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Abstract. A covering projection from a graph G to a graph H is a map-
ping of the vertices of G to the vertices of H such that, for every vertex
v of G, the neighborhood of v is mapped bijectively to the neighborhood
of its image. Moreover, if G and H are multigraphs, then this local bijec-
tion has to preserve multiplicities of the neighbors as well. The notion of
covering projection stems from topology, but has found applications in
areas such as the theory of local computation and construction of highly
symmetric graphs. It provides a restrictive variant of the constraint sat-
isfaction problem with additional symmetry constraints on the behavior
of the homomorphisms of the structures involved.
We investigate the computational complexity of the problem of deciding
the existence of a covering projection from an input graph G to a fixed
target graph H. Among other partial results this problem has been shown
to be NP-hard for simple regular graphs H of valency greater than 2,
and a full characterization of computational complexity has been shown
for target multigraphs with 2 vertices. We extend the previously known
results to the ternary case, i.e., we give a full characterization of the
computational complexity in the case of multigraphs with 3 vertices. We
show that even in this case a P/NP-completeness dichotomy holds.

Keywords: Computational Complexity, Graph Homomorphism, Cov-
ering Projection

1 Introduction

The concept of covering spaces or covering projections stems from topology, but
has attracted a lot of attention in algebra, combinatorics, and also the theory
of computation. For instance, it is used in algebraic graph theory as a very
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useful tool for the construction of highly symmetric graphs. The applications in
computability include the theory of local computations (cf. [2] and [7]). A lot
of interest has been paid to graphs that allow finite planar covers. This class of
graphs is closed in the minor order and hence recognizable in polynomial time,
yet despite a lot of effort no concrete recognition algorithm is known, since the
obstruction set has not been determined yet. The class has been conjectured to
be equal to the class of projective planar graphs by Negami [19] (for the most
recent results cf. [11, 12]).

In [1], Abello et al. raised another complexity question, asking about the
computational complexity of deciding the existence of a covering projection from
an input graph G to a fixed graph H (hoping for a characterization giving a
P/NP-completeness dichotomy depending on H). A similar question when both
G and H are part of the input was shown NP-complete by Bodlaender already
in 1989 [4]. The dichotomy asked for by Abello et al. seems to be hard to obtain
and only very partial results are known. The most general NP-completeness
result states that for every simple regular graph H of valency at least 3, the
problem is NP-complete [17]. No plausible conjecture on the borderline between
polynomially solvable and NP-complete instances has been published so far, yet
it is believed that a P/NP-completeness dichotomy will hold, as in the case of
the constraint satisfaction problem (CSP).

The relation to CSP is worth mentioning in more detail. As shown in [9],
for every fixed graph H, the H-Cover problem can be reduced to CSP, but
mostly to NP-complete cases of CSP, so this reduction does not help. In a sense
a covering projection is itself a variant of CSP, but with further constraints of
local symmetry. Thus the dichotomy conjecture for H-Cover does not follow
from the well-known Feder-Vardi dichotomy conjecture for CSP (cf. [8]).

In [16] it is shown that in order to fully understand the H-Cover problem
for simple graphs, one has to understand its generalization for colored mixed
multigraphs. For this reason we are dealing with multigraphs (undirected) in
this paper. Kratochvil et al. [16] completely characterized the computational
complexity of the H-Cover problem for colored mixed multigraphs on two
vertices. The aim of this paper is to extend this characterization to 3-vertex
multigraphs (in the undirected and monochromatic case). The characterization
is described in the next section. It is more involved than the case of 2-vertex
multigraphs, but this should not be surprising as ternary structures tend to be
substantially more difficult than their binary counterparts. An analogue in CSP
is the dichotomy of binary CSP proved by Schaefer in the 70’s [20] followed by
the characterization of CSP into ternary structures by Bulatov almost 30 years
later [5].

2 Preliminaries and statement of our results

For the sake of brevity we reserve the term “graph” for a multigraph. We denote
the set of vertices of a graph G by V (G) and the set of edges by E(G). For two
vertices u, v of G we denote the number of distinct edges between u and v by
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mG(u, v) and we say that uv is an mG(u, v)-edge. The degree of vertex v of G
is denoted by degG(v) (recall that in multigraphs, the degree of a vertex v is
defined as the number of edges going to other vertices plus twice the number
of loops at v, i.e. degG(v) = 2mG(v, v) +

∑
u6=vmG(u, v)). By NG(v) we denote

the multiset of neighbors of vertex v in G where the multiplicity of v in NG(v)
is 2mG(v, v) and for every u 6= v the multiplicity is mG(u, v). We omit G in the
subscript if G is clear from the context.

Suppose A and B are two multisets. Let A′, resp. B′ be the set of different
elements from A, resp. B. We say that a mapping g : A′ → B′ is a bijection from
A to B if for every b′ ∈ B′ the sum of multiplicities of all elements from g−1(b′)
in A equals the multiplicity of b′ in B (note that g is not necessarily a bijection
between sets A′ and B′). If C ′ is a set then by A ∩ C ′ we mean a multiset that
contains only elements from A′ ∩C ′ with the multiplicities corresponding to A.
We denote the sum of multiplicities of all elements in A by |A|.

Let G and H be graphs. A homomorphism f : V (G) → V (H) is an edge
preserving mapping from V (G) to V (H). A homomorphism f is a covering pro-
jection if NG(v) is mapped to NH(f(v)) bijectively for every v ∈ V (G) (here we
consider the multiset bijection). Note that by the definition a covering projection
is not necessarily surjective. The notion of a covering projection is also known
as a locally bijective homomorphism or simply a cover. In this paper we denote
a covering projection f from G to H by f : G→ H.

Strictly speaking, a covering projection (as the notion follows from topology)
should be defined by a pair of mappings – one on the vertices and one on the
edges of the graphs involved. But it was shown in [16] (using König’s theorem and
2-factorization of 2k-regular graphs) that every cover (defined as above) can be
extended to a topological covering projection f : V (G) ∪ E(G)→ V (H) ∪ E(H).

In this paper we consider the following decision problem.

Problem: H-Cover
Parameter: Fixed graph H.
Input: Graph G.
Task: Does there exist a covering projection f : G→ H?

Note that the problem H-Cover belongs to NP as we can guess a mapping
f : V (G) → V (H) and verify if f is a covering projection in polynomial time.
This means that in our NP-completeness results we only prove the NP-hardness
part.

An equitable partition of a graph G is a partition of its vertex set into blocks
B1, . . . , Bd such that for every i, j = 1, . . . , d and every vertex v in Bi it holds
that |NG(v) ∩Bj | = ri,j (recall that NG(v) is generally a multiset). We call the
matrix M = (ri,j) corresponding to the coarsest equitable partition B1, . . . , Bd

of G (ordered in some canonical way; see Corneil and Gotlieb [6]) the degree
refinement matrix of G, denoted by drm(G), and we say that G is a d-block
graph. Note that 1-block graphs are exactly regular graphs (despite the fact
that vertices can contain a different number of loops).

It is also known that if G covers H via a covering f , then drm(G) = drm(H).
In particular, f preserves the coarsest equitable partition of G, i.e., if B′1, . . . , B

′
d,
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resp. B1, . . . , Bd are the blocks in the partition of G, resp. H then f(B′i) = Bi for
every i = 1, . . . , d. Since the matrix drm(G) can be computed in time polynomial
in the size of G, in this paper, we assume that drm(G) = drm(H).

For every quadruplet of non-negative integers k, l, x, y we define a graph
S(k, l, x, y) on the vertex set {a, b, c} with the following edge multiplicities (see
Figure 1):

• m(a, c) = m(b, c) = k • m(c, c) = l
• m(a, a) = m(b, b) = x • m(a, b) = y

In this paper we focus on graphs H having exactly three vertices. For such
graphs we give the full computational complexity characterization of H-Cover.
More precisely, we show the following P/NP-completeness dichotomy.

Observation 1 Let H be a 3-block graph on three vertices. Then H-Cover is
polynomially solvable.

Theorem 1. Let H be a 2-block graph on three vertices. If H is isomorphic to
S(k′, l, x, 0), S(k′, l, 0, y) or S(2, l, 0, 0), where k′ ∈ {0, 1} and l, x, y ≥ 0, then
H-Cover is polynomially solvable. Otherwise H-Cover is NP-complete.

Theorem 2. Let H be a t-regular graph on three vertices. If H is disconnected
or t ≤ 2, then H-Cover is polynomially solvable. Otherwise, H-Cover is
NP-complete.

Note that whenever H-Cover is polynomially solvable then we are able to
find a corresponding covering projection in polynomial time, as well. That follows
directly from the proofs of Observation 1, Theorem 1, and Theorem 2.

Observation 1 follows from the fact that if drm(G) = drm(H) then the only
mapping f : V (G)→ V (H) that preserves the blocks is a covering projection.

In Section 3 we state the necessary lemmata for the proof of Theorem 1.
Section 4 is devoted to the proof of Theorem 2. All polynomial cases are covered
by Lemma 5. We then introduce a new decision problem - H-Cover*. We
prove that this problem is NP-complete for all connected t-regular graphs H
with t ≥ 4. The proof is based on mathematical induction where we are able to
use a stronger induction hypothesis than with simple H-Cover. NP-hardness of
H-Cover then follows from the fact that H-Cover* is reducible to H-Cover
in polynomial time. Note that due to space limitation only the full version of
the paper will contain all necessary lemmata and proofs.

Let us give a few more technical definitions and notations. Throughout the
rest of the paper we reserve the letter H for a graph on 3 vertices a, b, and c.

Let m,n, z be integers such that m ≥ n > 0 and z ≥ 0. We define a graph
H(m,n, z) to be the graph on the vertex set {a, b, c} such that (see Figure 1):

• m(a, a) = m • m(b, b) = n
• m(a, b) = z • m(b, c) = z + 2m
• m(a, c) = z + 2n • m(c, c) = 0

Let G,F and H be graphs. From the definition of a covering projection it is
easy to show that if f : G→ F and g : F → H are two covering projections then
the composition g ◦ f : G → H is also a covering projection. Since every graph
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Fig. 1. The graphs S(k, l, x, y) and H(m,n, z).

isomorphism is a covering projection, every time we investigate the complexity
of H-Cover where H is isomorphic to S(k, l, x, y) or H(m,n, z), we can and we
will assume that H = S(k, l, x, y) or H = H(m,n, z).

By a boundary δG(F ) of an induced subgraph F of a graph G we mean the
subset of vertices of F that are adjacent to at least one vertex outside F .

Let A,B be sets and let f : A → B be a mapping. Then we define f(A) =⋃
a∈A{f(a)}. If f(A) contains only one element, say x, then we simply write

f(A) = x instead of f(A) = {x}.

3 Complexity for 2-block graphs on three vertices

In this section we provide the proof of Theorem 1. We will assume that H is a
2-block graph with the blocks {a, b} and {c}. From the definition of an equitable
partition we have degH(a) = degH(b) 6= degH(c). The next proposition shows
the connection between graphs S(k, l, x, y) and 2-block graphs.

Proposition 1. Every 2-block graph H on three vertices is isomorphic to some
S(k, l, x, y), where 2x+ y 6= 2l + k.

Proof. Since we cannot distinguish vertices a and b in the block {a, b} we have
m(a, a) = m(b, b) = x and m(a, c) = m(b, c) = k. This means that H is iso-
morphic to S(k, l, x, y), where l = m(c, c) and y = m(a, b). The inequality
2x+ y 6= 2l + k then follows directly from the fact that degH(a) 6= degH(c). ut

Before we proceed to the proof of Theorem 1 we split all 2-block graphs
into three subsets and show the complexity separately for each subset. Figure 2
shows how we split these graphs, and shows also the computational complexity
of H-Cover for the graphs H in the corresponding subset.

Lemma 1. Let H be a 2-block graph on three vertices. If H is isomorphic to
S(k′, l, x, 0), S(k′, l, 0, y) or S(2, l, 0, 0) for some k′ ∈ {0, 1} and l, x, y ≥ 0 then
H-Cover is polynomially solvable.

Proof. Let G be the input to H-Cover and let AB, resp. C be the block of G
that corresponds to the block {a, b}, resp. {c} of H.

First suppose that H is isomorphic to S(k′, l, x, 0) or S(k′, l, 0, y). We will
construct a conjunctive normal form boolean formula ϕG with clauses of size 2,
such that ϕG is satisfiable if and only if G covers H.
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Fig. 2. The partition of 2-block graphs. Leaf vertices denote the computational com-
plexity of H-Cover for the corresponding graph H.

Let the variables of ϕG be {xu|u ∈ AB} and for each u, v ∈ AB we add to
ϕG the following clauses:

– (xu ∨ xv) and (¬xu ∨ ¬xv), if u 6= v and u, v share a neighbor in C
– (xu ∨ ¬xv) and (¬xu ∨ xv), if uv ∈ E(G) and H = S(k′, l, x, 0)
– (xu ∨ xv) and (¬xu ∨ ¬xv), if uv ∈ E(G) and H = S(k′, l, 0, y)

Suppose that ϕG is satisfiable and fix one satisfying evaluation of variables.
Define a mapping f : V (G)→ V (H) by:

– f(u) = a, if u ∈ AB and xu is positive
– f(u) = b, if u ∈ AB and xu is negative
– f(u) = c, if u ∈ C

It is a routine check to show that f is a covering projection from G to H.
On the other hand, if f : G → H is a covering projection then we can define
an evaluation of ϕG such that xu is positive if and only if f(u) = a. Such an
evaluation satisfies the formula ϕG since there is exactly one positive literal in
every clause. The fact that the size of ϕG is polynomial in the size of G and
2-SAT is polynomially solvable implies that H-Cover is polynomially solvable.

In the rest of the proof we suppose that H = S(2, l, 0, 0). In this case the
graph G covers H if and only if we can color the vertices of AB by two colors,
say black and white, in such a way that for each u ∈ C exactly two out of four
vertices from NG(u) ∩AB are black.

We construct an auxiliary 4-regular graph G′. Let V (G′) = C and let edges
of G′ correspond to the vertices of AB, and connect its two neighbors in C. Note
that G′ can generally contain loops and multi-edges.

Then the coloring of vertices of AB in G corresponds to the coloring of edges
of G′ such that the black edges induce a 2-factor of G′. The problem of deciding
the existence of a 2-factor in a 4-regular graph can be solved in polynomial time.
In fact, such a 2-factor always exists and can be find in polynomial time. ut

In Lemma 2 we deduce NP-hardness ofH-Cover from the following problem.

Problem: m-in-2m-SATq

Input: A formula ϕ in CNF where every clause contains exactly 2m variables
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without negation and every variable occurs in ϕ exactly q times.
Task: Does there exist an evaluation of the variables of ϕ such that every clause
contains exactly m positively valued variables?

Kratochv́ıl [14, Corollary 1] shows that this problem is NP-complete for every
q ≥ 3 and m ≥ 2. If formula ϕ is a positive instance of m-in-2m-SATq we simply
say that ϕ is m-in-2m satisfiable.

For the purposes of our NP-hardness deductions in Lemma 2 we will build a
specific gadget according to the following needs:

Definition 1 (Variable gadget). Let H = S(k, l, x, y) and let F be a graph
with 2q specified vertices S = {s1, . . . , sq} and S′ = {s′1, . . . , s′q} of degree one.
Let V , resp. V ′ be the set of neighbors of vertices in S, resp. S′ in F . Suppose
that whenever F is an induced subgraph of G with δG(F ) ⊆ S∪S′ and f : G→ H
is a covering projection then f(S ∪ S′) = c and one of the following occurs:

i) f(V ) = a and f(V ′) = b iii) f(V ∪ V ′) = a
ii) f(V ) = b and f(V ′) = a iv) f(V ∪ V ′) = b

Furthermore, suppose that any mapping f : S ∪ S′ ∪ V ∪ V ′ → V (H) such
that f(S∪S′) = c and satisfying i) or ii) can be extended to V (F ) in such a way
that for each u ∈ V (F ) \ (S ∪ S′) the restriction of f to NF (u) is a bijection to
NH(f(u)).

We denote such F by VGH(q) and we call it a variable gadget of size q.

The next lemma shows how we use variable gadgets while Lemma 3 proves
that VGH(q) exists for some graphs S(k, l, x, 0), S(2, l, x, 0), and S(k, l, 0, y).
Note that in Definition 1 and Lemma 2 we do not use the fact that H is a
2-block graph. Hence, we can use this lemma also in Section 4.

Lemma 2. Let k ≥ 2 and let H = S(k, l, x, y). If for some q ≥ 3 there exists a
variable gadget VGH(q) then H-Cover is NP-complete.

Proof. We deduce NP-hardness ofH-Cover from k-in-2k-SATq. Let ϕ be an in-
stance of k-in-2k-SATq. Let x1, x2, . . . , xn, resp. C1, C2, . . . , Cm be the variables,
resp. clauses of ϕ. For every clause Ci denote the variables in Ci by l1i , . . . , l

2k
i

(recall that all variables have only positive appearances in ϕ). We construct a
graph Gϕ such that Gϕ covers H if and only if ϕ is k-in-2k satisfiable.

We start the construction of Gϕ by taking vertices c1, . . . , cm, c
′
1, . . . , c

′
m (cor-

responding to the clauses of ϕ) and we add l loops to each of them. For every
variable xi we take a copy VGi(q) of variable gadget VGH(q). Denote the copy of
S, S′, V , resp. V ′ in VGi(q) simply by Si, S′i, V i, reps. V ′i. For every occurrence
of xi in Cj we identify one vertex from Si, resp. S′i with cj , resp. c′j . We do

it in such a way that every vertex from Si ∪ S′i is identified exactly once, see
Figure 3.

We claim that Gϕ covers H if and only if ϕ is k-in-2k satisfiable.
Suppose that there exists a covering projection f : Gϕ → H. We define an

evaluation of the variables of ϕ such that xi is true if and only if f(V i) = a.
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VG (q)
1

VG (q)
2

VG (q)
3

VG (q)
n

V1 V2 V3 V
n

V 1 V 2 V 3 V 
n

' ' ' '

c1 c2 c3 cm

c'1 c'2 c'3 c'm

Fig. 3. The construction of the graph Gϕ for k = 2 and q = 3. In this example ϕ
contains a clause C2 = (x1 ∧ x2 ∧ x3 ∧ xn) and a variable x3 appears in clauses C1, C2

and Cm.

From the properties of a variable gadget we know that f(cj) = c for every
j = 1, . . . ,m. Then |NGϕ(cj) ∩ f−1(a)| = |NGϕ(cj) ∩ f−1(b)| = k. This means
that in every clause of ϕ there is exactly k positive as well as negative variables.

For the opposite implication we fix one satisfying evaluation of ϕ. We define
a mapping f : V (Gϕ)→ V (H) in the following way:

– f(cj) = f(c′j) = c, for all j = 1, . . . ,m
– f(V i) = a and f(V ′i) = b, if xi is a positive variable
– f(V i) = b and f(V ′i) = a, if xi is a negative variable

Then for each i = 1, . . . , n : f(Si) = c and f(V i) 6= f(V ′i). By the definition
of a variable gadget we know that f can be extended to every VGi(q) in such a
way that for each u ∈ V (VGi(q)) \ (Si ∪ S′i): the restriction of f to NGϕ

(u) is
a bijection to NH(f(u)). It is a routine check to show that such a mapping f is
a covering projection from Gϕ to H. ut

Lemma 3. If a 2-block graph H is one of the following:

a) S(k, l, x, 0), where k ≥ 3, l ≥ 0 and x ≥ 0
b) S(2, l, x, 0), where l ≥ 0 and x ≥ 1
c) S(k, l, 0, y), where k ≥ 2, l ≥ 0 and y ≥ 1

then there exists a variable gadget VGH(q) for some q ≥ 3.

Proof. Depending on which of a), b) and c) holds for the graph H, we define
VGH(q) and the corresponding sets S and S′ as depicted in Figure 4. Note that
in the case a), b), resp. c) we have that q is equal to k, 4, resp. 2k.

The fact that the depicted graphs are really variable gadgets follows from a
case analysis. Figure 4 also shows how one particular mapping f : S∪S′∪V ∪V ′ →
H (where V , resp. V ′ are the neighbors of S, resp. S′) can be extended to all
vertices of VGH(q). Other conditions from the definition of VGH(q) follow from
the fact that H has two blocks. ut

Lemma 4. Let H = S(k, l, x, y) be a 2-block graph where k, l ≥ 0 and x, y ≥ 1.
Then H-Cover is NP-complete.



Computational Complexity of Covering Three-Vertex Multigraphs 9

a

k

k ky y
l

l

k-1 k

k ky yk-1 k

2x 2x
l

x

kx
2x 2x

l

S S' S SS' S'

b

a
a

a a

a a

a

a
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b
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c

c

c

a) b) c)

Fig. 4. Examples of the variable gadgets for the cases a), b) and c).

Proof. Kratochv́ıl et al. [16, Theorem 11] proved that if H ′ is a graph on two ver-
tices L and R such that x = mH′(L,L) = mH′(R,R) ≥ 1 and y = mH′(L,R) ≥
1, then H ′-Cover is NP-complete.

We deduce NP-hardness of H-Cover from H ′-Cover. Let G′ be an instance
of H ′-Cover. We construct a graph G such that G covers H if and only if G′

covers H ′.
We start the construction of G by taking two copies G1 and G2 of G′. Denote

the copy of vertex v ∈ V (G′) in G1, resp. G2 by v1, resp. v2. For every v ∈ V (G′)
we add to G a new vertex uv with l loops and k-edges v1uv and v2uv.

Suppose that f : G → H is a covering projection. Then f(uv) = c for every
v ∈ V (G′) and f restricted to G1 is a covering projection to H ′. This means
that G′ covers H ′.

For the opposite implication suppose that f ′ : G′ → H ′ is a covering projec-
tion. We define a mapping f : V (G)→ V (H) in the following way:

– f(uv) = c
– f(v1) = f ′(v)
– f(v2) = a if f(v1) = b, and f(v2) = b otherwise

for every v ∈ V (G′). It is a routine check to show that f is a covering
projection from G to H. ut

Next we proceed to the proof of Theorem 1.

Proof (of Theorem 1). The polynomial cases are settled by Lemma 1. The cases
where x, y ≥ 1 follow from Lemma 4. All other cases follow from Lemmata 2
and 3 (see Figure 2). ut

4 Complexity for 1-block graphs on three vertices

In this section we focus on 1-block graphs H, i.e. regular graphs. We provide
several definitions and lemmata that help us prove Theorem 2. The next lemma
settles the polynomial cases.

Lemma 5. Let H be a t-regular graph on three vertices. If H is disconnected
or t ≤ 2, then H-Cover is polynomially solvable.
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Proof. Let G be a t-regular graph. Let us first suppose that H is disconnected.
Without loss of generality suppose that mH(a, c) = mH(b, c) = 0. We define a
mapping f : V (G)→ V (H) by f(u) = c for every u ∈ V (G). Then mapping f is
a covering projection from G to H by the definition.

If H is connected and t ≤ 2, then t = 2 and H is a triangle. A 2-regular
graph G covers the triangle if and only if G consists of disjoint cycles of lengths
divisible by 3. This condition can be easily verified in linear time. ut

For the NP-hardness part of Theorem 2 we use a reduction from a problem
we call H-Cover*. To define H-Cover* we need the following definitions.

Definition 2. Let G be a graph on 3n vertices and let A = {A1, A2, . . . , An}
be a partition of its vertices into n sets of size 3. Then we say that A, resp. pair
(G,A) is a 3-partition, resp. graph 3-partition. Moreover, if f : V (G)→ {a, b, c}
is a mapping such that f(Ai) = {a, b, c} for every Ai ∈ A then we say that f
respects the 3-partition A.

Definition 3. We say that a graph 3-partition (G,A) covers* graph H if there
exists a covering projection f∗ : G → H that respects the 3-partition A. We
denote such a mapping by ”→∗“ and call it a covering projection* or simply
a cover*.

Definition 4. Let (G,A) be a graph 3-partition and let H be a graph. If the
existence of a covering projection f : G→ H implies the existence of a covering
projection* f∗ : (G,A)→∗ H, then we say that (G,A) is nice for H.

Note it follows from these definitions that if G does not cover H then any
graph 3-partition (G,A) is nice for H.

Problem: H-Cover*
Parameter: Fixed graph H.
Input: Nice graph 3-partition (G,A) for H.
Task: Does there exist a covering projection* f : (G,A)→∗ H?

Similarly as H-Cover also the H-Cover* problem belongs to the class NP.
This means that to show NP-completeness of H-Cover* we only need to prove
NP-hardness.

Observation 2 Let H be a graph. Then H-Cover* is polynomially reducible
to H-Cover.

Proof. Suppose that (G,A) is an instance of H-Cover*. Since (G,A) is nice
for H we know that (G,A) covers* H if and only if G covers H, which concludes
the proof. ut

This observation allows us to prove NP-hardness of H-Cover* instead
of H-Cover. We do this by mathematical induction. The key advantage
of H-Cover* is that we can use a stronger induction hypothesis.
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Theorem 3. Let H be a connected t-regular graph on three vertices and t ≥ 4.
Then H-Cover* is NP-complete.

In the rest of the paper we prove Theorem 3. We assume thatH is a connected
t-regular graph and t ≥ 4.

The following lemma deduces NP-hardness of H-Cover* for a very special
graph H, and will serve as an illustration of such deductions. NP-hardness of
H-Cover* is deduced from a 3-edge coloring problem. Holyer [13] proved that
this problem is NP-complete even for simple cubic graphs. Denote the 3-edge
coloring problem for cubic graphs by 3-ECol.

Lemma 6. Let H = S(1, 1, 1, 1). Then H-Cover* is NP-complete.

Proof. We reduce the NP-hard problem 3-ECol to H-Cover*. For every sim-
ple cubic graph F we construct a graph 3-partition (GF ,A) such that (GF ,A)
covers* H if and only if F is 3-edge colorable.

For every vertex u ∈ V (F ) we insert to GF vertices u1, u2, u3 and we add
1-edges u1u2, u2u3 and u3u1. For every edge uv ∈ E(F ) we choose vertices ui
and vj and we add 2-edge uivj to GF . We choose indices the i and j in such
a way that the final graph GF is 4-regular. We define the 3-partition A as⋃

u∈V (F ){{u1, u2, u3}}.
We prove that (GF ,A) is nice for H. Let f : GF → H be a covering projec-

tion. Clearly all 2-edges of GF must be mapped by f to loops of H. This implies
that for every u ∈ V (F ) is f(u1, u2, u3) = {a, b, c} and so f respects A.

Suppose that f∗ : (GF ,A) →∗ H is a covering projection*. We know that
every 2-edge uivj corresponds to an edge uv of F and f∗(ui) = f∗(vj). We
define a coloring col : E(F )→ V (H) by c(uv) = f∗(ui). The fact that f respects
the 3-partition A implies that col is a proper 3-edge coloring of F .

In the rest of the proof suppose that col : E(F ) → V (H) is a proper 3-edge
coloring of F . We show that there exists a covering projection* f∗ : (GF ,A)→∗
H. For every 2-edge uivj of GF we define f∗(ui) = f∗(vj) = col(uv). Since col
is a proper 3-edge coloring of F we have {f∗(u1), f∗(u2), f∗(u3)} = {a, b, c} for
every u ∈ V (F ). This means that f∗ respects the 3-partition A. It is a routine
check to show that f∗ is a covering and consequently a covering projection*. ut

As already mentioned, due to space limitation we have in this extended ab-
stract removed the remainder of the lemmata needed for the proof of Theorem 3.
These can be found in the full version of the paper. We proceed to the proof of
Theorem 2 that handles the complexity of H-Cover for all 1-block graphs H
on three vertices.

Proof (of Theorem 2). Lemma 5 covers all polynomial cases while Theorem 3
with Observation 2 covers the NP-complete cases. ut

5 Conclusion

We have settled the computational complexity of H-cover for all multigraphs
on three vertices. Not surprisingly, the characterization is substantially more in-
volved than the characterization of the 2-vertex case. These results constitute an
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important step towards the goal of a full dichotomy for complexity of H-cover
of simple graphs, a goal that requires a full dichotomy also for colored mixed
multigraphs, as shown in [16], and in particular a dichotomy for the multigraphs
handled in this paper.
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