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Abstract For fixed simple graph H and subsets of natural numbers o
and p, we introduce (H, o, p)-colorings as generalizations of H-colorings
of graphs. An (H, o, p)-coloring of a graph G can be seen as a map-
ping f : V(G) — V(H), such that the neighbors of any v € V(G) are
mapped to the closed neighborhood of f(v), with o constraining the
number of neighbors mapped to f(v), and p constraining the number
of neighbors mapped to each neighbor of f(v). A traditional H-coloring
is in this sense an (H, {0}, {0, 1,...})-coloring. We initiate the study of
how these colorings are related and then focus on the problem of de-
ciding if an input graph G has an (H,{0}, {1,2,...})-coloring. This H-
COLORDOMINATION problem is shown to be no easier than the H-
COVER problem and N'P-complete for various infinite classes of graphs.

1 Introduction

Let H be a fixed simple graph with k vertices V(H) = {h1, ho, ..., h}, and let
o and p be fixed subsets of natural numbers. We define an (H, o, p)-coloring of
a graph G to be a partition Vi, Va,...,V, of V(G) such that for all 1 <i,j <k

o ifi=j
Vo eV, |Negv)nV;| €< p if hh; € E(H)
{0} otherwise ,

where N¢(v) denotes the (open) neighborhood of v in G and E(H) the edges
of H. We will also view the partition as given by a function f : V(G) — V(H),
with f(v) = h; for v € V;. We refer to the vertices of H as ‘colors’ and denote
N ={0,1,...},INT = {1,2,...}. The well-known H-COLORING, also known as
H-HOMOMORPHISM, problem asks for an assignment of ‘colors’ to the vertices
of an input graph G such that adjacent vertices of G obtain adjacent ‘colors’.
This corresponds to asking if an input graph G has an (H, {0}, IN)-coloring.
Similarly, an H-cover of a graph G is a ‘local isomorphism’ between G and H,
a degree-preserving mapping of vertices where the set of ‘colors’ assigned to the
neighbors of a vertex ‘colored’ h is exactly equal to the set of ‘colors’ adjacent to
h, and corresponds to an (H, {0}, {1})-coloring. A third example is given by a so-
called H-partial cover of a graph G which exists if and only if G is the subgraph
of a graph having an H-cover, and corresponds precisely to the existence of an
(H,{0},{0,1})-coloring.



For an arbitrary input graph G, the H-COLORING problem is known to
be solvable in polynomial time whenever the fixed graph H is bipartite, and
NP-complete for all other H [5]. For the H-COVER problem, i.e. deciding if an
input graph G has an H-cover, even if a variety of results are known about its
complexity, see e.g. [1,9,10,8], it is still unclear what characterizes the class of
graphs H that lead to polynomial-time H-COVER problems. Recently there has
been some interest also in the H-PARTIAL COVER problem [9,2,7], deciding
if an input graph G has an H-partial cover, and again the complexity of the
problem seems quite rich and hard to settle up to P versus AN/P-complete.

In this paper we view the H-COLORING, H-COVER, and H-PARTIAL
COVER problems as instances of a more general problem parameterized not
only by H, but also by 0,p C IN. A (o, p)-set in a graph G [13] is a subset of
vertices S C V(@) such that for any vertex v € V(G) we have

IN@)N S| € {;g;;g |

In this sense H-colorings arise from independent sets (o = {0}, p = IN'), H-covers
from perfect codes (¢ = {0},p = {1}), and H-partial covers from 2-packings,
also called strong stable sets, (¢ = {0}, p = {0,1}) [3]. See [13] for a list of other
vertex subset properties from the literature expressed as (o, p)-sets.

Asking about the existence of a partitioning of the vertices of a graph G
into k (o, p)-sets corresponds in this setting to asking for a (K}, o, p)-coloring,
and the complexity of this question has been resolved for most values of k£ € IN
and o, p € {{0},{0,1},{1},IN,IN*} [4]. We mention that the minimum value of
k such that a graph G has a (K, {0}, IN)-coloring is known as the chromatic
number of G, while the maximum value of k such that G has a (K, IN,INT)-
coloring is known as its domatic number, and the maximum value of %k such that
it has a (K, INT,IN*)-coloring its total domatic number. See [3] for an in-depth
treatment of domination and related subset problems in graphs.

In the next section we initiate the study of (H, o, p)-colorings of graphs by
giving several observations on their interconnectedness. We then focus on the
problem of deciding if an input graph G has an (H, {0}, IN*)-coloring. Since
(0 = {0},p = INT)-sets are exactly the independent dominating sets of a
graph, we call this the H-COLORDOMINATION problem. The complexity of
H-COLORDOMINATION is related to the H-COVER problem, and moreover
we show it to be A'P-complete for infinite classes of graphs such as H a cycle
on at least three vertices, H a star with at least two leaves, or H a path of at
least three vertices.

2 Observations

We first state, without proof, some general facts about the existence of (H, o, p)-
colorings.



Fact 1 The trivial partition of V(H) into singleton sets is an (H,{0},{1})-
coloring of H (in fact it is an (H, o, p)-coloring as long as 0 € 0,1 € p.) At the
other extreme, the trivial partition of V(G) into one block is a (K1, o, p)-coloring
of G as long as Vv € V(G) : [Ng(v)| € o (adding empty blocks as needed, it is
in fact an (H, o, p)-coloring for any H, if in addition 0 € p.)

Fact 2 Ifr is a positive integer and H is a connected graph, then all blocks of an
(H,0,{r})-coloring V1, ..., Viy(m) of a graph G must be of the same cardinality,
Vil = IV(G)I/IV(H)| for i =1,....[V(H)|.

To investigate how (H, o, p)-colorings in G interact with (H',o’, p’)-colorings
in H, we first define, for two non-empty sets of natural numbers, A and B
AoBY {a+b:ac Abe B}

A®Bd§f{b1+...+ba:a€A7biGB}

VB:{0}® B ¥ {0} .

Fact 3 VA € {{0},{1},{0,1},IN,IN+}: A® A = A.

Viewed as a relation on graphs (H, o, p)-coloring exhibits transitive properties
for certain values of o and p. For these values (H, o, p)-colorability of G and
(H', 0, p)-colorability of H will imply (H’, o, p)-colorabiliy of G. We first state a
more general result.

Theorem 1. If a graph G is (H, o, p)-colorable, and H is (H', o', p')-colorable,
then G is (H',0 @ (¢/ ® p), p' ® p)-colorable.

Proof. Let the functions f : V(G) — V(H) and g : V(H) — V(H') be the
(H, o, p)-coloring of G and the (H', o', p')-coloring of H, respectively. We show
that f composed with gisan (H',0 @ (¢’ ® p), p’ ® p)-coloring of G. For vertices
viu e V(H') welet Vi ={w e V(H) : glw) =v'} and Uy, = {w € V(H) :
glw)=v'},andlet Vi ={v e V(G) : f(v) e Vi}and UL, ={v e V(G) : f(v) €
Uy }. For any vertex v € V(G) we want to count the number of neighbors of
v mapped to a vertex v’ € V(H’), which is [Ng(v) N U(|. We assume without
loss of generality that v € V. There are three cases to consider: v’ = v/, v'u’ €
E(H'), and v'v’' ¢ E(H').

If v =« then V; = U[, and the number of neighbors of v mapped to v’
consists of (i) the number of neighbors of v mapped to f(v) plus (ii) the number
of neighbors of v mapped to each vertex in Ny (f(v))NU}. Since |[Ng(v)N{u €
V(G) : f(u) = f(v)}| € o, we have that (i) is an element-of-o. And since
[N (f(v))NUy| € 0/, and for any w € Ny (f(v)) we have |[Ng(v) N {u € V(G) :
f(u) = w}| € p so that (ii) is the sum of some element-of-o’ terms from p. This
gives [Ng(v) NUL| € 0@ (o' ® p) for v/ =o'

If v'u’ € E(H') the number of neighbors of v mapped to v’ consists simply
of part (ii) above i.e. the number of neighbors of v mapped to each vertex
in Uj;. We now have |Ny(f(v)) NUy| € o/, and for any w € Ny(f(v)) we



have |Ng(v) N {u € V(G) : f(u) = w}| € p. Thus [Ng(v) NU| € p' @ p for
v'u' € E(H').
If v'u’ ¢ E(H') the number of neighbors of v mapped to v’ is 0. O

The following result which follows from Theorem 1 and Fact 3, shows that
H, 0, p)-coloring is a transitive relation on graphs for certain values of ¢ and p.
g g p

Corollary 1. If G is (H, o, p)-colorable and H is (H', o, p)-colorable, with o =
{0} and p € {{0},{1},{0,1}, N,IN*}, or 0 = p = N, then G is (H',0,p)-
colorable.

From this it follows that H-coloring, H-covering, H-partial covering and
H-colordomination are all transitive relations on graphs. In the following we
consider how (H, o, p)-colorings of G interact with (¢’, p’)-sets in H.

Theorem 2. If a graph G has an (H, o, p)-coloring and S is a (o', p')-set in H,
then 8" ={veV(G): f(v) €S}t isa(c® (c/ ®p),p ®p)-setinG.

Proof. For space reasons we only sketch the proof, as it is similar to that of
Theorem 1. Here we want to count the number of neighbors of an arbitrary vertex
v € V(G) mapped to a vertex in S, which is |[Ng(v) N {u € V(G) : f(u) € S}.
There are two cases to consider: v € S’ and v ¢ S’. The argument for the first
case is similar to the argument for the case v' = v’ in the proof of Theorem 1,
and the argument for the second case similar to that of the case v'v’ € V(H’).
O

Let us assume that a graph G is (H, o, p)-colorable. The following result,
which follows from Theorem 2 and Fact 3, shows that a (o, p)-set in H will
induce a (o, p)-set in G, for certain values of o and p.

Corollary 2. If G is (H, o, p)-colorable, with o = {0} and p € {{0},{1},{0,1},
IN,INT}, or 0 = p=1IN, then a (0, p)-set in H will induce a (o, p)-set in G.

We observe that Corollary 2 holds for some of the most common variants of
(0, p)-sets, such as perfect codes, 2-packings, independent sets, and independent
dominating sets, as defined in the introduction.

3 The Complexity of H-COLORDOMINATION

The complexity of deciding if an arbitrary input graph G has an (H, o, p)-coloring
will depend on the three fixed values H, o, and p. As mentioned in the introduc-
tion, for values of o and p that arise from independent sets (¢ = {0}, p = IN), per-
fect codes (0 = {0}, p = {1}), and 2-packings (¢ = {0}, p = {0, 1}) the complex-
ity of the corresponding (H, o, p)-problems, respectively named H-COLORING,
H-COVER, and H-PARTIAL COVER, have been investigated for varying H.
Several of the (o, p)-sets that have been studied in the literature have o # {0},
but here we continue the setting from the already studied (H, o, p)-colorings and



focus on the case 0 = {0}. The most natural (H, {0}, p)-problem that to our
knowledge has not been studied in general, is maybe the case where p = IN ™.
In this section we therefore initiate the investigation of the complexity of the
(H, o, p)-coloring problem that arises from independent dominating sets (o =
{0}, p = INT). We call this the H-COLORDOMINATION problem.

We show that H-COLORDOMINATION is no easier than H-COVER, and
also present complexity results for H-COLORDOMINATION for classes of
graphs for which H-COVER is in P. We will in the following consider the graphs
to be connected, and without loops.

We first mention the following result on cliques K, which, albeit with different
terminology, can be found in [4].

Theorem 3. [4] For every k > 3 the K;,-COLORDOMINATION problem is
NP-complete.

3.1 No Easier than H-COVER

The degree partition of a graph G is the partition of its vertices, V(G), into
the minimum number of blocks Bg = {B1(G), ..., Bx(G)}, for which there are
constants r;; such that for each i,j(1 < ¢,j < k) each vertex in B, is adjacent
to exactly r;; vertices in B;. For a given ordering of degree partition blocks, the
k x k matrix R, R[i, j] = r;j, is called the degree refinement.

The degree partition and degree refinement matrix of a graph can be com-
puted in polynomial time by stepwise refinement with the following algorithm:

1. Partition the vertices into blocks by their degree values, and arrange the
blocks in ascending order (by degree value).

2. For every vertex compute the number of neighbours it has in the current
blocks of the partition. These numbers, maintaining the order of the blocks,
make up the degree vector of the vertex.

3. If a block contains vertices with different degree vectors it is split into as
many new blocks as there are different degree vectors. The new blocks are
ordered in lexicographically ascending order by the degree vectors, and they
maintain their order relative to the other blocks of the partition. If no block

contains vertices with different degree vectors we are done.
4. Goto 2.

The above algorithm gives a unique ordering of the degree partition blocks,
and gives us a well defined degree refinement matrix R for every graph G.

While computing the degree partition of a graph G, let BL, = {Bi(G),...,
B} .(G)} be the preliminary degree partition at the start of the ith iteration of
the degree partition procedure, with B}, the starting partition of V(G) by its
degree values. Let bg(v) = j be the index such that vertex v belongs to block
B;(G) in the degree partition, and let b, (v) = j be the index such that vertex
v belongs to block B}(G) at the start of the ith iteration. Also, let n(,(v) be the
the degree vector of vertex v computed in the ith iteration. The following result
is similar to one from [7], where it was shown that if G has an H-partial cover
and G and H have the same degree partition, then G has an H-cover.



Lemma 1. If two graphs G and H have the same degree partition, B = By,
then for every i > 0 we have ni;(u) = niy(v) if bg(u) = by (v).

Proof. If bg(u) = by (v), we have ni;(u) = nly(v) in the last iteration of the
degree partition procedure. We must also have had n{; ' (u) = n'; ' (v), otherwise
u and v would have been separated. This implies that for every i > 0 we have

né(u) = ni(v) if bg(u) = by (v).

Lemma 2. If G and H are connected graphs with the same degree partition,
Bc = By, and G has an H({0},INT)-colouring, then G has an H({0},{1})-
colouring, or H-cover.

Proof. Assume G has an H ({0}, INT)-colouring f : V(G) — V(H), and that G
and H have the same degree partition. We will show that we necessarily have
ba(v) = br(f(v)), to prove the lemma.

We first show that we must have bg(v) > by (f(v)) for all v € V(G). Since
[ is an H({0},IN")-colouring, deg.(v) > degy(f(v)) holds for all v € V(G),
because p = IN . This implies that b}, (v) > bk, (f(v)) for all v € V(G). We show,
by induction on i, that we must have b%,(v) > by (f(v)) for all v € V(G) and
alli > 1. For i > 1, bg(v) and by (f(v)) depend on the degree vectors nl; ' (v)
and n’;'(f(v)). For every u € Ng(v), f(u) € Nyg(f(v)), and by the induc-
tion hypothesis, b, ' (u) > bl (f(u)). Therefore, in the lexicographic ordering,
ng " (v) >1ex M (f(v)), this means that we will have b, (v) > by (f(v)). Note
that we are implicitly using Lemma 1, as we are comparing degree vectors in G
and H.

We next show that we must have bg(v) = by (f(v)) for all v € V(G). For
v € B1(G), ba(v) = 1, and since bg(v) > by (f(v)), this implies that by (f(v)) =
1. Assume a vertex v € V(G) exists with bg(v) > by (f(v)), and let u be an
arbitrary vertex from B;(G). Consider a path P from v to v in G. P must contain
an edge v'v' € E(G) such that bg(v') = by (f(v')) and b (v') > by (f(v')). Since
u’ and f(u’) have the same number of neighbors in blocks with the same index,
and neighbor v’ of «’ has been sent to a block numbered lower, there must exist
a neighbor w’ of v’ that is sent to a block numbered higher, bg(w') < by (f(w')),
a contradiction. This implies that for all v € V(G), bg(v) = by (f(v)), and that
for all v € V(G), degq(v) = degy (f(v)). This in turn implies that f is a valid
H({0}, {1})-colouring, or H-cover, of G.

Theorem 4. If H-COVER is N'P-complete, then H-COLOURDOMINATION
is N'P-complete.

Proof. If there is a polynomial-time algorithm for H-COLOURDOMINATION
then Lemma 2 gives us the following polynomial-time algorithm for H-COVER:
Given a graph G, answer YES if G and H have the same degree refinement and
G has an H({0}, IN*)-colouring; otherwise answer NO.

3.2 Cycles

In this section we show the following for the cycles Cj:



Theorem 5. For every k > 3 the Ci,-COLORDOMINATION problem is N'P-
complete.

The result will follow from three lemmata.

Lemma 3. The (Cj, {0}, INT)-coloring problem is N'P-complete for all k =
2% +1,i> 1.

Proof. We use a reduction from Cx-COLORING, N 'P-complete for all odd &
[6]- Given a graph G we construct a graph G’ which will have a (Cy, {0}, INT)-
coloring if and only if G has a Cj-coloring. G’ is constructed by replacing the
vertices v € V(G) with a cycle of length &, C("), each such cycle with a desig-
nated vertex ¢,(*), and all edges uv € E(G) by an edge 1 ),

The cycles Ci(") ensure that G’ has a (Cj, {0},INT)-coloring whenever G is
Cy-cororable. If G has no Cj-coloring the subgraph induced by the designated
vertices prevents a (Cy, {0}, IN*)-coloring of G’. O

In the next reduction we use the following problem which was shown to be
N'P-complete in [12].

[NAESAT] NOT-ALL-EQUAL SATISFIABILITY

INSTANCE: A collection C of clauses on a finite set U of variables such that
each clause ¢ € C has |c| = 3.

QUESTION: Is there a truth assignment for U such that each clause in C has
at least one TRUE literal and one FALSE literal?

Lemma 4. The (Cy,{0},INT)-coloring problem is N'P-complete.

Proof. The reduction is from NAESAT. Let U be the set of variables and C
be the set of clauses. We can assume that all literals, v and u, occur in some
clause, otherwise for each literal that does not occur, we find a clause where the
opposite literal occurs, and add a copy of this clause with all literals negated. We
construct a bipartite graph G which will have a (Cj, {0}, INT)-coloring if and
only if the variables of U can be assigned values TRUE or FALSE, such that all
clauses in C' have at least one literal that is TRUE and one that is FALSE. For
each variable u there is a variable gadget, Péu), with literal vertices v, and vy
as the endpoints, and a center vertex v,;. For each clause c there is a vertex v,
with edges to the literal vertices corresponding to the literals occurring in this
clause.

Let T be a valid truth assignment for the NAESAT instance, and label the
vertices of Cy A, B, C, and D, following the cycle. We define a mapping f :
V(G) — {A, B,C, D} giving a (C4, {0}, INT)-coloring of G. Let f(v.) = A, for
all v.. And let f(v,) = B if T(u) = TRUE or f(v,) = D if T(u) = FALSE,
for all literal vertices v, and vg. Let f(uyz) = C, for all variable vertices. Since
all clauses have at least one literal set to TRUE and one set to FALSE, f is a
(C4,{0},INT)-coloring of G.

For the other direction of the proof we assume f is a valid (Cy, {0}, INT)-
coloring of G. A clause vertex v, is mapped to a vertex of Cy, call this vertex A.



This forces the literal vertices to be mapped to B or C, in such a way that if v,
is mapped to B, then v; is mapped to C. The other clause vertices are mapped
to either A or D, but in both cases the literal vertices are mapped to B or C.
Since f is a valid (C4, {0}, INT)-coloring each clause vertex must have at least
one neighbor in each of B and C. We define a valid truth assignment 7" for the
NAESAT instance by taking 7'(u) = TRUE if f(v,) = B, and T'(u) = FALSE if
f(v,) =C. O

Lemma 5. The (Cax,{0},INT)-coloring problem is N'P-complete if the
(Ck, {0}, IN*)-coloring problem is N'P-complete.

Proof. Given a graph G we construct a graph G’ which will be (Cy, {0}, INT)-
colorable if and only if G is (Cy, {0}, IN T)-colorable, by subdividing all the edges
of G once. 0

3.3 Paths

Let Py, denote a path with &k vertices and k£ — 1 edges. We first look at the case
k = 2 and observe that the (P, {0}, INT)-coloring problem is easily solvable in
polynomial time.

Observation 1 A4 graph G has a (P, {0}, IN")-coloring if and only if it is bi-
partite.

For k > 3 the situation is different. We show the following result for paths
Pk:

Theorem 6. For every k > 3 the P,-COLORDOMINATION problem is N'P-
complete.

The result will follow from four lemmata.
Lemma 6. The (P;, {0}, IN*")-coloring problem is N'P-complete.

Proof. The reduction is from NAESAT. Let U be the set of variables and C' the
set of clauses. We construct a bipartite graph G which will have a (P3,{0},INT)-
coloring if and only if the variables of U can be assigned values TRUE or FALSE,
such that all clauses of C' have at least one literal that is TRUE and one that
is FALSE. For each variable u there is a variable gadget, Ps(*), with literal
vertices v, and vz as the endpoints, and a center vertex v,;. For each clause
c there is a vertex v. with edges to the literal vertices corresponding to the
literals occurring in this clause. In addition to this we add a new clause vertex
v, and a new variable gadget P;(*). We connect v, to both v, and v of one
already existing variable u, and to v, of the added variable gadget P3;(¥). This
augmentation will not affect the satisfiability of the original instance.

Let T be a valid truth assignment for the NAESAT instance, and label the
vertices of P; A, B, and C, with B as the center vertex. We define a mapping f :
V(G) — {A, B,C} giving a (P3,{0},INT)-coloring of G. Let f(v.) = f(vuzg) =



B, for all u € U and all ¢ € C. And let f(v,) = A and f(vg) = C if T'(u) =
TRUE, or f(vz) = A and f(v,) = C if T(u) = FALSE. Since all clauses have at
least one literal set to TRUE and one set to FALSE, fisa (Ps, {0},IN*)-coloring.

For the other direction of the proof we assume f is a valid (P;, {0}, INT)-
coloring of G. Since v, has degree one, it must map to either A or C. As G
is bipartite this forces all clause vertices to be mapped to B. Since f is a valid
(P5, {0}, INT)-coloring each clause vertex must have at least one neighbor in each
of A and C. We define a valid truth assignment 7" for the NAESAT instance by
taking T'(u) = TRUE if f(v,) = A, and T'(u) = FALSE if f(v,) =C. O

The same technique can be applied to all paths of odd length.

Lemma 7. The P,-COLORDOMINATION problem is N'P-complete for all
k=24+1,9>1.

Proof. The proof is essentially the same as that of Lemma 6. We modify it to
hold for all £ = 2 + 1 by replacing the variable gadgets with paths of length £,
and connecting the clause vertices to the literal vertices using paths with |k/2]
edges. a

For paths of even length we apply a variation of the same technique.
Lemma 8. The (P4, {0}, IN*)-coloring problem is N"P-complete.

Proof. The reduction is again from NAESAT. Let U be the set of variables and
C the set of clauses. We construct a graph G which will have a (P4, {0},INT)-
coloring if and only if the variables of U can be assigned values TRUE or FALSE,
such that all clauses of C' have at least one literal that is TRUE and one that is
FALSE. For each variable u there is a variable gadget, Ps(*), with literal vertices
v,, and vz as the endpoints. For each clause c there is a clause gadget consisting
of two components: (i) P,(¢) with a designated vertex v, as one of its endpoints,
and (ii) a vertex v.s. For each literal that occurs in a clause c there is an edge
between the corresponding literal vertex and the vertex v., and an edge between
the corresponding negated literal vertex (the other end of P5(*)) and v,

Let T be a valid truth assignment for the NAESAT instance, and label the
vertices of P, in order, A, B, C, and D. We define a mapping [ : V(G) —
{A,B,C, D} giving a (Py,{0},IN*)-coloring of G. Let the clause gadget P,
map to A, B with f(v.) = B, for all v.. Let f(v,) = A and f(vgz) = C if
T(u) = TRUE, or let f(vz) = A and f(v,) = C if T(u) = FALSE. Finally
let f(V.,) = B, for all v.,. This enforces a mapping of the remaining vertices
of the variable gadgets. The path P5;(*) of the variable gadget is either mapped
A, B,C,D,C, if T(u) = TRUE, or C,D,C, B, A, if T(u) = FALSE. Since all
clauses have at least one literal set to TRUE and one set to FALSE, f is a
(Py, {0}, INT)-coloring.

For the other direction of the proof we assume f is a valid (P4, {0}, INT)-
coloring of G. Since each clause gadget P(®) has one endpoint of degree one,
A, B or C, D are the only possible mappings of the clause gadgets. Without loss
of generality we may assume that G is connected, in which case the lengths of the



variable gadget paths ensure that all clause gadgets will map to the same pair
of vertices, say A, B. So we must have f(v.) = B. The clause gadgets are paths
of length five, and they must be mapped either A, B,C,D,C or C,D,C, B, A,
so we must have f(v-) = B. We define a valid truth assignment 7 for the
NAESAT instance by taking 7'(u) = TRUE if f(v,) = A4, and T'(v) = FALSE if
f(v,) =C. O

The technique used for P, can be applied for all paths of even length.

Lemma 9. The P,-COLORDOMINATION problem is N'P-complete for all
k=2ii>2.

Proof. The proof is essentially the same as that of Lemma 8. We modify it to
hold for all k£ = 2i,7 > 2 by replacing the variable gadgets with paths of length
2k — 3. a

3.4 Stars

Let Si denote the graph K j, a star with k leaves. In the reduction below we
use the following problem.

[k-EC] k-EDGE-COLORING

INSTANCE: A graph G = (V, E).

QUESTION: Can E(G) be partitioned into &’ disjoint sets F1, Eo, ..., Ex, with
k' <k, such that, for 1 < i < k’, no two edges in E; share a common endpoint
in G?

If G is a k-regular graph, the question becomes whether each vertex is incident
to k distinctly colored edges. This last problem was shown to be NP-complete
for kK = 3 in [6], and for k£ > 3 in [11]. We get the following result for the
complexity of S,-COLORDOMINATION.

Theorem 7. For all k > 2 the S;,-COLORDOMINATION problem is NP-
complete.

Proof. Since P; = S5 we use Lemma, 6 for this case. For & > 3 the reduction is
from k-EC on k-regular graphs, defined above. Let G be an instance of k-EC,
such that G is k-regular. We construct a k-regular graph G’, such that G’ has
an (S, {0}, IN*")-coloring if and only if G is k-edge-colorable. G’ is constructed
by replacing vertices and edges by simple gadgets as shown in Figure 1.

We let ¢ be the center vertex of the star Sy, l1,lo,...,[; the leaves, and
assume there exists a mapping [ : V(G') — {c¢l1,la,...,l;} that is a valid
(Sk, {0}, N*)-coloring of G’. We must have f(u.) = ¢, since u. has neighbors
of degree two. This implies that f(u;) = {l1,l2,...,lk},i =1,2,...,k, and that
f(ew) = c. This gives f(e;) = {l1,l2,...,lk} \ f(un),j =1,2,...,k —1, and
f(ey) = c. This enforces f(v;1) = f(u1), and thus f(v.) = c. In G we can color
the edge ¢ = uv with the color f(u;1). Coloring every edge in the same manner,
we can conclude that G is k-edge-colorable if G’ is (Si, {0}, INT)-colorable.

For the other direction of the proof we assume G’ is k-edge-colorable and
apply a reversal of the mapping described above. ad



Figure 1. a) An edge in G, and b) the corresponding subgraph in G’

4 Conclusion

We have introduced a generalization of H-colorings of graphs, initiated the study
of these colorings, and given some results on the complexity of one class of
problems that it gives rise to. We leave as an open problem the question of
whether H-COLORDOMINATION is N'P-complete for all connected H on at
least three vertices.
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