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Abstract

A covering projection from a graph G onto a graph H is a “local isomorphism”: a
mapping from the vertex set of G onto the vertex set of H such that, for every v € V(G),
the neighborhood of v is mapped bijectively onto the neighborhood (in H) of the image
of v. We investigate two concepts that concern graph covers of regular graphs. The first
one is called “multicovers”: we show that for any regular graph H there exists a graph
G that allows many different covering projections onto H. Secondly, we consider partial
covers, which require only that G be a subgraph of a cover of H. As an application of our
results we show that there are infinitely many rigid regular graphs H for which the H-cover
problem — deciding if a given graph G covers H — is NP-complete. This resolves an open
problem related to the characterization of graphs H for which H-COVER is tractable.

1 Motivation and overview

For a fixed graph H, the H-cover problem admits a graph G as input and asks about the
existence of a “local isomorphism”: a labeling of vertices of G by vertices of H so that the
label set of the neighborhood of every v € V(G) is equal to the neighborhood (in H) of the
label of v and each neighbor of v is labeled by a different neighbor of the label of v. (Such a
labeling is referred to as a covering projection from G onto H.)

We trace this concept to Conway and Biggs’s construction of infinite classes of highly
symmetric graphs, see Chapter 19 of [4]. Graph coverings are special cases of covering spaces
from algebraic topology [17], and are used in many applications in topological graph theory
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[9]. We mention that Gross and Tucker [10] show that every covering projection of a graph
G can be constructed by permutation voltage assignments, a construction based on labelling
edges of G by permutations, while Hofmeister [12] uses similar constructions to classify iso-
morphism classes of covering projections and Biggs [5] uses covering graphs constructed from
the homology group (cycle space) of G to classify cubic graphs with given symmetry types.

In a more applied setting, graph coverings have been used by Angluin [2] to study ”local
knowledge” in distributed computing environments, and by Courcelle and Métivier [6] to show
that nontrivial minor closed classes of graphs cannot be recognized by local computations. In
[1], Abello et al. raised the question of computational complexity of H-cover problems, noting
that there are both polynomial-time solvable (easy) and NP-complete (difficult) versions of this
problem depending on the parameter graph H. We have studied the question of complexity of
graph covering problems in [15], where one of our main results was a complete catalogue of the
complexity of this problem for graphs on at most 6 vertices. Though we have developed several
general polynomial and NP-completeness theorems, all of our NP-completeness reductions
depended heavily on symmetries of the parameter graph, thus leaving the case of regular
rigid graphs (i.e., graphs with only trivial automorphisms) as one of the main open problems.
Already these results indicate that the classification of computational complexity of the H-
cover problem is much richer than for the related H-coloring problem, resolved completely by
Hell and Nesetfil [13].

In this paper, we show that the H-cover problem is NP-complete for any k-regular graph
H, provided k > 2 and H is k-edge colorable or (1+ | % |)-edge connected. There are infinitely
many rigid regular graphs among such graphs. In proving NP-completeness of the problems, we
present a reduction that is based on a nontrivial construction, whose properties are guaranteed
by a general theorem. The cases that we are not able to resolve so far raise graph theoretical
questions that are interesting on their own.

The paper is organized as follows. In Section 2 we give a construction of a graph that
covers a given graph H in many different ways (we call such graphs multicovers). In Section 3
we introduce the notion of partial covers and prove our main results on the existence of par-
tial covers of certain type. In section 4.1 we introduce an auxiliary NP-complete problem of
chromatic index of k-regular s-uniform hypergraphs. Section 4.2 contains the main complex-
ity result via a gadget construction, the existence of which is ensured by the results of the
preceding sections. Final remarks and open problems are gathered in Section 5.

Our notation is standard and involves simple loopless graphs. If G is a graph, we denote
by V(G) (E(G)) its vertex set (edge set, respectively). If u is a vertex of a graph G, we
denote by Ng(u) the set of the neighbors of u, i.e., Ng(u) = {w|uw € E(G)}, the degree of
u, degg(u), is the number of its neighbors. The distance between vertices u and v (i.e., the
length of the shortest path connecting v and v) is denoted by dg(u,v). The only nonstandard
notation that we introduce and use troughout the paper is G, denoting the graph obtained
from a graph G by splitting a vertex u into degg(u) pendant vertices (of degree one), each



adjacent to a distinct neighbor of u. For every w € Ng(u), the pendant vertex adjacent to w
in G, will be referred to as u,,.

2 Multicovers

Angluin and Gardner showed in [3] that pairs of regular graphs (of the same degree) have
finite common covers. It follows from their proof, that for any regular graph H and any two
vertices, say = and y, of H, there exists a graph G with a specified vertex u such that G allows
two different covering projections onto H: one sending u onto z and the other one sending
u onto y. We are interested in covers that not only allow a specified vertex to be mapped
onto any vertex of H, but also allow the neighborhood of the specified vertex to be mapped
onto the neighborhood of any vertex of H in any possible permutation. We call such graphs
multicovers.

Theorem 1 For every connected k-reqular graph H, there exists a connected graph G with
a specified vertex u, such that for every x € V(H) and every bijective mapping g from the
neighbors of u (in G) onto the neighbors of © (in H ), there ezists a covering projection f :

V(G) — V(H) such that f(u) = z and f(w) = g(w) for every w € Ng(u).

Proof. This proof is a generalization of Angluin and Gardner’s construction of common covers
of regular graphs [3]. Note first that without loss of generality we may assume that H is k-edge
colorable. (If it is not, we consider H = H x Ky = (V(H) x {0,1},{(z,0)(y,1)|zy € E(H)})
and X = {(z,0)|z € X}. This H is bipartite k-regular, and therefore 1-factorable, i.e.,
k-edge colorable. Further f : (x,i) — z (i = 0,1) is a covering projection from H onto
H, and thus any covering projection g : V(G) — V(H) translates to a covering projection
gof:V(G) = V(H).)

Denote by X the vertex set of H. Fix a legal k-edge coloring of H, say ¢ : E(H) —
{1,2,...,k}. Denote by Sj, the set of all bijections from {1,2,...,k} onto Ny(z), for z € X.
For every z € X and m € Sy 4, let ¢, be the legal k-edge coloring of H obtained from ¢ by
a suitable permutation of colors such that ¢, r(z7(i)) = ¢ for every i = 1,2,...,k (note that
such coloring is unique).

We define a graph G’ as a color product of |X|k! copies of H. The vertices of G’ are
(| X|k")-tuples of vertices of H. Since we will exploit the structure of the index set S =
{(z,7)|m € Sga,x € X}, we will view the vertices as functions A : S — V(H). To define
the edges of G’, for every i, G’ has a perfect matching (of color i) formed by the edges
E; = {AB|A(z,7)B(z,7) € E(H), p5x(A(z,7)B(z,7)) = iforallz € X,m € Sk }. Thus
B(G') = UL, B.

It is easily verified that G’ is a k-regular k-edge colorable graph and that each projection
Yo x(A) = A(z,7),z € X,m € Sk, is a covering projection onto H. Note however, that G’



need not be connected.
Finally, consider vertices u,u1,...,u; of G’ defined by

u(z,m) =,z € X, 7 € Sk 4,

uj(z,m) =7(j),z € X,m € Sk 4,§ =1,2,...,k.

Since uu; € E; forevery j = 1,2,...,k, these vertices belong to the same connected component
of G'. This connected component will be our graph G. Indeed, every covering projection ¥ »
sends v onto z, and for every bijection g from Ng(u) onto Ng(z), ¥g «(u;) = g(u;), provided
m € Sk 4 is the bijection that satisfies g(u;) = w(j) for all j = 1,2,...,k. O

3 Partial covers

In this section, we consider partial covers, which are a natural generalization of covers of regular
graphs for the case when the big graph is not necessarily regular. Particularly interesting
questions arise when the big graph is ‘almost’ regular (i.e., it is obtained from a regular graph
by splitting one vertex into pendant vertices).

Definition 3.1 A mapping f from the set of vertices of a graph G into the set of vertices of
a graph H 1is called a partial cover of H, if

(1) for all z,y € V(G), if zy € E(G) then f(z)f(y) € E(H), and

(2) for all z,y € V(G), if dg(z,y) = 2 then f(z) # f(y).

Note that the first condition states that f is a homomorphism from G to H, and the second
condition requires that vertices which have a common neighbor are mapped onto different
vertices of H. One can easily show that a graph G allows a partial cover to H if and only if
G is a subgraph of a cover of H. Partial covers were investigated already by Nesetfil in [18]
in connection with monoids of graph endomorphisms. The following proposition is clear.

Proposition 3.2 If G and H are regular connected graphs of the same degree, then every
partial cover f:V(G) — V(H) is a covering projection from G onto H. O

Now consider regular graphs G and H and the graph G, obtained from G by splitting a
vertex u into pendant vertices. If G covers H and f : V(G) — V(H) is a covering projection,
then f, : V(G,) — V(H) defined by f,(v) = f(v),v € V(G) — {u} and f,(uy) = f(u),w €
Ng(u), is a partial cover of H. In this sense, let us call a partial cover g : V(G,) — V(H)
good if g = f,, for some covering projection f : V(G) — V(H) and bad otherwise. Note that a
partial cover g is good if and only if it maps all the pendant vertices u,,, w € Ng(u) onto the
same vertex of H and their neighbors w,w € N¢(u) onto distinct vertices.



Given a fixed regular graph H, our aim will be to construct graphs that cover H possibly
in many different ways, but allow only good partial covers. Since the latter is not easy to
check, we will rather show that for many graphs H, no graph that covers H allows a bad
partial cover. Two different sufficient conditions are given in the following subsection.

3.1 Good covers

Theorem 2 Let G and H be connected k-reqular graphs such that the number of vertices of
G is a multiple of the number of vertices of H. If H is ([%J + 1)-edge connected, then for any
vertez u of G, any partial cover from G, onto H is good.

Theorem 3 Let G and H be connected k-reqular graphs such that the number of vertices of
G is a multiple of the number of vertices of H. If H is k-edge colorable, then for any vertex
u of G, any partial cover from G, onto H 1is good.

The rest of this section is devoted to the proofs of the theorems. Let n be the number
of vertices of H and let G have h - n vertices. Further let f : V(G,) — V(H) be a partial
cover. For z € V(H), denote by h; the number of vertices of degree k in G,, that f maps
onto z, ie., hy = |f71(z) N (V(G) — {u})|. For z,y € V(H), let cz, be the number of
pendant edges of G, that f maps onto xy, more precisely c; , = [{w : f(w) =z, f(uy) = y}|-
(Note that 3>, \cv(m)Czy = k and that for zy ¢ E(H), ¢z = 0.) Finally, let C = {zy :
Cpy # 00r ¢y, # 0} C E(H) be the set of the images of the pendant edges of G, and let
H' = (V(H),E(H)—C) be the graph obtained from H by deleting the edges of C. We denote
A1, As, ..., A, the connected components of H'.

Lemma 3.3 If xy is an edge of H, then hy —hy = cpy — Cy -

Proof. Let F; be the set of vertices of G, which are mapped onto  and which have a neighbor
mapped onto y (in the partial cover f). Similarly, let F}, be the set of vertices mapped onto
y which have a neighbor mapped onto z. Since f is a partial cover, every vertex of degree k
which is mapped onto z is in F;, and a pendant vertex u,, is in F; if and only if f(u,) =
and f(w) = y. Hence |F;| = hgy + ¢y 5. Similarly, |Fy| = hy + ¢z 4. Since the subgraph of G,
induced by F, U Fy is a perfect matching, we have |F;| = |Fy|, from which our lemma follows
O

Corollary 3.4 If x and y belong to the same connected component of H', then hy = hy.

Proof. If zy is an edge of H', we have Cry = €y = 0 and thus h; = h, follows from the
preceding lemma. If zy is not an edge, then z and y are connected by a path in H’, and all
vertices z along this path have the same h,. O

In view of the corollary, we will introduce h; = h; for any z € A4;,i1 =1,2,...,m.



Lemma 3.5 If h; < h for every i =1,2,...,m then f is good.

Proof. Since hn—1 = ZzeV(H) hy, we see that h, = h for all but one vertex of H, say z, and
h, = h—1. This means that z itself forms a connected component of H’, and Crz=Crzptl2>1
for every z € Nu(2). As k = 3, ycv(m) Coy = Yaeny(z) Caze = k, we see that ¢y, = 1 and
¢yz = 0 for every x € Ny(z). Hence f(u,) = z for every w € Ng(u) and f(w) # f(v) for
distinct w,v € Ng(u). O

Corollary 3.6 The graph H' has at least two connected components.

Proof. If H' had just one connected component, one would have hn — 1 = |V(G) — {u}| =
> zev(H) he = nh1, a contradiction. O

Proof of Theorem 2. We will follow the route prepared in Lemmas 3.3 and 3.5 and
Corollaries 3.4 and 3.6. We know that H' has at least two connected components. Every
connected component is incident with at least [£| + 1 edges of C' (due to the assump-
tion about the edge connectivity of H). If H' had m > 4 components, we would have
E>1C > (L5 +1)2 > (%] + 1)2 > k£ + 1, a contradiction. Thus H' has 2 or 3 con-
nected components.

Suppose H' has exactly two components and f is not good. Then we may assume without
loss of generality that hy > h+1 and consequently, since hn —1 =3 cy () by, ho < h —1. It
follows from Lemma 3.3 that ¢, , > 2 for every edge zy € E(H) such that x € A; and y € As.
Due to the assumed edge connectivity of H, there are at least L%J + 1 such edges and we have
k=3 0ycv(m) Coy = 2acAycas Coy = 2(1%] +1) > k + 1, a contradiction.

If H' has three components, we may again assume hy > h + 1 and hy < h — 1. Similarly
to the previous case, we have c;, > 2 for every edge zy € E(H) such that z € A; and
y € As. Denoting Cj; = {zy|zy € C,z € A;,y € A;}, the connectivity assumption implies
|C1a|+|C1a| > | 5] +1 and |C1a| +|Cas| > 5] +1. Thus k = Y e yeV(H) Coy = 2|Ci2| +|Crs| +
|Cos| > 2(1%] +1) > k + 1, a contradiction. O

We will next attend to the case of k-edge colorable graphs. The following Parity Lemma
is well known: In any legal k-edge coloring of a k-regular graph, a minimal edge-cut has the
same parity of the number of edges colored by a particular color (for all colors). (A proof may
go as follows: Consider colors b and w and the subgraph induced by the edges of these two
colors. This subgraph is 2-regular, i.e. a disjoint union of cycles, and each cycle uses even
number of edges of the cut.) We have a similar lemma for our G,.

Lemma 3.7 Let G be a k-regular graph with even number of vertices, and let u be any of
its vertices. Then any legal k-edge coloring of G, uses different colors on the pendant edges
Wy, w € Ng(u).



Proof. Since G, has the same number of pendant edges as the number of colors, either each
of the colors is used exactly once on the pendant edges, or there is a color, say b, which is
missing. Suppose that the latter case applies. Consider a color, say c, which is present on at
least one of the pendant edges, and consider the subgraph induced by edges of colors b and c.
Each connected component of this graph is either a cycle within V(G) — {u}, or a path of odd
length of type uy,w,...,v,u, for some w,v € Ng(u). (The length of the path is odd, because
the colors of its edges alternate along the path and both edges u,w and wu,v have color ¢.) It
follows that each of these components uses even number of vertices of V(G) — {u} and they
span this set of vertices. This contradicts the assumption about the number of vertices of G.
O

The following lemma is a direct consequence of the parity lemma.

Lemma 3.8 Let H be a connected k-regular graph and let C C V(G) be an edge-cut of size
k such that in some legal k-edge coloring, all edges of C' have different colors. Then C is a
minimal cut.

Proof. If C were not a minimal cut, H would have a nonempty edge cut C' C C of size less
than k. In the assumed coloring, the colors appearing on the edges of C' would appear exactly
once each (i.e., each odd number of times) and the colors appearing on edges of C' — C’ would
be missing on C' (i.e., appearing on C' even number of times). That would contradict the
parity lemma. O

Proof of Theorem 3. Note that any k-regular k-edge colorable graph has even number
of vertices. Fix a legal k-edge coloring of H, say ¢ : E(H) — {1,2,...,k}. A coloring
Y :E(Gy) — {1,2,...,k}, defined by ¥(zy) = ¢(f(z)f(y)) is a legal edge coloring of G,,.

Since all the pendant edges of G, have different colors in ¢ (Lemma 3.7), C is a set of
k different edges of H, and these edges have different colors in . By Corollary 3.6 and
Lemma 3.8, C is a minimal cut and H' has exactly two connected components. It follows
that for every edge zy € C, either c;, = 0 and ¢, , = 1 or vice versa. Hence, by Lemma 3.3,
|h1 — ho| = 1. Since 3 ,cy(g) he = nhi, max{hi,ho} < h and the statement follows from
Lemma 3.5. O

3.2 Bad covers

We will show an example of a cubic (not 2-connected) graph which allows a bad partial cover
from some G,.

Proposition 3.9 Let H be a cubic graph with one articulation point v such that G—v consists
of three isomorphic components. Then there exists a graph G with a vertex u such that G covers
H, Gy is connected and G, allows a bad partial cover of H.



Proof. Let A, B,C be the three components of H — v, (A = B = C) and let a,b,c be the
vertices of degree 2 in A, B, C, respectively. Let D be a 3-fold cover of A (i.e., D covers A
and |V(D)| = 3|V(A)|). Then D has 3 vertices of degree 2 and all of them are mapped onto
a by any covering projection of D onto A. Since A, B and C are isomorphic, D also covers B
and C. Furthermore, take a 2-fold cover of A, say E.

Our graph G will consist of 3 disjoint copies of D (called D, Dy, D3), 6 disjoint copies of
E (called Eu,..., Eg), 6 extra vertices w1, ...,ws and a special vertex u. Figure 1 shows the
graphs H and G, together with a good and bad partial cover of G,, onto H.

Figure 1: Both a good partial cover and a bad partial cover from G, (bottom) onto H is
shown. In both coverings the 3 pendant vertices from u and ws, ..., wg are mapped to v. The
good partial cover is otherwise specified by vertex shading (note neighbors of pendant vertices
are mapped to different neighbors of v), and the bad partial cover by physical placement (note
neighbors of pendant vertices are mapped to the same neighbor of v in A).



The vertices of degree 2 in D; are x;1,%i2, %3, ¢ = 1,2,3, and the vertices of degree
2 in E; are y;1,yj2, j = 1,2,...,6. The additional edges, making G' a cubic graph, are
uzrii, ur21,ur3y, wWiri2,w2T13, w322, wW4r23, Ws5T32,Wsr33, WiyYil, wW3iyi2, W3sy21, WsY22, WsY3i,
W2Y32, W2Y41, WaY42, WaYs1, WeYs2, WeYe1, W1Ye2. Obviously, G, is connected.

A mapping obtained from covering projections of Dy, Fs and Es onto A, D2, E3 and FEjg
onto B, D3, E1 and E4 onto C and which maps the additional vertices u,w;, ..., wg onto v is
a covering projection from G onto H.

Similarly, a mapping obtained from covering projections of D;, D2 and D3 onto A, E, E3
and Es5 onto B, Es, E4 and Eg onto C and which maps the additional vertices w1, ..., ws as
well as the split vertices uy,,, Uz, , Uz, Onto v is a bad partial covering projection from G,
onto H. O

4 Complexity of regular covers

Abello et al. [1] first asked the question: “For which graphs H is the H-cover problem NP-
complete and for which is it polynomially solvable?” (The H-cover problem takes a graph
G as its input and asks if G covers H.) Fellows [personal communication| suggested that
this problem might be polynomially solvable for rigid graphs H (i.e., for graphs with trivial
automorphism group). We will show that this is (subject to P#NP) not the case, in fact,
there are infinitely many rigid cubic graphs H for which H-COVER is NP-complete. Let us
remark that until recently, all NP-completeness reductions were based on the symmetries of
the parameter graph H and could not have been used for rigid graphs.

4.1 Auxiliary complexity lemma

A hypergraph is a pair (V, F'), where V is a set of vertices and F is a family of subsets of V.
The elements of F' are called hyperedges. A hypergraph is s-uniform if every hyperedge has
size s, and it is k-regular if every vertex belongs to exactly k-hyperedges. (Thus a 2-uniform
hypergraph is a multigraph in the usual sense.) A coloring of the edges of a hypergraph is
called legal if no vertex belongs to two or more edges of the same color. A hypergraph is called
k-edge colorable if its edges can be legally colored by k colors.

Lemma 4.1 For any fized k > 2 and s > 2, it is NP-complete to decide if a given k-regular
s-uniform hypergraph is k-edge colorable.

Proof. For k = 3 and s = 2, the statement becomes the well known theorem of Holyer [14]
about 3-edge colorablity of cubic graphs. Also for s = 2 and any fixed k& > 3, the statement
is known to be true, cf. [16]. We show a reduction from this latter problem to one involving



a general s > 2. Given a k-regular graph G = (V, E), we construct an s-uniform k-regular
hypergraph H so that H is k-edge colorable if and only if G is. That will prove our lemma.

For the construction of H, first take s disjoint copies of G, and call them G; = (V;, E;),
1 <i < s (an edge e € E is considered a two-element set; the corresponding edge in E(G;) is
denoted e;). For every edge e € E, introduce new vertices e;;, 1 <i <'s, < j < s—2. The
vertex set of H is thus

8
V(H)=JViU{eijle € B,1<j <s-2}).
i=1

The s-uniform hyperedges of H are
S(e,i) =e; U{ejj|l1 <j<s—2}, 1<i<s,ecE

and
Th(e,j) ={eij|1<i<s}, 1<j<s-2,1<h<k-1eck.

Obviously, if H is k-edge colorable, a restriction of any legal coloring to (G is a legal k-edge
coloring of G.
Ifp: E—{1,2,...,k} is a legal k-edge coloring of G, we define
P(S(e, 7)) = p(e),i =1,2,...,s, e € E,
Y(Th(e,7)) =h,j=1,2,...,8s—2, h=1,2,...,0(e) — 1, e € E,
Y(Th(e,j)) =h+1,7=1,2,...,s—2, h=¢(e),...,k—1, e€ E.
This 7 is a legal k-edge coloring of H. O

4.2 NP-completeness of regular covers

Theorem 4 Let H be a connected k-reqular graph. Then the H-cover problem is NP-complete,
if there ezists a vertex x of H and a k-reqular graph G with a specified vertex u such that

(1) for every bijective mapping g of the neighbors of u onto the neighbors of x, there erists
a covering projection from G onto H that extends g and maps u onto x;

(2) for every neighbor y of x and for every bijective mapping g of the neighbors of u onto
the neighbors of y, there exists a covering projection from G onto H that extends g and maps
u onto y; and

(8) every partial cover f : V(G,) — V(H) satisfies f(uw) = f(uy) and f(w) # f(v) for
any two neighbors v,w of u.

Proof. We show a reduction from k-edge colorability of k-regular (k— 1)-uniform hypergraphs
to H-cover.
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Let K = (V, F) be a given k-regular (k — 1)-uniform hypergraph. We will construct a k-
regular graph Gk so that Gk covers H if and only if K is k-edge colorable. This construction
will utilize the graph G from the assumptions of the theorem.

For every vertex v € V, we introduce a vertex gadget GV that will consist of one copy of
G, and the isolated vertex v. The pendant vertices of this copy of G, will be denoted u,, and
their corresponding neighbors will be denoted wye, for each hyperedge e that contains v (note
that there are exactly k such hyperedges).

For every hyperedge e and every vertex v of e, we introduce two copies of G, one called
Gv? and the other one GY’. The pendant vertices of G}° will be denoted w}® and their

corresponding neighbors w?¢ (i = 1,2,...,k). Similarly, the pendant vertices of G§¥ will be
denoted u§” and their neighbors w” (i = 1,2,...,k). These 2k — 2 copies of G,, will be glued
together by a series of unifications. For every ¢ = 2,3,...,k, the k — 1 vertices uj®,v € e will

be unified into one vertex called uf, and the k — 1 vertices u;”,v € e will be unified into one
vertex called #{. Finally, the edges uiu$,7 = 2,3,...,k are added to form the edge gadget G*°.

The edge gadgets G¢ and the vertex gadgets GV are linked together by further unifications.
For every hyperedge e and every vertex v € e, we unify v with u}¢, wy,, with u{” and u,, with
w$?. This is our graph Gg. (Note that besides the explicitly shown unifications, the copies of
G, used in the construction are disjoint. An illustrative example of the construction appears
in Figure 2.)

We first show that if Gk covers H then K is k-edge colorable. Suppose f : V(Gk) — V(H)
is a covering projection. Note that for every copy of G, that was used in the construction of
Gk, the restriction of f to that copy of G, is a partial cover of H. It thus follows, due to
assumption (3), that all pendant vertices of that copy G, are mapped onto the same vertex
of H. Hence for any hyperedge e and two of its vertices v, t,

Fv) = f(ui®) = f(u5%) = f(u§) = f(u) = f(ur’) = f(B),

and (assuming connectedness of K), f(v) = f(v') for any two vertices v,v' of K. Let z be
the vertex of H onto which all vertices of K are mapped (we have already seen that then
f(u§) =z for every e € F and i = 2,3,...,k as well).
Consider a hyperedge e and one of its vertices v € e, and let f(w,.) = y. It follows from
G¢’ that f(uf) = y for ¢ = 2,3,...,k and hence f(ws) = y for every other ¢ € e. Since
u§u§ € E(Gk), y € Ng(z). This allows us to color the hyperedges of K by neighbors of z in
H (following the rule (e) = f(&f = f(wye) for any v € e € F). This coloring is legal because
of the ssumption (3) which (when applied to the copy of G, in the vertex gadget G”) implies
that for every v € V, f(wye) # f(wyy) for any two distinct hyperedges e, f containing v.
For the other implication, suppose that K is k-edge colorable. Fix a legal coloring ¢ :
F — Ng(z) (i.e., we identify the colors with the neighbors of vertex z in H). We predefine a
partial covering projection on the connecting vertices of the copies of G, using a mapping g.
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For every particular copy of GG, its pendant vertices will be mapped onto the same vertex of
H (either z or a neighbor of z), and their neighbors will be mapped onto distinct neighbors
of this vertex. Thus assumptions (1) and (2) will allow us to extend g to f locally within each
copy of G,. The mapping f will then be the desired covering projection of Gx onto H (the
reader may verify that g fully satisfies all pendant vertices of particular copies of Gy,). It only
remains to show the mapping g.

For every v € V, we set g(v) = z.

For every hyperedge e = {v1,v2,...,v5—1} € F, we do the following. Let ¢(e) = y,
(y € Ny(z)). Let yo,y1,--.,yx_2 be the other neighbors of = and let z¢,z1,...,z; 2 be the
other neighbors of y (in H). For every i = 1,2,...,k—1,7 =2,3,...,k, we set

9(wy;e) =y,

(the addition in the subscripts of the last two assignments is modulo k& — 1). O

Corollary 4.2 For every fized k > 2 and every k-reqular graph H, the H-cover problem is
NP-complete if

H is (1+ |%])-edge connected, or

H is k-edge colorable.

Proof. Theorem 1 ensures the existence of gadgets satisfying conditions (1) and (2) of The-
orem 4 and Theorems 2 and 3 guarantee that any such gadget satisfies the condition (3) as
well (provided H is as in above). O

In [15], we have stated as one of the main open problems whether there exist rigid regular
graphs H, for which the H-cover problem is NP-complete. Using methods similar to those
developed in [11], one can construct infinitely many rigid k-edge colorable k-regular graphs
for any £ > 3 [J. NeSetfil: personal communication]. Therefore our question is answered
affirmatively:

Corollary 4.3 For every k > 3, there are infinitely many rigid k-regular graphs H for which
the H-cover problem is NP-complete. O
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5 Final remarks and open problems

Our main conjecture, that we have solved only partially in this paper, is expressed as follows:

Problem 1. Show that the H-cover problem is NP-complete for every regular graph H of
degree at least 3.

We are still optimistic in suggesting that the full conjecture can be settled with the same
reduction that we gave above. It would be sufficient to prove:

Problem 2. For every regular graph H there exists a vertex z € V(H) and a regular graph G
with a specified vertex u, such that the conditions (1), (2) and (3) of Theorem 4 are fulfilled.

It is still possible that the construction used in Theorem 1 satisfies our requirements.

The graph H of Section 3.2 shows that the condition of (| %] + 1)-edge connectedness in
Theorem 2 is necessary for £ = 3. Fiala [7] gave for each k divisible by 4 a construction of
%—edge connected k-regular graphs which allow bad covers, thus showing that Theorem 2 is
essentially tight. The following problem, which we believe is interesting in its own right, is
still open:

Problem 3. Characterize the class of all connected regular graphs H such that for every
graph G that covers H and every vertex u of G, all partial covers from G, onto H are good.
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