let A − X − B − Y − C be a path in T for some k-full tree-decomposition (T,X ) with
X and Y maxclique nodes. X ∪ Y has a k-troika respecting A,C if and only if |X ∪ Y | ≤ b3k/2c
and B \ (A ∪ C) = ∅.

Proof If |X ∪ Y | > b3k/2c then X ∪ Y does not have a k-troika. Let P = B \ (A ∪ C). Note that
we have A ∩ C ⊆ B and since |A| = |C| = k we have |A ∩ C| = 2k − |(X ∪ Y ) \ P |. But then
|X ∪ Y | + |A ∩ C| = 2k + |P | and this means that by Theorem 2 of [14] (also by results of [11])
X ∪ Y has a k-troika respecting A,C if and only if P = ∅. �

Lemma 1 is implicit in [13], and implies that for mergeable subtree T ′ we can add edges to G
to make a clique of {v : v ∈ X where X a node in T ′} without increasing branchwidth of G.

Definition 4 A k-full tree-decomposition (T,X ) of a graph G is a k-skeleton of G if G has at least
b3(k − 1)/2c + 1 vertices and T does not have a mergeable subtree.

Theorem 1 [13] G is a k-branch ⇔ G has a k-skeleton

3 Minimal k-branches

We characterize the subgraph-minimal k-branches on q maximal cliques, by describing the structure
of the minimal k-skeletons, as defined below. We divide the caracterization into two Theorems, one
for the cases when k ≤ 6 or q ≤ 5 and the other for the cases k ≥ 7, q ≥ 6.

Definition 5 A k-branch G is a minimal k-branch if no strict subgraph of G is a k-branch. Let the
set of minimal k-skeletons be MS(k) = {(T,X ) : (T,X ) is a k-skeleton but for no proper subtree T ′

of T is the induced tree-decomposition (T ′,X ′) a k-skeleton}. Let MS(k, q) be the set of minimal
k-skeletons on q maxclique nodes.

If G is a minimal k-branch then for its k-skeleton (TG,X ) we have (TG,X ) ∈ MS(k). However,
the graph represented by a minimal k-skeleton may have some cliques that are too big for it to
be a minimal k-branch. For example, if (T,X ) is the tree T having a single maxclique node on
6 vertices then we have (T,X ) ∈ MS(4) since it is a minimal 4-skeleton but the graph K6 that
it represents is not a minimal 4-branch since it contains the 4-branch K5 as a subgraph. Since
our algorithm in Section 4 builds k-skeletons, rather than graphs, we focus in the following on the
minimal k-skeletons.

Lemma 2 In a minimal k-skeleton (T,X ), the tree T does not contain a maxclique leaf X with
path X − A − Y and both A and Y having degree 2.

Proof X and Y cannot be merged since otherwise G is not a k-branch, thus |X ∪ Y | > b3k
2 c. But

then the subgraph induced by X ∪Y is already a k-branch and G is not minimal: contradiction. �

See Figure 1 for an illustration of the following Theorem, which characterizes the minimal
k-skeletons on q maximal cliques when k ≤ 6 or q ≤ 5.

Theorem 2 1. For k > 2, MS(k, 1) contains Kb3(k−1)/2c+1 and if k even then also Kb3(k−1)/2c+2.
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2. For k 6 6 and k = 8, MS(k, 2) = ∅. For k = 7 and k ≥ 9, MS(k, 2) is nonempty and consists
of the trees with two maxclique nodes of size x + k and y + k (with k common vertices) for
any x ≤ y satisfying

3 − (k mod 2) ≤ x ≤ y ≤ dk/2e − 2 and x + y ≥ bk/2c + 1 (1)

3. For any k, MS(k, 3) = ∅.

4. For k 6 4 and k = 6, MS(k, 4) = ∅. For k = 5 and k ≥ 7 MS(k, 4) is nonempty, and
consists of the k-full tree-decompositions (T,X ) on q = 4 maxclique nodes X1,X2,X3, Y with
Y a node of degree 3 in T such that

(a) |Y |, |Xi| 6 b3(k−1)
2 c for any i ∈ [1, 3];

(b) for any i ∈ [1, 3], |Xi ∪ Y | 6 b3k
2 c;

(c) b3k
2 c + 1 6 |Xi ∪ Y ∪ Xj | with 1 ≤ i < j ≤ 3

5. For any k, MS(k, 5) = ∅

6. For any k 6 6 and q > 6, MS(k, q) = ∅.

Proof q = 1: This follows from the well-known fact that for n ≥ 3, bw(Kn) = d2n/3e.
For the remaining cases observe that (*): if a minimal k-skeleton has q ≥ 2 maxcliques then it

has at least b3k
2 c + 1 vertices and the number of vertices in each maxclique must be in the range

[k + 1, b3(k−1)
2 c].

q = 2: Let G = (V,E) be a minimal k-skeleton with 2 maxcliques Ka and Kb with a ≤ b. Since
any minimal separator has size k we have |V | = a + b − k. From observation (*) above it follows

that b3k
2 c + 1 6 |V | 6 2b3(k−1)

2 c − k. Resolving for k we get that if k is odd then k > 7, and if k
is even then k > 10. Let x = a − k, y = b − k. It can be checked that the two Equations in (1)
follow from observation (*) above. The first Equation of (1) ensures that each maxclique has by
itself branchwidth less than k, and the second ensures that if we merge the two maxcliques then
the result has branchwidth larger than k.

q = 3: By contradiction. By Lemma 2, the tree of the minimal k-skeleton cannot be a path.
Therefore the maxcliques X, Y and Z would have to share a common minsep S. As no pair of
maxcliques are mergeable, the size of the union of any pair of maxcliques is at least b3k

2 c + 1. It
follows that any pair of maxcliques is already a k-branch.

q = 4: By Lemma 2, the only possible topology for the tree T of the k-skeleton is the subdivided
claw, i.e. with one maxclique having degree 3. Let X1,X2,X3 be the three maxclique leaves and
Y the degree 3 maxclique.

First notice that the subtree induced by Xi,Xj , Y can be merged iff condition (c) holds. Assume
(T,X ) is a minimal k-skeleton. Condition (a) holds by observation (*) and condition (b) holds as
by definition no pair of neighboring maxcliques induces a k-skeleton. Assume (T,X ) is a k-full tree
decomposition satisfying the 3 conditions. By condition (c) it is a k-skeleton. Indeed no subtree
can be merged as for any pair of neighboring maxcliques, say X1 and Y , the set X1 ∪ Y does not
have any k-troika respecting Y ∩ X2 and Y ∩ X3. By conditions (a) and (b) and the fact that
MG(k, 3) = ∅, no subtree induces a k-skeleton. (T,X ) is thereby a minimal k-skeleton. It follows
that:

b
3k

2
c + 1 6 |Xi ∪ Y ∪ Xj | 6 3b

3(k − 1)

2
c − 2k (2)

Resolving for k we find that if k is odd then k > 5, and if k is even then k > 8.
q > 6: For k 6 4, as K

b
3(k−1)

2
c+1

= k + 1, there is no minimal k-skeleton on q > 1 maxclique.

For k = 5 or 6, we show that the tree T of the k-skeleton cannot contain a path X − A − Y with
both X and Y maxclique leaves. Combined with Lemma 2, it implies that any maxclique leaf
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belongs to a subdivided claw. Assume such a path exists. We should have |X| = |Y | = k + 1 and
thereby |X ∪ Y | = k + 2: implying that the graph it represents is not a k-branch. If k = 5, such a
subdivided claw contains only maxcliques of size 6, which is already a minimal 5-branch. Similarly,
if k = 6, the subdivided claw only contains maxcliques of size 7. But then the subdivided claw only
contains one maxclique leaf. Otherwise the two maxclique leaves and the degree 3 maxclique could
have been merged without increasing the branchwidth (it would form a maxclique leaf of size 9).
If any subdivided claw contains at most one maxclique leaf, the number of maxcliques cannot be
finite: contradiction. Therefore for any k 6 6 and q > 6, MS(k, q) = ∅

�
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Figure 1: Examples of minimal k-skeletons (T,X ) on q maxclique nodes, for k ≤ 9, q ≤ 8. For
q = 4 the following k-full tree-representations are minimal k-skeleton: the subdivided claw with
Kb3(k−1)/2c being the degree 3 maxclique, and Kk+1 being the leaf cliques are minimal k-skeletons,
for odd k; and for even k, two maxclique leaves should be replaced by Kk+2. Downward arrows
indicate that minimal k-sketelons, with trees isomorphic to those depicted, exist also for larger k.
Only the maxclique nodes are drawn. The minsep nodes have size k and appear on each edge of
the trees. Only for the case q = 8 does the intersection of minsep nodes matter. For q = 8, if
A−X −B − Y −C the path with X and Y the maxclique nodes of degree two then minsep nodes
A,B,C must satisfy B \ (A ∪ C) 6= ∅.

From this characterization of minimal k-skeletons we can deduce the characterization of minimal
k-branches. For lack of space we only sketch how to do this for the case q = 2. Note that if two
distinct pairs x ≤ y and x′ ≤ y′ both satisfy Equations (1) then the graph associated with the first
pair is a subgraph of the graph associated with the second pair if and only if x ≤ x′ and y ≤ y′.
Thus, the minimal k-branches on q = 2 maximal cliques correspond with such smallest pairs x ≤ y.

To describe the minimal k-skeletons for k ≥ 7 having q ≥ 6 the following definition of the
adjacencies in a special caterpillar T will be useful (see also Figure 2).

Definition 6 A tree T is a special caterpillar if T consists of a body which is a path X1, S1,X2, S2, ...
Xp, Sp,Xp+1 alternating between maxclique and minsep nodes for some p ≥ 3 with added hairs of
length one or two (a hair of length one being a new maxclique node added as neighbor of a minsep
node of the body, and a hair of length two being two new adjacent maxclique-minsep nodes with the
minsep node added as neighbor of a maxclique node of the body) satisfying the following conditions:

1. at most one hair for each node of the body
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X
′

p

(2a)

(2c)

(2b)

(1a)

(1b)

(1c)

(0)

X1

X
′

2

S1

X2 S2 X3 S3 Xp−1 Sp−1 Xp

Sp

Xp+1

Figure 2: On top is a special caterpillar with names of nodes as in Definition 6, in Theorem 3
and in Algorithm Stage 1. Below are the 7 non-isomorphic special caterpillars with p = 6, with
maxclique nodes drawn as circles and minsep nodes not drawn explicitly but present on any edge
between two adjacent maxclique nodes. Thus, 1c, 2b, 2c have minsep nodes of degree 3.

2. no hair on any of X1, S1, S2, Sp−1, Sp,Xp+1

3. hair X ′
2 on X2 and hair X ′

p on Xp, but no hair on minseps X ′
2 ∩ X2,X

′
p ∩ Xp

4. if hair on Si then no hair on Xi and no hair on Xi+1

5. if hair on Xi then not hairs on both of Xi−1 and Xi+1

Theorem 3 (T,X ) is a minimal k-skeleton for some k ≥ 7 on at least q ≥ 6 maxclique nodes ⇔
(T,X ) is a k-full tree-decomposition with T a special caterpillar whose bags satisfy (bag names as
in Definition 6 and Figure 2):

1. either |X1∪X2∪X3| ≤ 3k/2 or |X ′
2∪X2∪X3| ≤ 3k/2 and also either |Xp+1∪Xp∪Xp−1| ≤ 3k/2

or |X ′
p ∪ Xp ∪ Xp−1| ≤ 3k/2

2. |X1 ∪ X2 ∪ X ′
2| > 3k/2 and |Xp+1 ∪ Xp ∪ X ′

p| > 3k/2

3. For maxcliques X,Y with a common neighbor, |X| ≤ b3(k − 1)/2c and |X ∪ Y | ≤ 3k/2

4. If Si has a hair then Si \ (Si−1 ∪ Si+1) = ∅

5. If Xi has a hair then either i) no hair on Xi−1 and Si−1 \ (Si−2 ∪ Si) = ∅ or ii) no hair on
Xi+1 and Si \ (Si−1 ∪ Si+1) = ∅

6. If no hair on neither of Xi, Si,Xi+1 then Si \ (Si−1 ∪ Si+1) 6= ∅

Proof ⇐: We first show that the k-full tree-decomposition (T,X ) is a k-skeleton, by showing that
T does not have a mergeable subtree as in Definition 3. Any subtree T ′ having at most one node
that in T has a neighbor in V (T ) \ V (T ′) is by condition 2 not mergeable since we would have
|{v : v ∈ X and X a maxclique node in T ′}| > b3k/2c. Any subtree T ′ which is a path X,B, Y
with X,B, Y and all their neighbors in T inducing a path A,X,B, Y,C will by condition 6 satisfy
B\(A∪C) 6= ∅ and is thus not mergeable. Thus (T,X ) is a k-skeleton and it remains to show that it
is a minimal k-skeleton. We prove by contradiction, that for any proper subtree T ′ of T the induced
tree-decomposition (T ′,X ′) is not a k-skeleton. Unless the graph G′ that (T ′,X ′) represents has at
least b3(k− 1)/2c+ 1 vertices, (T ′,X ′) is not a k-skeleton. By condition 3 this means that T ′ must
contain at least 2 maxclique nodes. We show that in any such T ′ there is a mergeable subtree T ′′.
There are 5 special cases of subtrees T ′ to consider:
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1. Suppose maxclique bags of T ′ are X1,X2,X
′
2,X3 or Xp−1,Xp,X

′
p,Xp+1. In both cases the 3

maxclique bags satisfying the size constraint in condition 1 form the mergeable subtree T”.

2. T ′ contains a leaf X having a minsep neighbor S of degree 2 that itself has neighbor Y . By
condition 3, X,S, Y makes up the mergeable subtree T ′′.

3. T ′ contains two maxclique leaves X,Y with a common minsep neighbor S. Again by condition
3 X,S, Y is the mergeable subtree.

4. Suppose in T there was a hair on minsep Si and that T ′ does not contain this hair but
does contain Si−1,Xi, Si,Xi+1, Si+1. In this case the mergeable subtree T ′′ is Xi, Si,Xi+1 by
condition 4 and Lemma 1.

5. Suppose T has a hair on maxclique Xi and that T ′ does not contain this hair but that T ′

does contain Xi−1, Si−1,Xi, Si,Xi+1. Since T is a special caterpillar, neither Si−1 nor Si has
a hair. Thus, condition 5 and Lemma 1 guarantee that either the subtree Xi−1, Si−1,Xi or
the subtree Xi, Si,Xi+1 is mergeable.

⇒: We establish three properties (A),(B),(C) of the nodes of any tree T of a minimal k-skeleton
(T,X ). Recall that MS(k) is the set of minimal k-skeletons.

(A) Any minsep node S of degree larger than 2 must have degree 3 with exactly one of its neighbors
being a maxclique leaf and the other two having degree 2.

Assume first by contradiction S has two maxclique leaf neighbors X,Y . If |X ∪ Y | ≤ b3k/2c then
they could have been merged into a larger clique. If |X ∪ Y | > b3k/2c the subtree on the three
nodes X,X ∩ Y, Y would induce a k-skeleton contradicting (T,X ) ∈ MS(k). We next show that
for any three components T1, T2, T3 of T \ S one of the three must be a single maxclique node,
thereby establishing that S has degree 3 and exactly one maxclique leaf neighbor. Assume that
none of T1, T2, T3 is a single maxclique node. Let X2 ∈ V (T2) be a neighbor of S. We claim
that the maximal subtree T ′ of T containing X2 as a leaf with parent S would already induce
a k-skeleton. This since any subtree T ′′ of T ′ that is mergeable in T ′ would have to contain X2

(otherwise it would be mergeable also in T ) and it would have to contain either all of T1 or all
of T3, say wlog T1, (otherwise the new merged clique would contain two minimal separators A,B
with X2 6= (A ∪ B).) But then the union of maxclique nodes in T1 would have size less than 3k/2,
which means that T1 would have been a mergeable subtree already in T (since the new merged
clique also in T would have only the minsep neighbor S) contradicting T ∈ MS(k). Thus S has
degree 3 and one maxclique leaf neighbor X1. Let us show that the neighbors X2,X3 have degree
2. Assume X2 has 3 minsep neighbors A,B, S and consider T ′ = T \ {X1}. Note that we cannot
have T ′ representing a graph of branchwidth less than k since otherwise T2 would already have
been mergeable in T . As any mergeable subtree T ′′ of T ′ could not be mergeable in T , T ′′ would
have to contain X2 and X3. It then would also have to contain either all of T1 or T2. Otherwise
the new merged clique would contain two minimal separators A,B with X2 ∪ X3 6= (A ∪ B). This
means that T1 or T2 was already mergeable in T : contradiction.

(B) Any maxclique node X of degree 3 has all 3 minsep neighbors A1, A2, A3 of degree 2 and at
least one of them has a maxclique leaf as neighbor.

By (A), the minseps Ai’s all have degree 2. Let Yi be the second neighbor of Ai and assume
neither of Y1, Y2, Y3 is a leaf. Consider the partition of T into the subdivided claw on maxcliques
(A1, A2, A3,X) and the three subtrees Ti rooted in Yi (i = 1, 2, 3). Let T ′ be the subtree of
T consisting of nodes X,A1, A2 together with T1, T2. Note that T ′ cannot represent a graph of
branchwidth less than k since then T1 (and T2) would have been mergeable in T . Moreover, any
mergeable subtree T ′′ of T ′ could not be mergeable in T so T ′′ would have to contain Y3 and X,
but then it would have to contain either all of T1 or T2. This means that either the subtree T1 or
the subtree T2 was already mergeable in T , a contradiction.
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(C) T cannot contain a leaf X having a degree-2 parent B that itself has another degree-2 neighbor
Y . (This is Lemma 2)

We are ready to describe all trees T ∈ MS(k). There are two trees containing respectively 1
and 2 maxclique nodes except for k = 8 (see Theorem 2). For the remaining trees we note that
(A), (B) and (C) together imply that for any maxclique leaf X in T with parent A we have either:
A of degree 3 with the other two neighbors of A having degree 2 and not being leaves (call these
leaves of type i); or A of degree 2 with parent Y of degree 3 having 3 neighbors of degree 2 with
1, 2 or 3, respectively, of these being neighbors of a leaf (leaves of type ii.1, ii.2, ii.3 respectively.)
Moreover, all nodes of degree 3 in T (which is the maximum) have at least one neighbor that is a
leaf or neighbor of a leaf. Thus we can use the 4 types (i, ii.1, ii.2, ii.3) as building-blocks for any
tree T ∈ MS(k). If we use a building-block of type ii.3) then there is only a unique tree possible,
with 4 maxclique nodes, covered already in Theorem 2. Building blocks of type i) and ii.1) contain
one leaf and two nodes needing new neighbors, while type ii.2) contains two leaves and one node
needing a new neighbor. Thus, when using building-blocks of types i), ii.1) or ii.2) we must always
have exactly two building-blocks of type ii.2), that will correspond to two ends of the body of a
caterpillar having hairs of length 1 (type ii.1) or 2 (type i). A minsep node of degree 3 cannot be
adjacent to a maxclique node of degree 3, because the maxclique hair of this minsep could then
have been dropped and we would still have an induced k-skeleton. Likewise, no three consecutive
maxclique nodes of the body all have a hair since then the middle hair could have been dropped
and we would still have an induced k-skeleton. Thus, T is a special caterpillar.

To end the proof, it suffices to note that conditions 1-6 of the Theorem hold, since otherwise
T would either have had a mergeable subtree or it would have been a k-skeleton but not minimal.
For example, if condition 6 did not hold for some i then by Lemma 1 Xi − Si − Xi+1 would have
been a mergeable subtree. For space reasons we do not give the details of all cases. �

4 An algorithm that generates k-branches

In this section we give an algorithm generating each possible k-skeleton, which by Theorem 1 will
correspond to generation of the k-branches. For space reasons proofs of correctness have been
moved to the Appendix.

Definition 7 We get an extended k-skeleton by taking a k-skeleton (T,X ) and adding zero or
more minsep leaves with bag-size k as neighbors of maxclique nodes of T while ensuring that each
maxclique node still has a k-troika respecting its minsep neighbors. When starting with a minimal
k-skeleton (T,X ) the result is an extended minimal k-skeleton. We define ES(k) to be the set of
extended k-skeletons and EMS(k) to be the set of extended minimal k-skeletons.

Recall that MS(k) are the minimal k-skeletons, and note that by definition MS(k) ⊆ EMS(k) ⊆
ES(k). The algorithm is organised in 3 stages with the outputs of the previous stage forming the
inputs to the next stage. Stage 1 generates MS(k), Stage 2 generates EMS(k) and Stage 3

generates ES(k). Note that the extended k-skeletons ES(k) have the dual property that we get a
k-skeleton both if we remove all minsep leaves and also if we add a new legal maxclique leaf to each
minsep leaf. For our generation algorithm this implies that generating k-branches is equivalent
to generating extended k-skeletons where all leaves are maxclique nodes. The reason we generate
extended k-skeletons, and not only the k-skeletons, is to be able to enforce that all eventual minsep
neighbors of a maxclique node are added as soon as the maxclique node is added. This to easily
satisfy the constraint that a maxclique node have a k-troika respecting its minsep neighbors.

Description of STAGE 1: Generation of the minimal k-skeletons MS(k).
See Algorithm 1. The minimal k-skeletons on 1, 2, 4, or 6 maxclique nodes are generated by the
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special rules 1clique, 2clique, 4clique or 6clique respectively. The special caterpillar T in a
minimal k-skeleton (T,X ) on 6 maxclique nodes is unique, p = 6 in Definition 6

For the minimal k-skeletons (T,X ) on more than 6 maxcliques we enter a Repeat-loop that
will generate the special caterpillar T from left to right by adding in each iteration one or two new
maxclique nodes to the current right end of its body. The Repeat-loop is prefixed and postfixed by
special operations Start and End that add the building-blocks that in the proof of Theorem 3 are
called type ii.2). Note that throughout the code the names of parameters denoting maxclique and
minsep nodes are in accordance with Definition 6 and Figure 2, with certain exceptions. In par-
ticular, in the prefix operation Start(X1,X2,X

′
2,X3,Hair, S3) the parameter Hair is a maxclique

leaf hair of length 2 added to maxclique X3.

Algorithm 1: Stage 1: Generate any (T,X ) ∈ MS(k) by choosing 1,2,3,4 or 5

1: (T,X ) := 1clique(X) s.t. Theorem 2, case q = 1 holds ;
2: (T,X ) := 2clique(X,Y ) s.t. Theorem 2, case q = 2 holds ;
3: (T,X ) := 4clique(X,Y,Z,W ) s.t. Theorem 2, case q = 4 holds ;
4: (T,X ) := 6clique(X1,X2,X

′
2,X3,X

′
3,X4) s.t. T is the unique special caterpillar with

p = 3 and q = 6 and conditions 1,2,3 in Theorem 3 hold ;
5: begin

first choose a or b while ensuring that condition 1 and 2 of Theorem 3 hold;
a: Start(X1,X2,X

′
2,X3, S3), i := 3, HasHair:= 0, NeedsPair:= 0;

b: Start(X1,X2,X
′
2,X3,Hair, S3), i := 3, HasHair:= 1, NeedsPair:= 1;

repeat

if HasHair and NeedsPair then choose rule I;
else if HasHair and not NeedsPair then choose rule I,II or III;
else choose rule II, III or IV;
rule I: ADD(Si,Xi+1, Si+1) s.t. Si \ (Si−1 ∪ Si+1) = ∅;
rule II: ADD(Si,Xi+1, Si+1) s.t. Si \ (Si−1 ∪ Si+1) 6= ∅;
rule III: ADD(Si,Xi+1, B, Si+1) and ADD(B,Hair);
rule IV: ADD(Si,Xi+1, Si+1) and ADD(Si,W ) s.t. Si \ (Si−1 ∪ Si+1) = ∅;
if rule III was chosen then HasHair:= 1 and NeedsPair:= (Si\(Si−1∪Si+1) 6= ∅);
else HasHair:= 0 and NeedsPair:= 0;
i := i + 1;

until body of caterpillar is finished and NeedsPair= 0;
End(Si,Xi,X

′
i,Xi+1) s.t. Thm 3 (cond. 1 and 2) holds with i = p;

end

In the repeat-loop we maintain the loop invariant that Si will be the minimal separator at the
current right end of the body at which construction of the caterpillar will continue. Through-
out Stage 1 we make the assumption that when adding a new maxclique node X adjacent
to some minsep node S then for any other neighbor Y of S the pair X,Y must satisfy con-
dition 3 of Theorem 3. To not clutter the code we do not explicitly state these conditions.
When adding new maxclique nodes, both here and in Stage 3, the syntax for the operation is
ADD(oldsep, newclique, newsep1, newsep2), where the two latter parameters may be missing. The
newclique node is added as a neighbor of oldsep and the newsep nodes are added as neighbors of
newclique. Thus, to extend the rightmost end of the body by a path Si,Xi+1, Si+1 we use in rule

I and rule II the operation ADD(Si,Xi+1, Si+1). In rule III we are additionally adding a hair
of length two consisting of minsep B and maxclique Hair to the new maxclique node Xi+1 and
express this by the two operations ADD(Si,Xi+1, B, Si+1) and ADD(B,Hair). In rule IV we are
additionally adding a hair W of length one to minsep node Si and express this by the additional
operation ADD(Si,W ). The boolean values HasHair and NeedsPair govern which of rule I to
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rule IV can be applied while ensuring that the conditions for minimal k-branches are fullfilled.
HasHair is True iff the rightmost maxclique node Xi of the current body has a hair H attached
to it. NeedsPair is True iff HasHair is True and the next-to-last maxclique node Xi−1 would not
be mergeable with Xi even if we had removed the hair H (in which case the next maxclique node
Xi+1 must satisfy that Xi+1 and Xi would be mergeable if we had removed H.)

Description of STAGE 2: Generation of the set EMS(k)
For space reasons we do not show a separate algorithm in the text. The input to Stage 2 is a
minimal k-skeleton (T,X ) ∈ MS(k) as generated by Stage 1. Stage 2 is a repeat-loop that
can be exited at any time and which in each iteration adds one new minsep leaf S as neighbor
of some maxclique node X of (T,X ), according to Definition 7. We must ensure that X will still
have a k-troika respecting its minsep neighbors. If X already had one neighbor A then condition
OK(X,A, S) must hold, if it had two neighbors A,B then condition OK(X,A,B, S) must hold, while
if it had three neighbors then a new neighbor cannot be added. These conditions are used also in
Stage 3 and defined by: ’OK(X,A,B) is True iff |X| + |A ∩ B| ≤ 2k’ and ’OK(X,A,B,C) is True
iff |A ∪ B| = |A ∪ C| = |B ∪ C| = |X|’.

Lemma 3 EMS(k) = {(T,X ) : ∃ sequence of choices in Stage 1 and in Stage 2 s.t. Stage 2

gives as output (T,X )}

Description of STAGE 3: Generate the set ES(k).
See Algorithm 2. As in Stage 1 the rule adding a new maxclique node X adjacent to an existing
minsep node A with new promise leaves B and C will have the syntax ADD(A,X,B,C). In case
we have one or zero promise leaves the syntax is ADD(A,X,B) and ADD(A,X). The shorthand
ADD(A,X, ...) can be replaced by any of the 3 rules. Similarly, the shorthand OK(X,A, ...) appearing
right after some ADD(A,X, ...) has the intepretation that any third and fourth parameters B and C
of the ADD also becomes a third and fourth parameter of the OK.

Algorithm 2: Stage 3: Takes as input some (T,X) ∈ EMS(k) produced by Stage 2 and
builds on this to produce as output an extended k-skeleton in ES(k)

repeat

Choose a minsep node A of T ;
if A a leaf with parent W having a single other neighbor S then

choose 1, 2, 3, 4 or 5;
1: ADD(A,New) s.t. |W ∪ New| > b3k/2c;
2: ADD(A,New,B) s.t. OK(New,A,B) and |W ∪ New| + |B ∩ S| > 2k;
3: ADD(A,New1) and ADD(A,New2) s.t. |New1 ∪ New2| > b3k/2c;
4: ADD(A,New1, B, ...) and ADD(A,New2, ...) s.t. OK(New1, A,B, ...) and
OK(New2, A, ...);
5: ADD(A,New,B,C) s.t. OK(New,A,B,C);

else

choose 6 or 7;
6: ADD(A,New,B, ...) s.t. OK;
7: ADD(A,New) s.t. |Y ∪ New| > b3k/2c for ∀Y maxclique leaf with parent A;

until done;
Output extended k-skeleton (T,X ), which represents a k-branch iff it has no minsep leaves;

Theorem 4 ES(k) = {(T,X ) : ∃ sequence of choices of rules in the 3 stages s.t. output is (T,X )}
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A Appendix - Correctness proof for the algorithm

Lemma 3 Proof We first show that MS(k) ⊇ {(T,X ) : ∃ sequence of choices in Stage 1 that gives
(T,X )}. For T having 1, 2, 4 or 6 maxclique nodes this is clear by the rules for 1clique, 2clique, 4clique
and 6clique. For 7 or more maxclique nodes we note that rule I and rule II does not add any hairs,
while rule III adds a hair to the new maxclique node and rule IV adds a hair to the old minsep node.
This means that conditions 1 and 4 of Definition 6 hold while conditions 2 and 3 hold by the OK1 test on
the Start and End additions. Condition 5 of Definition 6 holds since whenever the two last consecutive
maxclique nodes of the body both have a hair then HasHair and NeedsPair are both True and none of rule
II, III, IV or End addition could be applied, but only rule I. We have established that any T produced
by the first stage of the algorithm is a special caterpillar and it remains to show that the 6 conditions of
Theorem 3 hold for T . Conditions 1 and 2 hold by the OK1 test of the Start and End additions. Condition
3 is enforced but as mentioned we did not include it in this extended abstract not to clutter the Algorithm.
Condition 4 holds since only Rule III adds such a hair and the condition is explicitly mentioned in the rule.
Finally, if the last maxclique node of the body has a hair and part i) of condition 5 fails, then HasPair and
NeedsPair are both True and only rule I can be applied, which enforces part ii) of condition 5. Condition
6 holds since rule II does enforce Si \ (Si−1 ∪ Si+1) 6= ∅ while rule III, IV enforce addition of a hair,
and rule I is applied only when HasHair is already True.

We next show that MS(k) ⊆ {(T,X ) : ∃ sequence of choices in Stage 1 that gives (T,X )}: For T
having 1, 2, 4 or 6 maxclique nodes this is clear by the rules for 1clique, 2clique, 4clique and 6clique.
For 7 or more maxclique nodes we need to show that any (T,X ) ∈ MS(k) could have been generated by
Stage 1 of the Algorithm. First note that the OK1 tests at the Start and End additions will allow either
of the inequalities of condition 1 and condition 2 of Theorem 3 to hold. Thus we know that the ends of the
special caterpillar T can be generated correctly. For the rest of T note that the boolean values HasHair and
NeedsPair ensure that the Rules that can be applied will allow any (T,X ) satisfying conditions 3, 4, 5 and
6 of Theorem 3.

Thus we know that at the start of Stage 2 we have any (T,X ) in MS(k). To prove the lemma it thus
suffices to note that Stage 2 enforces exactly the conditions imposed on extended minimal k-skeletons in
EMS(k) as given by Definition 7. �

Theorem 4 Proof ⊇: By induction on the number of iterations of the repeat loop in the Stage 3. For
the base case, by Lemma 3 we know that the second stage gives (T,X ) ∈ EMS(k) which by definition is
a member of ES(k). For the inductive case, each of the 7 addition rules preserves membership in ES(k),
since we can easily check that the condition for having a mergeable subtree given in Definition 3 will never
be met.

⊆: Since (T,X ) ∈ ES(k) we know that there exists at least one subtree T ′ of T with the induced tree-
decomposition (T ′,X ′) ∈ MS(k). The proof will be by structural induction on the tree T . Base case: If the
subtree T ′ mentioned above is the subtree of T that we get by removing all minsep leaves from T then we
have (T,X ) ∈ EMS(k) and are done since by Lemma 3 there is a sequence of choices such that the Stage

2 gives T .
Inductive case: Assuming the base case does not hold we show that T contains a smaller subtree T ′

with the induced tree-decomposition (T ′,X ′) ∈ ES(k) and such that application of some rule 1-7 of the
Algorithm to the tree T ′ would give the tree T . We call a maxclique node pendant if it has at most one
neighbor that is not a leaf. We call a pendant node prunable if its minsep parent itself has at most one
non-pendant neighbor. We call a prunable node good if for the subtree T ′ resulting from removing it and
any of its leaf neighbors we have the induced tree-decomposition in ES(k), meaning that in particular T ′

itself contains a subtree whose induced tree-decomposition is a minimal k-skeleton. In the inductive case we
will consider a good prunable maxclique node X with parent A, which exists by the Claim below.

Claim: A tree T with (T,X ) ∈ ES(k) contains a good prunable node X iff (T,X ) 6∈ EMS(k).
Proof: Consider the subtree of T where we have removed all minsep leaves and then removed all maxclique
leaves. Any minsep leaf in this subtree is the parent of a prunable node. If none of these prunable nodes
are good in T , then the subtree of T that we get after removing all minsep leaves must induce a tree-
decomposition which is a minimal k-skeleton and thus (T,X ) ∈ EMS(k). On the other hand, if one of these
prunable nodes are good, then by definition (T,X ) 6∈ EMS(k). ♦

Let us first assume that A does not have any non-pendant neighbors. Then the intersection of any two
maximal cliques in T is equal to A. Let T ′ be the subtree resulting from removing X and any of its leaf
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neighbors from T . By induction T ′ could be generated by a sequence of choices of the algorithm. If X has
no leaf neighbors we apply rule 7 ADD(A, X) to T ′ to get T and if X has some leaf neighbors B, ... we apply
rule 6 ADD(A, X, B, ...) to T ′ to get T . Note that the conditions allowing application of these rules in the
Algorithm must be True, otherwise (T,X ) would not be an extended k-skeleton.

For the remaining cases, we have the good prunable maxclique node X with parent A and with the unique
non-pendant neighbor of A being called W . The possible arrangements of these nodes can be described by
3 numbers (x, y, z) where

• x ∈ {1, 2} describes the number of neighbors W has apart from A,
• y ∈ {1, 2, 3} describes the number of pendant maxclique neighbors A has, with 3 denoting any number

larger than 2
• z ∈ {0, 1, 2} describes the number of children leaves X has

The rest of the proof considers in turn each of these cases, showing that one of rules 1-7 could have been
applied to a subtree T ′ of T with (T ′,X ′) ∈ ES(k), to add the prunable maxclique node X and possibly some
of the other nodes as well, to yield the tree (T,X ). Note that rules 3 and 4 actually add 2 new maxclique
nodes as neighbors of the minsep A, whereas the other rules add only a single neighbor.

Let us start with a full argument for the case (x = 1, y = 1, z = 1). We then have in the tree T a
minsep leaf B with its parent X being a pendant maxclique node with a path B − X − A − W − S in
the tree T such that nodes X, A, W all have degree 2. Consider the tree T ′ = T \ {B, X} and note that
the assumption (T,X ) ∈ ES(k) implies (T ′,X ′) ∈ ES(k) since in particular no cliques could be merged
without increasing branchwidth in T ′ because then they could also be merged in T . The crucial point here
is that T ′ contains the promise leaf A and any clique that is merged with W in T ′ would still need to have a
k-troika respecting also A. By the induction hypothesis there is a derivation sequence giving (T ′,X ′) and we
argue that this derivation sequence followed by application of rule 2 with parameters ADD(A, X, B) will yield
(T,X ). The fact that applying this rule to (T ′,X ′) would yield (T,X ) is obvious so all we need to check is
that the conditions of the Algorithm allow application of rule 2. Rule 2 is prefaced by the condition ’If A
a leaf with parent W having a single other neighbor S choose 1,2,3,4 or 5’, and we first note that minsep
leaf A in the tree T ′ does indeed satisfy this condition. Rule 2 has the further condition ’if OK(X, A, B) and
|W ∪X |+ |B∩S| > 2k’ that holds for the following reason: Since T is a k-skeleton we must have OK(X, A, B)
since otherwise X could not have a k-troika respecting A, B, while condition |W ∪X |+ |B∩S| > 2k must be
True since otherwise we could have merged the two cliques X and W in T without increasing branchwidth
contradicting (T,X ) ∈ ES(k).

We now argue for the remaining cases. By inspecting the Algorithm, we note that rules 1-5 are used only
if A is a leaf and x = 1. Thus when y = 1, meaning that A has in T a single maxclique pendant neighbor
X , we take the subtree resulting from removing X and its leaf neighbors and apply to it rule 1 if z = 0, rule
2 if z = 1 and rule 5 if z = 2. In each case this will add X to A. This covers all cases of x = 1, y = 1. If
x = 1, y = 2 then the minsep node A has two pendant maxclique neighbors X1, X2. Let Xi have σi minsep
leaf neighbors and assume that σ1 ≥ σ2. We let z = σ1 and apply rule 3 in case z = 0 and we apply rule 4
in case z ∈ {1, 2}, adding both maxcliques X1 and X2. Note that no minimal k-skeleton has a minsep node
A of degree 3 with two leaves. Thus, both X1 and X2 are good prunable nodes. Moreover, since no minimal
k-skeleton has a minsep node A of degree 2 with one neighbor being X a leaf and the other neighbor W
having degree 2, then in fact we can remove both X1 and X2 and still be guaranteed to have a subtree T ′

of T with (T ′,X ′) ∈ ES(k). We have thus argued all cases of x = 1, y ∈ {1, 2}, z ∈ {0, 1, 2}.
It remains to argue for x = 2 and also all cases where y = 3. For all these cases we use rule 7 if z = 0 and

rule 6 otherwise, adding a single maxclique neighbor X to minsep A. Consider the subtree T ′ of T resulting
from removing X and its leaf neighbors. We note that the ’Else’ pre-condition for rules 6 and 7 hold, that
the pre-condition OK(New, A, B, ...) for rule 6 holds, and that the pre-condition |Y ∪ X | > b3k/2c for rule 7
holds since if X had no leaf neighbor and Y was another maxclique leaf neighbor of A then we would have
|Y ∪ X | > b3k/2c, as otherwise (T,X ) would not be a k-skeleton. We need to argue that (T ′,X ′) ∈ ES(k),
in particular that W could not in T ′ be merged with some maxclique Y into a larger new clique without
increasing branchwidth (the reason we cannot merge W with two other maxcliques Y1, Y2 in T ′ is because
then Y1, Y2 could have been merged already in T ). In all cases the argument is that in T ′ the new clique
would have two minsep neighbors S1, S2 and the newly merged clique would have to respect both S1 and
S2 which is not possible as S1 ∪ S2 6= W ∪ Y . In particular, in case x = 2 we take for S1, S2 the 2 minsep
neighbors of W different from A and in case x = 1, y = 3 we can use S1 = A since the minsep A would have
remained a minimal separator also in T ′. �
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