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Abstract

We re-consider perfect elimination digraphs, that were introduced by Haskins and Rose
in 1973, and view these graphs as directed analogues of chordal graphs. Several structural
properties of chordal graphs that are crucial for algorithmic applications carry over to the
directed setting, including notions like simplicial vertices, perfect elimination orderings, and
vertex layouts. We show that semi-complete perfect elimination digraphs are also charac-
terised by a set of forbidden induced subgraphs resemblant of chordless cycles. Moreover,
just as the chordal graphs are related to treewidth, the perfect elimination digraphs are
related to Kelly-width.

1 Introduction

In a paper from 2008, Hunter and Kreutzer [10] generalised a graph searching game, in which a
robber attempts to avoid capture by a number of cops, to a searching game on directed graphs.
The numbers of cops needed to guarantee capture in these games correspond to the treewidth
of the graph and the Kelly-width of the digraph1. Just as the graphs of treewidth at most k

are the partial k-trees, the digraphs of Kelly-width at most k are the partial k-DAGs. If in the
iterative construction of k-trees any value of k is allowed then we construct the chordal graphs.
In this paper, we study the class of digraphs constructed by likewise allowing any value of k in
the iterative construction of k-DAGs. These digraphs can be seen as a generalisation of chordal
graphs to digraphs, and are related to Kelly-width in the same way that chordal graphs are
related to treewidth.

Chordal graphs have many applications in algorithmic graph theory and also in practical
computing. Chordal graphs appear in a paper by Rose from 1970 [14] studying Gaussian elim-
ination on sparse systems of linear equations, but then under the name of perfect elimination
graphs. This study was generalised in a 1973 paper by Haskins and Rose [9], to the case of a
non-symmetric system, and gave rise to the definition of a perfect elimination digraph. The class
of digraphs studied in our paper is precisely the class of perfect elimination digraphs, giving a
historical precedence for viewing them as the directed analogue of chordal graphs.

We will see that perfect elimination digraphs share many properties with chordal graphs,
e.g. having a perfect elimination ordering, being definable by the existence of a linear vertex
layout, or by an iterative construction process. However, the chordal graphs get their name from
being exactly those graphs where every cycle of length at least 4 has a chord. Our main aim in
this paper is to investigate whether the perfect elimination digraphs share a similar property.
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presented at the 35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2009).
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‡Department of Informatics, University of Bergen, Norway. Email: jan.arne.telle@ii.uib.no
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Figure 1: If G is a perfect elimination digraph then uni(G) does not contain a copy of any of
the four depicted digraphs as an induced subgraph.

In Section 2 of the paper, we give formal definitions. Unlike the perfect elimination graphs
(chordal graphs) the interest in perfect elimination digraphs seems to have lain dormant since
the publication in 1978 of a paper by Rose and Tarjan [15]. In Section 3, we restate and reprove
some of the implicit and explicit results on perfect elimination digraphs from the 1970s, bringing
the terminology in line with more recent investigations of chordal graphs. We then focus on a
characterisation of perfect elimination digraphs by forbidden induced subgraphs.

Let us describe our results informally. Partition the arcs of a digraph G to define two
digraphs uni(G) and bi(G), with uni(G) containing the arcs (u, v) for which (v, u) is not an arc,
and bi(G) containing the arcs (u, v) for which (v, u) is also an arc. Our first result states that
if bi(G) is empty (equivalently, if G is an orientation) then G is a perfect elimination digraph if
and only if G is acyclic (equivalently, contains no chordless directed cycle of length 3 or larger).
On the other hand, if uni(G) is empty then G is a perfect elimination digraph if and only if G
contains no chordless directed cycle of length 4 or larger. Note that G could be viewed as an
undirected graph precisely when uni(G) is empty, and hence the latter result shows that indeed
the perfect elimination digraphs are a generalisation of chordal graphs. We also show that if
G is a perfect elimination digraph then bi(G) contains no chordless directed cycle of length 4
or larger. These results are in Section 4. An important and large class of digraphs are the
semi-complete digraphs, where every pair of vertices has at least one arc. In Section 5, we show
that a semi-complete digraph G is a perfect elimination digraph if and only if the underlying
graph of bi(G) is chordal and uni(G) does not contain an induced subgraph isomorphic to a
digraph in Figure 1.

In Section 6, we summarise our results and pose several open problems.

2 Preliminaries

We consider directed and undirected graphs. All graphs in this paper are simple and finite.
In particular, our graphs have no loops. Directed graphs are called digraphs. A “graph” may
be directed or undirected. Let F be a graph. A vertex layout for F is a linear ordering β =
〈x1, . . . , xn〉 of the vertices of F . For an ordered vertex pair u, v of F , we write u ≺β v if u = xi
and v = xj for some indices i, j with 1 ≤ i, j ≤ k and i < j.

Let G be a digraph. The vertex set of G is denoted as V (G), and the arc set of G is denoted
as A(G). The arcs of G are denoted as (u, v). For a vertex pair u, v of G, if (u, v) or (v, u) is
an arc of G then u and v are adjacent in G; otherwise, if neither (u, v) nor (v, u) is an arc of
G, u and v are non-adjacent in G. If (u, v) is an arc of G then u is an in-neighbour of v and
v is an out-neighbour of u in G. The in-neighbourhood of u in G, denoted as N in

G (u), is the set
of the in-neighbours of u in G, and the out-neighbourhood of u in G, denoted as Nout

G (u), is the
set of the out-neighbours of u in G. For a set X of vertices of G, G[X] denotes the subgraph of
G induced by X, which is the digraph on vertex set X, and for every ordered vertex pair u, v

of G, (u, v) ∈ A(G[X]) if and only if u, v ∈ X and (u, v) ∈ A(G). A digraph G′ is an induced
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subgraph of G if there is X ⊆ V (G) such that G′ = G[X]. For a digraph G′, we say that G

contains a copy of G′ as an induced subgraph if there is X ⊆ V (G) such that G′ and G[X] are
isomorphic, i.e., G′ is obtained from G[X] by renaming the vertices. For x a vertex of G, G−x

is the subgraph of G induced by V (G) \ {x}. For u and v not necessarily different vertices of
G and k an integer with k ≥ 0, a directed u, v-path of G of length k is a sequence (x0, . . . , xk)
of pairwise different vertices of G where x0 = u and xk = v and (xi, xi+1) ∈ A(G) for every
0 ≤ i < k. A directed cycle of length k of G is a sequence C = (x1, . . . , xk) of pairwise different
vertices of G such that C is a directed x1, xk-path of G (of length k − 1) and (xk, x1) ∈ A(G).
Note that a directed cycle can also be seen as a directed x, x-path for some vertex x of G. Since
G has no loops, every directed cycle of G has length at least 2.

Let H be an undirected graph. The vertex set of H is denoted as V (H), the edge set of
H is denoted as E(H), and the edges of H are denoted as {u, v}. For a vertex pair u, v of H,
if {u, v} is an edge of H then u and v are adjacent in H; otherwise, u and v are non-adjacent
in H. For a vertex u of H, the neighbourhood of u in H, NH(u), is the set of the vertices of
H that are adjacent to u in H, and NH [u] =def NH(u) ∪ {u}. A set X of vertices of H is a
clique of H if the vertices from X are pairwise adjacent in H. H is called complete if every
vertex pair of H is adjacent. Let k be an integer with k ≥ 3. A cycle of length k of H is a
sequence C = (x1, . . . , xk) of k pairwise different vertices of H such that {xi, xi+1} ∈ E(H) for
every 1 ≤ i < k and {x1, xk} ∈ E(H). An edge {u, v} of H is a chord of C if u = xi and v = xj
for some indices i, j with 1 ≤ i, j ≤ k and 1 < |j − i| < k − 1. A cycle without chords is called
chordless.

An undirected graph without chordless cycles of length at least 4 is called chordal. Chordal
undirected graphs have a large number of different characterisations, such as by properties
of minimal separators [4] or as intersection graphs [3, 6, 17]. Another characterisation is the
following, through vertex layouts.

Theorem 2.1 ([14]). An undirected graph H is chordal if and only if H has a vertex layout β
such that for every vertex triple u, v, w of H with u ≺β v ≺β w, if {v, u} and {u,w} are edges
of H then {v, w} is an edge of H.

A digraph is called acyclic if it contains no directed cycle. It particularly holds for every
vertex pair u, v of an acyclic digraph G that (u, v) is not an arc of G or (v, u) is not an arc
of G. The following characterisation is folklore: A digraph G is acyclic if and only if G has a
vertex layout β such that u ≺β v for every arc (u, v) of G. Such a vertex layout for G is called a
topological ordering. The underlying graph of a digraph G is the undirected graph H on vertex
set V (G) such that for every vertex pair u, v of G, {u, v} ∈ E(H) if and only if u and v are
adjacent in G.

3 Perfect elimination digraphs and simple results

Haskins and Rose introduced the class of perfect elimination digraphs as a directed analogue
of undirected graphs having a perfect elimination scheme [9]. It is implicit in their work that
perfect elimination digraphs can be equivalently defined through vertex layouts, and this was
also mentioned by Kleitman [11]. We state the two definitions using terminology appropriate to
our study and give a proof of their equivalence.

Definition 3.1. Let G be a digraph with vertex layout β. We say that β is directed transitive
if for every ordered vertex triple u, v, w of G with u ≺β v and u ≺β w, (v, u) ∈ A(G) and
(u,w) ∈ A(G) implies (v, w) ∈ A(G).
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Note the similarity to the vertex layout characterising chordal graphs in Theorem 2.1.
The definition of chordal graphs in terms of perfect elimination schemes is intimately related

to their alternative definition in terms of an inductive construction process, and it is easy to
move from one definition to the other. So also for perfect elimination digraphs. We prefer to
give the definition in terms of the inductive construction process. The definition is based on a
digraph notion that resembles the notion of a clique in undirected graphs; we call this a d-clique.

Definition 3.2. Let G be a digraph. Let A and B be sets of vertices of G, where A∩B may be
non-empty. We call (A,B) a d-clique of G if for every ordered vertex pair a, b of G with a ∈ A

and b ∈ B and a 6= b, (a, b) is an arc of G.

We can say that (A,B) is a d-clique of G if G contains all arcs from A to B. Note that A∩B

induces a complete digraph in G.

Definition 3.3. The class of perfect elimination digraphs is inductively defined as follows:

1) a digraph on a single vertex is a perfect elimination digraph

2) let G be a perfect elimination digraph, let u be a vertex that does not appear in G, let
(A,B) be a d-clique of G; the digraph that is obtained from G by adding u and the arcs
from the set {(a, u) : a ∈ A} ∪ {(u, b) : b ∈ B} is a perfect elimination digraph.

We can say that a perfect elimination digraph is built from a single vertex by repeatedly
adding vertices and joining them to d-cliques. This construction process defines sequences of
vertices. Let G be a perfect elimination digraph. If G is a digraph on a single vertex x then 〈x〉
is a construction sequence for G, and if G is obtained from a perfect elimination digraph G′ by
adding a new vertex x then 〈x, y1, . . . , yn〉 is a construction sequence forG whenever 〈y1, . . . , yn〉 is
a construction sequence for G′. It is important to observe that every perfect elimination digraph
has a construction sequence. Let us mention that the reversal of a construction sequence will
correspond to a perfect elimination scheme, with the next vertex x to be eliminated from the
digraph having the property that in the remaining graph the pair consisting of its set of out-
neighbors A and its set of in-neighbors B form a d-clique. We return to this in Proposition 3.6.
Let us first consider the alternative definition in terms of vertex layouts.

Proposition 3.4. Let G be a digraph with vertex layout β = 〈x1, . . . , xn〉. Then, G is a perfect
elimination digraph with construction sequence β if and only if β is directed transitive.

Proof. Let G have at least two vertices, let G′ =def G−x1 and β′ =def 〈x2, . . . , xn〉. Assume
that G′ is a perfect elimination digraph with construction sequence β′ if and only if β′ is directed
transitive.

Assume that β′ is directed transitive for G′. Let u, v, w be an ordered vertex triple of G with
u ≺β v and u ≺β w and (v, u) ∈ A(G) and (u,w) ∈ A(G). If x1 ≺β u then u, v, w are vertices of
G′, and (v, w) ∈ A(G). If x1 = u then (N in

G (u), Nout
G (u)) is a d-clique of G, and (v, w) ∈ A(G).

Thus, β is directed transitive for G.
Assume that G′ is a perfect elimination digraph with construction sequence β′. Let A =def

N in
G (x1) and B =def N

out
G (x1). Note that x1 ≺β y for every vertex y from A∪B. The definition

of directed transitive vertex layouts implies (a, b) ∈ A(G) for every ordered vertex pair a, b of
G with a ∈ A and b ∈ B and a 6= b, and so, (A,B) is a d-clique of G. Thus, G is a perfect
elimination digraph with construction sequence β.

Since every sublayout of a directed transitive vertex layout is also directed transitive, it is an
easy corollary of Proposition 3.4 that the class of perfect elimination digraphs is closed under
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taking induced subgraphs. This also means that every digraph with an induced subgraph that
is not a perfect elimination digraph cannot be a perfect elimination digraph itself. Therefore,
perfect elimination digraphs admit a characterisation via forbidden induced subgraphs.

A digraph G is weakly connected if for every vertex pair u, v of G, there is a directed u, v-path
or a directed v, u-path in G. The weakly connected components of a digraph are the maximal
induced subgraphs that are weakly connected. Appending construction sequences of weakly
connected perfect elimination digraphs yields a construction sequence for the disjoint union of
the digraphs. Thus, a digraph is a perfect elimination digraph if and only if each of its weakly
connected components is a perfect elimination digraph.

We consider another alternative characterisation of perfect elimination digraphs. Let G be
a digraph and let x be a vertex of G. We say that x is di-simplicial in G if (N in

G (x), Nout
G (x))

is a d-clique of G. Di-simplicial vertices admit a characterisation through directed paths. For
G a digraph, x a vertex of G and P = (x0, . . . , xk) some directed path in G, P−x is the vertex
sequence that emerges from (x0, . . . , xk) by deleting vertex x, if it appears in P . Thus, if x = xi
for some index x with 0 ≤ i ≤ k then P−x = (x0, . . . , xi−1, xi+1, . . . , xk).

Lemma 3.5. Let G be a digraph, and let x be a vertex of G. Then, x is di-simplicial in G if
and only if for every directed path P of G of length at least 1, P−x is a directed path of G.

Proof. Assume that x is di-simplicial in G. Let P = (x0, . . . , xk) be a directed path of G of
length at least 1. If x does not appear on P then P = P−x, and P−x is a directed path of G.
If x = x0 or x = xk then P−x is a directed path of G. So, assume that x = xi for some index i

with 0 < i < k. Since xi−1 ∈ N in
G (x) and xi+1 ∈ Nout

G (x), it holds that (xi−1, xi+1) ∈ A(G), and
thus, P−x is a directed path of G.

For the converse, assume that x is not di-simplicial. Then, there is a vertex pair a, b of G
with a ∈ N in

G (x) and b ∈ Nout
G (x) and (a, b) 6∈ A(G). Thus, P =def (a, x, b) is a directed path of

G of length at least 1 and P−x is not a directed path of G.

We use di-simplicial vertices to characterise perfect elimination digraphs. Note that the proof
of Proposition 3.4 also shows that the first (leftmost) vertex of a construction sequence for a
perfect elimination digraph is a di-simplicial vertex, which implies that every perfect elimination
digraph has a di-simplicial vertex. The following result can be seen as a different formulation of
the following fact: A digraph is a perfect elimination digraph if and only if each of its induced
subgraphs has a di-simplicial vertex.

Proposition 3.6. Let G be a digraph. Then, G is a perfect elimination digraph if and only if
G can be reduced to a digraph on a single vertex by repeatedly deleting an arbitrary di-simplicial
vertex.

Proof. If G is a digraph on a single vertex then the statement easily holds. So, let G have at
least two vertices. Assume that G is a perfect elimination digraph. Then, G has a di-simplicial
vertex x, and G−x can be reduced to a digraph on a single vertex by repeatedly deleting an
arbitrary di-simplicial vertex.

For the converse, assume that G can be reduced to a digraph on a single vertex by repeatedly
deleting an arbitrary di-simplicial vertex. If G has exactly one vertex then G is a perfect
elimination digraph. Assume that G has at least two vertices, and let x be the vertex that is
picked first. Then, x is a di-simplicial vertex of G, and since G−x can be reduced to a digraph
on a single vertex by repeatedly deleting an arbitrary di-simplicial vertex, G−x is a perfect
elimination digraph. Then, G is obtained from G−x by adding x in the sense of Definition 3.3,
and G is a perfect elimination digraph.
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Figure 2: The left side digraph is a perfect elimination digraph, that has exactly one di-simplicial
vertex. The right side digraph has two strongly connected components on two vertices each,
that are perfect elimination digraphs, but the whole digraph is not a perfect elimination digraph,
particularly since it has no di-simplicial vertex.

To conclude this section, we review the results of this section and relate them to known
results for undirected graphs. Perfect elimination digraphs have strong similarities to chordal
undirected graphs. A vertex of an undirected graph is simplicial if its neighbourhood is a clique.
It can be verified easily that simplicial vertices of undirected graphs admit a characterisation
that is analogous to the one of Lemma 3.5. This particularly means that the restriction of
being di-simplicial to undirected graphs coincides with the notion of being simplicial, and this
shows a correspondence between perfect elimination digraphs and chordal undirected graphs.
Nevertheless, perfect elimination digraphs are more complex in structure than chordal undirected
graphs and therefore do not have so strong properties as chordal undirected graphs. For example,
every chordal undirected graph that is not complete has a pair of non-adjacent simplicial vertices
[4]. A similar result does not hold for perfect elimination digraphs. The left side digraph of
Figure 2 is a perfect elimination digraph on four vertices, that has non-adjacent vertices, and
the digraph has exactly one di-simplicial vertex, namely the bottom vertex.

Let G be a digraph on n vertices and m arcs. It can be tested in O(n+m) time whether a
specific vertex is di-simplicial. Thus, a di-simplicial vertex of a digraph can be found in O(nm)
time, or it can be output that no such vertex exists. The result of Proposition 3.6 therefore
implies an easy O(n2m)-time algorithm for recognising perfect elimination digraphs. Rose and
Tarjan gave a more efficient implementation of the recognition algorithm, that has running
time O(nm) [15]. The main idea is to keep a list of missing arcs, that separate a vertex from
being di-simplicial, and to update this list with every deleted vertex. Rose and Tarjan also asked
the question of how good the running time is and whether it can be improved. They showed that
verifying whether an acyclic digraph is transitive is linear-time reducible to recognising perfect
elimination digraphs [15], thus, recognising perfect elimination digraphs is bounded from below
by Boolean matrix multiplication.

We have learnt that a digraph is a perfect elimination digraph if and only if all its weakly
connected components are perfect elimination digraphs. Can this characterisation be strength-
ened to hold for strongly connected components? This is not the case, since there are digraphs
that are not perfect elimination digraphs but each of their strongly connected components is a
perfect elimination digraph, even if we require the strongly connected components to have more
than one vertex. Such an example is the right side digraph of Figure 2.

4 Two classes of perfect elimination digraphs

We aim at a characterisation of the perfect elimination digraphs through forbidden induced
subgraphs. We will not give such a characterisation for the whole class of perfect elimination
digraphs. But, we will give characterisations for large subclasses of perfect elimination digraphs.
In this section, we consider two classes of digraphs, that are defined by the number of arcs
between vertex pairs.
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A pair of adjacent vertices of a digraph can be connected by exactly one arc or by two arcs.
In this section, we consider digraphs for which either all pairs of adjacent vertices fall into the
one class or all pairs of adjacent vertices fall into the other class. Let G be a digraph. By
uni(G), we denote the digraph on vertex set V (G) such that for every ordered vertex pair u, v
of G, (u, v) is an arc of uni(G) if and only if (u, v) ∈ A(G) and (v, u) 6∈ A(G). We can say that
uni(G) is the restriction of G to the arcs that connect two vertices in a unique way. We call
uni(G) the uni-restriction of G. If uni(G) = G then G is an orientation of an undirected graph.

Proposition 4.1. Let G be a digraph with uni(G) = G. Then, G is a perfect elimination digraph
if and only if G is acyclic.

Proof. If G is acyclic then G has a vertex layout that is a topological ordering. Topological
orderings are directed transitive vertex layouts, and thus, G is a perfect elimination digraph due
to Proposition 3.4.

For the converse, assume that G is a perfect elimination digraph. Due to Proposition 3.4,
G has a directed transitive vertex layout β. For a contradiction, suppose that G is not acyclic.
Then, there is a smallest integer k with k ≥ 3 such that G has a directed cycle (x1, . . . , xk) of
length k. Note that G cannot have a directed cycle of length at most 2 due to our assumptions
about loops and the restriction of G to uni(G) = G. Without loss of generality, we may
assume that x1 ≺β x2 and x1 ≺β xk. Then, (xk, x1) ∈ A(G) and (x1, x2) ∈ A(G), so that
(xk, x2) ∈ A(G), and (x2, . . . , xk) is a directed cycle of G of length k − 1, contradicting the
choice of k as smallest possible integer. Thus, G is acyclic.

Proposition 4.1 completely characterises the perfect elimination digraphs that are orienta-
tions of undirected graphs. These are exactly the acyclic digraphs. Let G be a digraph, and
assume that G has a directed cycle C = (x1, . . . , xk). An arc (u, v) of G is a chord of C in G

if u = xi and v = xj for some i, j with 1 ≤ i, j ≤ k and 1 < |i − j| < k. Note that, like for
undirected graphs, a chord of a directed cycle C shortcuts the cycle and makes a subpath of C
into a directed cycle. However, unlike for undirected graphs, a chord of C can make exactly one
subpath of C into a directed cycle. A directed cycle is chordless if it has no chord.

The acyclic digraphs are the digraphs without directed cycles. Since directed cycles of
arbitrary length are forbidden, we can strengthen: The acyclic digraphs are the digraphs without
chordless directed cycles. In case of digraphs that are orientations of undirected graphs, we can
strengthen even further: A digraph G with uni(G) = G is a perfect elimination digraph if and
only if G has no chordless directed cycle of length at least 3. Since every undirected graph has an
acyclic orientation, every undirected graph is the underlying graph of some perfect elimination
digraph, so that the underlying graph of a digraph does not provide a necessary or a sufficient
condition on whether a digraph is a perfect elimination digraph.

As the second class of digraphs that we consider in this section, we study the perfect elim-
ination digraphs for which all pairs of adjacent vertices are connected by two arcs. Let G be a
digraph. By bi(G), we denote the digraph on vertex set V (G) such that for every ordered vertex
pair u, v of G, (u, v) is an arc of G if and only if (u, v) ∈ A(G) and (v, u) ∈ A(G). We call bi(G)
the bi-restriction of G. Observe for every digraph G that an arc of G is an arc of either uni(G)
or bi(G). In particular, A(G) = A(uni(G)) ∪ A(bi(G)). If bi(G) = G then G is obtained from
an undirected graph by replacing every edge by the two possible arcs. Unlike for uni(G), the
structure of bi(G) provides a necessary condition for a digraph G to be a perfect elimination
digraph.

Lemma 4.2. Let G be a digraph. If G is a perfect elimination digraph then bi(G) contains no
chordless directed cycle of length at least 4.
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Proof. Assume that G is a perfect elimination digraph. If bi(G) contains no directed cycle of
length at least 4 then the claim of the lemma holds. So, as the other case, assume that bi(G)
contains a directed cycle of length at least 4. Let β be a directed transitive vertex layout for
G, that exists due to Proposition 3.4. Let k be an integer with k ≥ 4, and let C = (x1, . . . , xk)
be a directed cycle of bi(G) of length k. Observe that (x1, xk, xk−1, . . . , x2) is also a directed
cycle of G. Without loss of generality, we may assume that x1 ≺β x2 and x1 ≺β xk. Thus,
(x2, x1), (xk, x1) ∈ A(G) and (x1, x2), (x1, xk) ∈ A(G) and (x2, xk), (xk, x2) ∈ A(G). This means
that x2 and xk are adjacent in bi(G), and C has a chord in G. It follows that no directed cycle
of bi(G) of length at least 4 is chordless.

Lemma 4.2 shows that the underlying graph of bi(G) for G a perfect elimination digraph
must be chordal. Or, as a negative condition, if the underlying graph of bi(G) is not chordal
then G cannot be a perfect elimination digraph. The converse is true for a class of digraphs.

Proposition 4.3. Let G be a digraph with bi(G) = G. Then, G is a perfect elimination digraph
if and only if G contains no chordless directed cycle of length at least 4.

Proof. If G is a perfect elimination digraph then the claim follows from the assumption that
bi(G) = G and from Lemma 4.2.

For the converse, assume that G contains no chordless directed cycle of length at least 4.
Then, the underlying graph H of G is chordal. Due to Theorem 2.1, H has a vertex layout β such
that for every vertex triple u, v, w of H with u ≺β v ≺β w, {v, u} ∈ E(H) and {u,w} ∈ E(H)
implies {v, w} ∈ E(H). We show that β is a directed transitive vertex layout for G. Let u, v, w
be an ordered vertex triple of G with u ≺β v and u ≺β w and (v, u), (u,w) ∈ A(G). Then,
{v, u}, {u,w} ∈ E(H), and thus {v, w} ∈ E(H), which particularly means that (v, w) ∈ A(G).
Applying Proposition 3.4, we conclude that G is a perfect elimination digraph.

As a corollary of Proposition 4.3, we conclude that a digraph G with bi(G) = G is a perfect
elimination digraph if and only if the underlying graph of G is chordal. It is important to
note here that every chordal undirected graph is the underlying graph of some digraph G with
bi(G) = G.

In this section, we have studied two classes of perfect elimination digraphs and given char-
acterisations by forbidden induced subgraphs. The perfect elimination digraphs that are equal
to their uni-restrictions are characterised by the class of directed cycles as the set of forbidden
induced subgraphs. However, each such directed cycle can be an induced subgraph of uni(G) of
some perfect elimination digraph G, by having a chord in bi(G).

5 Semi-complete perfect elimination digraphs

In this section, we consider digraphs whose underlying undirected graph is complete and char-
acterise the perfect elimination digraphs of this type by forbidden subgraphs. Before we concen-
trate on the main objective of this section, we present a simple and important closure property
for perfect elimination digraphs. Let G be a digraph. The digraph rev(G) is the digraph on
vertex set V (G), and for every ordered vertex pair u, v of G, (u, v) is an arc of rev(G) if and
only if (v, u) is an arc of G. We call rev(G) the reverse digraph of G. Note that the reverse
digraph of the reverse digraph of G is G itself, i.e., rev(rev(G)) = G. The following result is
verified straightforward.

Lemma 5.1. Let G be a digraph. Then, G is a perfect elimination digraph if and only if rev(G)
is a perfect elimination digraph.
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Lemma 5.1 shows that the class of perfect elimination digraphs is closed under taking reverse
digraphs. Thus, the set of forbidden induced subgraphs for perfect elimiation digraphs is also
closed under taking reverse digraphs. Therefore, studying classes of perfect elimination digraphs
with respect to forbidden induced subgraphs is preferable for reverse digraph closed classes. The
studied classes in Section 4 are closed under taking reverse digraphs.

In this section, we consider semi-complete perfect elimination digraphs. A digraph G is
semi-complete if every vertex pair of G is adjacent. Equivalently said, the underlying graph
of a semi-complete digraph is complete. Note that the vertex pairs of semi-complete digraphs
may be connected by one or two arcs. We give a complete characterisation of semi-complete
perfect elimination digraphs by forbidden induced subgraphs. We obtain this result by studying
the vertices of uni(G) that are di-simplicial in bi(G). Our approach to the forbidden induced
subgraphs characterisation is by giving a characterisation of semi-complete digraphs without
di-simplicial vertices. Remember from Proposition 3.6 that every perfect elimination digraph
has a di-simplicial vertex.

Let F be a semi-complete digraph and let u, v, w be an ordered vertex triple of F of pairwise
different vertices. We call (u, v, w) a witness triple for u in F if one of the following three
conditions is satisfied:

– (u, v, w) is a witness triple of the first type:
u and v are non-adjacent in uni(F ) and u and w are non-adjacent in uni(F ) and (v, w) is
an arc of uni(F )

– (u, v, w) is a witness triple of the second type:
u and w are non-adjacent in uni(F ) and either (u, v) and (v, w) are arcs of uni(F ) or (w, v)
and (v, u) are arcs of uni(F )

– (u, v, w) is a witness triple of the third type:
(v, u), (u,w) and (w, v) are arcs of uni(F ).

Witness triples witness that a vertex is not di-simplicial.

Lemma 5.2. Let F be a semi-complete digraph, and let u be a vertex of F . Then, u is a
di-simplicial vertex of F if and only if there is no witness triple for u in F .

Proof. Assume that F has a witness triple (u, v, w) for u. We show that u is not di-simplicial
in F . We distinguish between the three cases:

– (u, v, w) is a witness triple of the first type
since v and w are adjacent to u in bi(F ), it holds that w ∈ N in

F (u) and v ∈ Nout
F (u), and

since (w, v) 6∈ A(F ), it follows that (N in
F (u), Nout

F (u)) is not a d-clique of F

– (u, v, w) is a witness triple of the second type
since (w, u) is an arc of F , if (u, v) and (v, w) are arcs of uni(F ) then (w, v) is not an arc
of F , and (N in

F (u), Nout
F (u)) is not a d-clique of F , and since (u,w) is an arc of F , if (w, v)

and (v, u) are arcs of uni(F ) then (v, w) is not an arc of F , and (N in
F (u), Nout

F (u)) is not a
d-clique of F

– (u, v, w) is a witness triple of the third type
(v, u), (u,w) and (w, v) are arcs of uni(F ), (v, w) is not an arc of F , and (N in

F (u), Nout
F (u))

is not a d-clique of F .
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In each of the three cases, (N in
F (u), Nout

F (u)) is not a d-clique of F , and thus, u is not di-simplicial
in F .

For the converse, let u not be di-simplicial in F . This means that (N in
F (u), Nout

F (u)) is not a
d-clique of F , so that there are vertices v, w with v ∈ N in

F (u) and w ∈ Nout
F (u) and v 6= w such

that (v, w) is not an arc of F . Since v and w are adjacent in F , it follows that (w, v) ∈ A(F ). If
v and w are adjacent to u in bi(F ) then (u,w, v) is a witness triple of the first type for u in F .
If v and w are non-adjacent to u in bi(F ) then (u, v, w) is a witness triple of the third type for
u in F . If v is adjacent to u in bi(F ) and w is adjacent to u in uni(F ) then (u,w, v) is a witness
triple of the second type, and if w is adjacent to u in bi(F ) and v is adjacent to u in uni(F ) then
(u, v, w) is a witness triple of the second type for u in F . Thus, in each of the possible cases, u
has a witness triple in F .

We are interested in minimal semi-complete digraphs without di-simplicial vertices. We show
next that a di-simplicial vertex is a restricted type of simplicial vertex. This gives an easy but
powerful tool for the main result in this section.

Lemma 5.3. Let G be a digraph, and let u be a vertex of G. If u is di-simplicial in G then u

is simplicial in the underlying graph of bi(G).

Proof. Let H be the underlying graph of bi(G). If H is a complete undirected graph then
every vertex of H is simplicial. Assume that H is not complete. Assume that u is not a
simplicial vertex of H. Due to the definition of simplicial vertices, there are vertices v, w of H
such that v and w are adjacent to u in H and v and w are non-adjacent in H. It follows that
(u, v), (v, u), (u,w), (w, u) are arcs of G and either (v, w) is an arc of G or (w, v) is an arc of G.
This means that v, w ∈ N in

G (u) and v, w ∈ Nout
G (u), and (N in

G (u), Nout
G (u)) is not a d-clique of

G, so that u is not di-simplicial in G.

For the proof of our main result, we need two properties of chordal undirected graphs. We
repeat some definitions for undirected graphs. Let H be an undirected graph. For a set X of
vertices of H, H \X is the undirected graph on vertex set V (H) \X, and a vertex pair u, v of
H \X is adjacent in H \X if and only if u and v are adjacent in H. Let k ≥ 0 be an integer,
and let u, v be a vertex pair of H. A vertex sequence (x0, . . . , xk) of pairwise different vertices
of H is a u, v-path of H of length k if x0 = u and xk = v and {xi, xi+1} ∈ E(H) for every
0 ≤ i < k. H is called connected if H has a u, v-path for every vertex pair u, v of H. If there is
a vertex pair u, v of H such that H has no u, v-path then H is called disconnected. A connected
component of a disconnected undirected graph H is the connected undirected graph H \ Y for
some inclusion-minimal set Y ⊆ V (H).

Let H be an undirected graph. A maximal clique of H is a clique of H that is not properly
contained in another clique of H. A clique tree for H is an ordered pair (T,B) where T is a tree
and B is the set of the maximal cliques of H, and there is a 1-to-1 correspondence between the
maximal cliques in B and the nodes of T such that for every ordered node triple a, b, c of T ,
let Ba, Bb, Bc denote the maximal cliques from B that correspond to respectively a, b, c, if b is a
node on the a, c-path of T then Ba ∩ Bc ⊆ Bb. An undirected graph is chordal if and only if it
has a clique tree [3, 6, 17], also [2].

Lemma 5.4. Let H be a chordal undirected graph.

1) Let x and y be vertices of H, and assume that x and y are adjacent and simplicial in H.
Then, NH [x] = NH [y].

2) Let x be a vertex of H, and assume that NH [x] ⊂ V (H). Every connected component of
H \NH [x] contains a vertex that is simplicial in H.
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Proof. We prove the first statement. Since x is simplicial in H and x and y are adjacent, it
holds that NH [x] ⊆ NH [y], and since y is simplicial in H and x and y are adjacent, it holds that
NH [y] ⊆ NH [x].

We prove the second statement. Let (T,B) be a clique tree for H. For every node v of T ,
denote by Bv the maximal clique from B that corresponds to v. Let R be a node of T with
x ∈ BR; since {x} is a clique of H, such a node must exist. Since BR is a clique of H, it directly
follows that BR ⊆ NH [x]. We assign a rank to every node of T : R has rank 0, and for every
node u of T , the rank of u is the smallest integer k such that T has an u,R-path of length k.

Let C be a connected component of H \NH [x]. Let a be a node of T of highest rank such
that Ba contains a vertex from C. Observe that a 6= R. Let b be the node of T of lowest rank
such that a and b are adjacent in T . Since T is a tree, b is uniquely defined. Since Ba and
Bb are different maximal cliques of H, it holds that Ba \ Bb is non-empty. Since Ba contains a
vertex from C, every vertex in Ba is adjacent to some vertex of C in H. So, every vertex from
Ba that is not contained in NH [x] is a vertex of C. If x ∈ Ba then every vertex from Ba \ {x}
is adjacent to x in H, i.e., Ba ⊆ NH [x], contradicting the choice of a. Thus, x 6∈ Ba, and no
vertex from Ba \Bb is in NH [x]. Note that this follows from the choice of R as being a node of
T whose corresponding maximal clique contains x. Due to the choice of a, Ba contains a vertex
of C, and thus, all vertices in Ba \Bb are vertices of C.

Let u be a vertex from Ba \Bb. Suppose for a contradiction that there is a node c of T with
c 6= a and c 6= b and u ∈ Bc. The definition of clique trees shows that we can choose c as being
adjacent to a in T . It follows that c must have larger rank than a, and Bc contains a vertex of
C, namely u. This contradicts the choice of a. Thus, Ba is the unique maximal clique of H that
contains u, i.e., NH [u] = Ba. This means that u is a simplicial vertex of H.

We are ready to prove the main result of this section.

Lemma 5.5. Let F be a semi-complete digraph. Assume that the underlying graph of bi(F ) is
chordal. Assume that F is not a perfect elimination digraph. Then, uni(F ) contains a copy of
one of the four digraphs depicted in Figure 1 as an induced subgraph.

Proof. For the proof, we distinguish between two main cases. As the first main case, we will
assume that F contains no di-simplicial vertex, and as the second main case, we will assume
that F contains a di-simplicial vertex.

1) F contains no di-simplicial vertex

Let G =def uni(F ) be the uni-restriction of F , and let H be the underlying graph of the bi-
restriction bi(F ) of F . Remember that F,G,H are graphs on the same vertex set. Due to the
assumptions of the lemma, H is a chordal undirected graph. Lemma 5.3 shows that every vertex
of H that is not simplicial in H is not di-simplicial in F , and the candidates for di-simplicial
vertices of F are the simplicial vertices of H. Since H is chordal, H has simplicial vertices, and
we analyse how none of these vertices is di-simplicial in F . Let S be the set of the vertices of F
that are simplicial in H.

Claim A: Let u be a vertex from S. Then, u has only witness triples of the second or third
type in F .

Proof. Since u is not di-simplicial in F due to our assumptions, u has a witness triple (u, v, w)
in F due to Lemma 5.2. Suppose for a contradiction that (u, v, w) is a witness triple of the first
type for u in F . Since v and w are not adjacent to u in G, it follows that v and w are adjacent
to u in bi(F ) and thus in H. Since u is a simplicial vertex of H, v and w are adjacent in H and
therefore are non-adjacent in G, a contradiction.
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If there is a vertex from S that has a witness triple of the third type in F then G contains a copy
of the first digraph (digraph (a)) of Figure 1 as an induced subgraph. We henceforth assume
that the witness triples for the vertices from S in F are all of the second type.

We construct an auxiliary digraph D as follows:

V) D has vertex set S, the set of the simplicial vertices of H

A) for every ordered vertex pair u, v of D, (u, v) is an arc of D if and only if there is a vertex w

of F such that (u, v, w) is a witness triple for u in F .

Since (u, v, w) must be a witness triple of the second type, it particularly holds that u and v

are adjacent in G, so that u and v are adjacent in D and in G. Note, however, that the arcs
between u and v in D and G may be different. In particular, (u, v) and (v, u) may be arcs of
D, due to different witness triples, while u and v are connected in G by exactly one of the two
possible arcs.

Claim B: Let u be a vertex of D. Then, u has an out-neighbour in D, or u is contained in a
copy of digraph (d) of Figure 1 in G.

Proof. Let (u, y, z) be a witness triple for u in F , that exists. Due to our assumptions, (u, y, z)
is a witness triple of the second type. In particular, u and z are non-adjacent in G and y is
adjacent to u and z in G. Thus, u and z are adjacent in H and y is non-adjacent to u and z in
H. It follows that NH(u)∪NH(z) = NH [u]∪NH [z] and y 6∈ NH [u]∪NH [z]. Thus, y is a vertex
of H \ (NH [u] ∪ NH [z]). Since u is a simplicial vertex of H and u and z are adjacent in H, it
holds that NH [u] ⊆ NH [z]. Thus, H \ (NH [u] ∪NH [z]) = H \NH [z].

Let K be the connected component of H \ NH [z] that contains y. Since K contains only
vertices of H that are non-adjacent to u and z in H, every vertex of K is adjacent to u and z

in G. Due to Lemma 5.4, K contains a vertex v from S.
We want to show that (u, x, z) is a witness triple for u in F for every vertex x of K, in

particular for v. We show the result inductively. Remember that y is a vertex of K and (u, y, z)
is a witness triple for u in F . We mark y. Assume that vertices of K have been marked, which
means that they constitute a desired witness triple for u. Assume that there is a still unmarked
vertex x. Since K contains marked vertices, we can choose x such that K has a marked vertex x′

that is adjacent to x in K. Since x and x′ are adjacent in K, and therefore, x and x′ are adjacent
in H, it follows that x and x′ are non-adjacent in G. We consider (u, x, z). If (u, x, z) is a witness
triple for u in F then we mark x and hereby extend the set of the marked vertices. As the other
case, assume that (u, x, z) is not a witness triple for u in F . Since u and z are adjacent to x

in G and (u, x, z) is not a witness triple for u in F , one of the two cases must apply: either
(u, x), (z, x) ∈ A(G) or (x, u), (x, z) ∈ A(G). Since (u, x′, z) is a witness triple of the second
type for u in F , one of the four situations as depicted in Figure 3 must appear in G. Thus,
{u, z, x, x′} induces a copy of the fourth digraph (digraph (d)) of Figure 1 in G.

If there is a vertex of D that has no out-neighbour in D then G contains a copy of a digraph
of Figure 1 as an induced subgraph. We henceforth assume that every vertex of D has an
out-neighbour in D, which means that D has a directed cycle.

Let k ≥ 2 be the smallest integer such that D has a directed cycle of length k. Let C =
(u1, . . . , uk) be a directed cycle of D of length k. We distinguish between cases about the value
of k. As the first case, assume that k = 2. This means that C = (u1, u2), and (u1, u2), (u2, u1) ∈
A(D). Remember that u1 and u2 are adjacent in G. Due to the symmetry of u1 and u2, we
can assume without loss of generality that (u1, u2) ∈ A(G). Due to the definition of the arcs
of D, there are vertices a and b of F such that (u1, u2, a) is a witness triple for u1 in F and
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Figure 3: The construction of the digraph D in the proof of Lemma 5.5 yields a digraph with a
cycle, or uni(F ) contains a copy of one the four depicted digraphs as an induced subgraph.

(u2, u1, b) is a witness triple for u2 in F . Since (u1, u2, a) and (u2, u1, b) are witness triples of
the second type, u1 and a are non-adjacent in G and u2 and b are non-adjacent in G. Since u2
and a are adjacent in G and u1 and b are adjacent in G, a and b are different vertices. If a and
b are non-adjacent in G then {u1, u2, a, b} induces a copy of the second digraph (digraph (b)) of
Figure 1 in G, and if a and b are adjacent in G then {u1, u2, a, b} induces a copy of the third or
fourth digraph (digraph (c) or (d)) of Figure 1 in G. This completes the proof for k = 2. We
henceforth assume that k ≥ 3.

As an intermediate case, assume that (u1, . . . , uk) is a directed cycle of G or that (uk, . . . , u1)
is a directed cycle of G. Since H is a chordal undirected graph, the underlying graph of G has
no chordless cycle of length more than 4. Thus, G contains a directed cycle of length 3 or 4,
which means that G contains a copy of the first or the third digraph (digraph (a) or (c)) of
Figure 1 as an induced subgraph. As the other case, assume that (u1, . . . , uk) and (uk, . . . , u1)
are not directed cycles of G.

Claim C: No witness triple has all three vertices on C.

Proof. Suppose for a contradiction that there is a witness triple that has its three vertices on C.
This means there are indices i, i′, i′′ with 1 ≤ i, i′, i′′ ≤ k such that (ui, ui′ , ui′′) is a witness triple
for ui in F . Since (ui, ui′ , ui′′) is a witness triple of the second type, it follows that (ui′′ , ui′ , ui)
is a witness triple for ui′′ in F . Due to the symmetry of the two witness triples, we can assume
without loss of generality that i < i′′. Since ui, ui′ , ui′′ are vertices from S, it follows that (ui, ui′)
and (ui′′ , ui′) are arcs of D. Remember that C is a directed cycle of D of shortest length, and
the length is larger than 2. Thus, (ui′ , ui) and (ui′ , ui′′) are not arcs of D, and neither ui nor
ui′′ is an out-neighbour of ui′ in D. Thus, ui, ui′ , ui′+1, ui′′ are pairwise different vertices of D,
and one of the three cases applies: (1) i′ < i′ + 1 < i < i′′, or (2) i < i′ < i′ + 1 < i′′, or
(3) i < i′′ < i′ < i′+1. Then, D has a directed cycle of length at most k−1 due to: (1) (ui, ui′),
and (2) (ui′′ , ui′), and (3) (ui, ui′), a contradiction to the choice of k in each case.

Without loss of generality, we can assume that (u1, u2) and (u1, uk) are arcs of G.

Claim D: k = 3

Proof. Suppose for a contradiction that k ≥ 4. We consider the vertex triple u1, u2, uk of D. Let
a, b be vertices of F such that (u1, u2, b) is a witness triple for u1 in F and (uk, u1, a) is a witness
triple for uk in F . With our assumptions about (u1, u2) and (u1, uk), it follows that (u1, u2) and
(u2, b) are arcs of G and (a, u1) and (u1, uk) are arcs of G. Due to the result of Claim C, a and
b are not vertices from C. Since a is adjacent to u1 in G and b is non-adjacent to u1 in G, a and
b are different vertices of F . If a and u2 are non-adjacent in G then (u2, u1, a) is a witness triple
for u2 in F , which means that (u2, u1) is an arc of D, and D has a directed cycle of length 2, a
contradiction. Thus, a and u2 must be adjacent in G.

If (u2, a) is an arc of G then (u1, a, u2) is a witness triple of the third type for u1 in F , which
does not exist, so that (a, u2) is an arc of G. We consider the vertices u2 and uk. Remember
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Figure 4: The two digraphs illustrate situations in the proof of Lemma 5.5. The left hand side
digraph shows the situation in G at the end of the proof of Claim D. Dashed line segments
connect non-adjacent vertices, vertex pairs that are not connected by a line segment may or
may not be adjacent in G. The right hand side digraph summarises a situation at the end of
the proof. We know that u3 is adjacent to c and u2 in G but we do not know by which arcs.

that a and uk are non-adjacent in G. If u2 and uk are adjacent in H then, since u2 and uk are
simplicial vertices of H, we obtain a contradiction from the first statement of Lemma 5.4, so
that u2 and uk are non-adjacent in H, thus, u2 and uk are adjacent in G.

If (u2, uk) is an arc of G then (uk, u2, a) is a witness triple for uk in F , and (uk, u2) is an
arc of D, and (u2, . . . , uk) is a directed cycle of length at most k − 1 in D, a contradiction to
the choice of k. Thus, (uk, u2) is an arc of G. If uk and b are non-adjacent in G then (uk, u2, b)
is a witness triple for uk in G, and (uk, u2) is an arc of D, a contradiction. Thus, uk and b are
adjacent in G.

If (b, uk) is an arc of G then (uk, b, u2) is a witness triple of the third type for uk in F , which
does not exist. So, (uk, b) is an arc of G. The situation in G is depicted in the left hand side
digraph of Figure 4. Then, (u1, uk, b) is a witness triple for u1 in F . Thus, (u1, uk) is an arc of
D, and (u1, uk) is a directed cycle of length 2 in D, a contradiction to the choice of k.

We summarise: the vertices u1, u2 and uk = u3 are pairwise adjacent in G, and (u1, u2)
and (u1, u3) are arcs of G, and either (u2, u3) is an arc of G or (u3, u2) is an arc of G. We
distinguish between the two cases. Let a, b, c be vertices of F such that (u1, u2, b), (u2, u3, c)
and (u3, u1, a) are witness triples for respectively u1, u2 and u3 in F . Due to Claim C, a, b, c
are vertices that do not appear in C, so they are different from u1, u2, u3. Observe that a, b, c

are pairwise different vertices: u1 is adjacent to a and non-adjacent to b in G, u2 is adjacent to
b and non-adjacent to c in G, and u3 is adjacent to c and non-adjacent to a in G. The situation
in G is depicted in the right hand side digraph of Figure 4.

As the first case, assume that (u2, u3) is an arc of G. This means that (u3, c) is an arc
of G. We consider a and u2. Remember that u1 and b are non-adjacent in G. If a and u2
are non-adjacent in G then {a, u1, u2, b} induces a copy of the second, third or fourth digraph
(digraph (b), (c) or (d)) of Figure 1 in G. If a and u2 are adjacent in G and (u2, a) is an arc
of G then (u1, a, u2) is a witness triple of the third type for u1, a contradiction. If a and u2 are
adjacent in G and (a, u2) is an arc of G then {a, u2, u3, c} induces a copy of the second, third or
fourth digraph (digraph (b), (c) or (d)) of Figure 1 in G.

As the second case, assume that (u3, u2) is an arc of G. This means that (c, u3) is an arc of
G. We consider b and u3. If b and u3 are non-adjacent in G then {c, u3, u2, b} induces a copy of
the second, third or fourth digraph of Figure 1 in G. If b and u3 are adjacent in G and (b, u3)
is an arc of G then (u3, b, u2) is a witness triple of the third type for u3 in F , a contradiction.
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If b and u3 are adjacent in G and (u3, b) is an arc of G then {a, u1, u3, b} induces a copy of the
second, third or fourth digraph of Figure 1 in G.

We have shown that if F has no di-simplicial vertex then the uni-restriction of F must
contain a copy of one of the four digraphs depicted in Figure 1 as an induced subgraph. This
completes the proof of the first main case.

2) F contains a di-simplicial vertex

We apply Proposition 3.6. Since F is not a perfect elimination digraph due to the assumptions
of the lemma, there is a set X of at least three vertices of F such that F [X] does not contain
a di-simplicial vertex. Observe that the underlying graph of bi(F [X]) is chordal. Then, F [X]
satisfies the assumptions of the lemma and of the first main case, and we conclude that the
uni-restriction of F [X], and thus of F , contains a copy of a digraph depicted in Figure 1 as an
induced subgraph.

Theorem 5.6. Let F be a semi-complete digraph. Then, F is a perfect elimination digraph if
and only if the underlying graph of bi(F ) is chordal and uni(F ) does not contain a copy of any
of the digraphs depicted in Figure 1 as an induced subgraph.

Proof. If the underlying graph of bi(F ) is not chordal then bi(F ) contains a chordless directed
cycle of length at least 4, and F is not a perfect elimination digraph due to Lemma 4.2. If the
underlying graph of bi(F ) is chordal and F is not a perfect elimination digraph then uni(F )
contains a copy of one of the four digraphs depicted in Figure 1 as an induced subgraph due to
Lemma 5.5. If the underlying graph of bi(F ) is chordal and F is a perfect elimination digraph
then uni(F ) does not contain a copy of any of the digraphs depicted in Figure 1 as an induced
subgraph, since each of them is the uni-restriction of a semi-complete digraph that is not a
perfect elimination digraph.

6 Conclusion and open problems

The main result of this paper is a characterisation of the semi-complete perfect elimination
digraphs by forbidden induced subgraphs. Combining the results of Lemma 4.2 and Theorem 5.6,
the minimal such set of forbidden induced subgraphs for semi-complete perfect elimination
digraphs is shown in Figure 5. This set of forbidden induced subgraphs contains only four
digraphs that do not correspond to the corresponding forbidden induced subgraphs for chordal
graphs, namely the chordless cycles of length 4 or larger.

Note that even though the actual set of minimal forbidden induced subgraphs for semi-
complete perfect elimination digraphs is much bigger than the set of minimal forbidden induced
subgraphs for chordal graphs (due to the many different orientations), the structure of semi-
complete perfect elimination digraphs is already much richer than the structure of the whole
class of chordal graphs. This can give a first impression of the significant difference between
directed and undirected graphs. Secondly, it is an interesting observation that each digraph of
Figure 1 is isomorphic to its own reverse graph. Motivated by an open problem by Haskins
and Rose [9], Kleitman showed that perfect elimination digraphs cannot be characterised by
their behaviour on a finite set of paths [11]. This particularly shows that a forbidden induced
subgraph characterisation of the perfect elimination digraphs cannot be easy.

Chordal graphs are important both in graph theory and for graph algorithms. Several
central graph notions show a specific behaviour on chordal graphs, such as cliques and minimal
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Figure 5: The figure shows a minimal set of forbidden induced subgraphs for the semi-complete
perfect elimination digraphs. The upper line shows the four digraphs that are forbidden for semi-
complete perfect elimination digraphs where the underlying graph of its bi-restriction is chordal.
The lower line shows semi-complete digraphs where the underlying graph of its bi-restriction is
not chordal. The connections without an arrow stand for arcs that may be oriented either way,
however not both ways.

vertex separators [4]. Is there a directed notion of minimal separator that is related to d-
cliques and perfect elimination digraphs? A famous characterisation of chordal graphs is as the
intersection graphs of subtrees of trees [3, 6, 17]. Can this be generalised to perfect elimination
digraphs? Let us remark here that there is a generalisation of intersection graphs to ‘intersection
digraphs’, that results in an interesting directed analogue of interval graphs [16, 18]. However, if
using this definition of ‘intersection digraphs’ then all digraphs become representable as ‘subtree
intersection digraphs’ [8], see also Bang-Jensen and Gutin [1], Proposition 4.13.2. Thus, a
different approach is needed to define the proper directed analogue of ‘intersection graph of
subtrees of a tree’. Feder et al. defined adjusted interval digraphs as a directed generalisation
of interval graphs [5]. They give a linear ordering characterisation of the adjusted interval
digraphs, that generalises interval orderings for interval graphs and that shows that adjusted
interval digraphs are in fact a class of perfect elimination digraphs. They also provide a forbidden
structure characterisation of the adjusted interval digraphs, however not a forbidden induced
subgraph characterisation.

Chordal graphs are closely related to the treewidth parameter. Hunter and Kreutzer intro-
duced the Kelly-width parameter for digraphs as a generalisation of treewidth [10], and Kelly-
width is in a similar way related to perfect elimination digraphs. For a given integer k with
k ≥ 0, a d-clique (A,B) of a digraph G has width at most k if |B| ≤ k. A perfect elimination
digraph that is obtained as in Definition 3.3 by choosing only d-cliques of width at most k is
called a k-DAG, and a digraph G has Kelly-width at most k + 1 if it is a subgraph of a k-DAG
[10], see also [12, 13]. For the purpose of investigating problems that are tractable on digraphs
of bounded Kelly-width, a first step may be to study their complexity on perfect elimination
digraphs or k-DAGs.

On the algorithmic side, there are many interesting problems for perfect elimination digraphs.
How fast can a di-simplicial vertex be found in an arbitrary digraph or in a perfect elimination
digraph? The straightforward algorithm, based on the definition, gives an O(nm)-time upper
bound for the problem. This is the best running time for perfect elimination digraph recognition
[15]. Since the first vertex of a directed transitive vertex layout is a di-simplicial vertex, the
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currently best times for finding a di-simplicial vertex and for recognising perfect elimination
digraphs are equal. It seems likely that finding a di-simplicial vertex can be done faster. Another
interesting problem is to improve the running time for verifying that a vertex layout is directed
transitive. Can this be done in O(n2) time?
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